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ABSTRACT

The performance of cloud radio access networks (C-
RAN) is limited by the finite capacities of the backhaul links
connecting the cloud with the base-stations (BSs). A promis-
ing approach to improving the performance of C-RAN is to
augment the backhaul through BS caching, where the BSs
pre-store some of the popular contents. In this paper, we
first derive a multicast backhaul rate expression based on a
joint cache-channel coding scheme, and show that, as com-
pared to the uniform cache allocation, it is better to allocate
larger cache sizes to the weaker BSs. Then, by leveraging the
sample approximation method and the alternating direction
method of multipliers, we develop an efficient algorithm to
optimize the cache allocation by maximizing the BS expected
file downloading rate from the cloud. Numerical results show
considerable performance improvement of the optimized
cache allocation scheme over heuristic schemes.

Index Terms— Caching, C-RAN, multicast backhaul

1. INTRODUCTION

Cloud radio access network (C-RAN) has been recognized as
one of the enabling technologies for the next generation wire-
less networks [1, 2, 3]. In C-RAN, the base-stations (BSs) are
connected to a centralized processor (CP) through the back-
haul links. A main advantage of C-RAN is that it enables
cooperation among the BSs for inter-cell interference cancel-
lation. The cooperation gain brought by C-RAN is however
limited by the capacities of the backhaul links [4, 5]. In par-
ticular, this paper focuses on the data-sharing strategy for the
downlink C-RAN, where the user messages are shared with
multiple BSs for cooperative transmission. In this case, the
BS cooperation cluster size is limited by the backhaul.

This paper proposes the use of caching at the BSs for al-
leviating backhaul traffic in the downlink C-RAN. Caching
at the network edge has attracted extensive research interests.
For example, the pioneering work of [6] uses network coding
to simultaneously deliver multiple files through a commmon
noiseless channel to multiple receivers, each caching differ-
ent parts of the files. This paper studies a different scenario
in which the same content is required at multiple BSs, but

the backhaul is wireless with different channel conditions to
different BSs. In particular, we consider a practical C-RAN
model where each BS only caches a fraction of each file and
requests the rest from the CP via noisy wireless backhaul
channel. Under a total cache size constraint, we investigate
the optimal cache size allocation strategy at each BS and the
transmission strategy at the cloud such that the file requests
can be delivered most efficiently from the cloud to the BSs.

As related works, wireless multicast backhaul for C-RAN
has been considered in [7, 8]. However, [7] does not consider
BS caching, while [8] considers network coded multicasting
with fixed cache sizes. This paper differs from the above
works in optimizing the cache allocation among the BSs to
further improve the efficiency of wireless multicast backhaul.

This paper is motivated by the information theoretical
study of [9], which shows that it is advantageous to allocate
different cache sizes to different BSs depending on the chan-
nel conditions. In addition, [9] proposes a joint cache-channel
coding scheme that optimally utilizes the caches at the BSs.
We take the findings in [9] one step closer to the practice
and consider the cache allocation problem under a realistic
downlink C-RAN setup with a single BS cluster. This paper
first derives a new multicast backhaul rate expression with BS
caching, then formulates the cache allocation problem which
maximizes the expected file delivering rate from the cloud to
the BSs under a total cache size constraint. By taking advan-
tage of the sample approximation method and the alternating
direction method of multipliers (ADMM), we propose an
efficient cache allocation scheme that together with transmit
optimization considerably outperforms the uniform cache al-
location scheme and the heuristic scheme of allocating cache
in proportion to the long term channel statistics.

2. CACHING IN C-RAN BACKHAUL

Consider a downlink C-RAN model in which all the BSs are
connected to a cloud center through shared wireless backhaul.
The cloud employs a data-sharing strategy which delivers
each user’s intended message to a predefined cluster of BSs
and the BS cluster subsequently serves the user through coop-
erative beamforming. The performance of C-RAN is largely



limited by the capacities of the backhaul [4, 5]. In order to
mitigate the demand for high backhaul capacities needed for
large cooperation gain, we assume that each BS is equipped
with a local cache and can pre-store content during off-peak
traffic time to reduce the peak time backhaul traffic.

For simplicity, we consider a network consisting of a sin-
gle cluster of cooperative BSs. A file of size F needs to be
delivered to all the BSs in order to enable cooperation. Each
BS l ∈ L := {1, 2, . . . , L} is equipped with a local stor-
age unit of size Cl that can cache some contents of the file,
where

∑
l∈L Cl ≤ C. In this paper, the backhaul connect-

ing the cloud with the BSs is assumed to be a shared wireless
medium. We address the question of how to distribute the
total cache size C among the BSs and design transmission
strategies at the cloud such that the cloud can deliver the file
to the BSs in the most effective way.

We assume a block-fading model for the wireless back-
haul channel from the cloud to the BSs. The cloud transmitter
has M transmit antennas, while all the BSs are equipped with
a single antenna. Let hl ∈ CM×1 denote the channel vec-
tor between the cloud transmitter and BS l within a coherent
block. The received signal at BS l can be written as

yl = hHl x + zl (1)

where x ∈ CM×1 is the transmit signal of the cloud transmit-
ter, yl ∈ C is the received signal at BS l, and zl ∼ CN

(
0, σ2

)
is the background noise at BS l. We optimize the transmit co-
variance matrix for each channel realization.

3. EFFECTIVE DOWNLOAD RATE WITH CACHING

3.1. Broadcast Channel with Uncoded Caching

The downlink C-RAN wireless backhaul network with a sin-
gle BS cluster can be modeled as a broadcast channel (BC)
with common message, the capacity of which is given as

R0 ≤ min
l
{I (x; yl)} , (2)

where R0 denotes the multicast rate, I (x; yl) is the mutual
information between the transmit signal x at the cloud and
the received signal yl at BS l. It can be seen from (2) that the
common information rate is limited by the worst channel.

With caching at the BSs and assuming that BS l fills up
its cache by naively caching the Cl/F fraction of the file, the
cloud then only needs to deliver the rest 1−Cl/F fraction of
the file to each BS. However, since the BSs are served through
multicasting, the cloud has to send the maximum of the rest
of the request file, i.e., maxl {1− Cl/F}, to make sure that
the BS with least cache size can get the entire file. Therefore,
the effective file downloading rate is

D0 =
minl {I (x; yl)}

maxl {1− Cl/F}
. (3)

Under this naive caching strategy, it is optimal to allocate the
cache size uniformly, i.e., Cl = C/L,∀ l ∈ L.

3.2. BC with Joint Cache-Channel Coding

The above downloading rate can be improved if a joint cache-
channel coding scheme is employed, in which BSs use the
cached bits to facilitate the decoding of the received signal.
From an information theoretic analysis, we have:

Lemma 3.1 ([9]) In a broadcast channel with common mes-
sage, if each receiver l caches ml bits, the common message
rate Rc bits per channel use is achievable if and only if

Rc ≤ I (x; yl) +ml,∀ l ∈ L. (4)

Now if the BS l caches Cl/F fraction of the file, it only
needs to have its channel to be able to support the rest 1 −
Cl/F fraction of the file. By (4), this condition needs to be
satisfied for each BS individually. This gives the effective
downloading rate with caching as

Dc = min
l

{
I (x; yl)

1− Cl/F

}
. (5)

Clearly, the effective downloading rate in (5) is strictly larger
than the one in (3) except when all I (x; yl) are equal. Instead
of allocating the cache size Cl uniformly, (5) shows that it is
advantageous to allocate more cache to the BS with weaker
channel to achieve an overall higher multicast rate. In the
next section, we formulate an optimization problem to find
the optimal cache allocation among the BSs.

4. OPTIMIZING BS CACHE ALLOCATION

Based on (5) and the channel model (1) and by further in-
cluding the optimization of the transmit covariance matrix, we
now formulate the optimal multicast downloading rate prob-
lem with BS caching as

D∗c = max
W∈W

min
l

 log
(

1 + Tr(HlW)
σ2

)
1− Cl/F

 , (6)

where Hl = hlh
H
l ,W is the covariance matrix of the trans-

mit signal x, and W = {W � 0 | Tr (W) ≤ P} with P be-
ing the transmit power budget.

Note that the optimal multicast rate in (6) is a function of
both the channel condition and the cache allocation. In prac-
tice, the transmit covariance matrix is adapted to each channel
realization, but the cache allocation is determined at the cache
deployment phase so can only adapt to the channel statistics.
We therefore take expectation of D∗c in (6) over the chan-
nel distribution, and aim to find an optimal cache allocation
that maximizes the long-term expected effective downloading
rate. The overall optimization problem is now formulated as:

maximize
{Cl}

E{Hl} [D∗c ] (7a)

subject to
∑
l∈L

Cl ≤ C, 0 ≤ Cl ≤ F, l ∈ L. (7b)



In the full version of this paper [10], we also consider the
expected file downloading time as the objective function.

Finding a closed-form expression for the objective func-
tion in (7a) is in general challenging. This paper proposes
to replace the objective function of the above with its sample
approximation [11] and to reformulate the problem as:

maximize
{Cl, Wn}

1

N

N∑
n=1

min
l

 log
(

1 +
Tr(Hn

l W
n)

σ2

)
1− Cl/F

 (8a)

subject to
∑
l

Cl ≤ C, 0 ≤ Cl ≤ F, l ∈ L, (8b)

Tr (Wn) ≤ P, Wn � 0, n ∈ N , (8c)

where N := {1, 2, . . . , N} , {Hn
l }n∈N are the samples

drawn according to the distribution of Hl, and Wn is the
covariance matrix adapted to the samples {Hn

l }l∈L.
Problem (8) is still not easy to solve mainly due to the

following two reasons. First, the objective function of prob-
lem (8) is nonsmooth and nonconvex, although all of its
constraints are convex. Second, the sample size N generally
needs to be sufficiently large such that the sample average
is a good approximation to the original expected rate [11],
leading to a high complexity for solving problem (8) directly.
In the next section, we first reformulate problem (8) as a
smooth problem, then linearize the nonconvex term, and fi-
nally leverage the ADMM to decouple the problem into N
low-complexity convex subproblems.

5. ADMM WITH SAMPLE APPROXIMATION

Dropping the constant 1/N and introducing the auxiliary vari-
ables {ξn} , we first reformulate problem (8) as

maximize
{Cl, Wn, ξn}

N∑
n=1

ξn (9a)

subject to log

(
1 +

Tr (Hn
l W

n)

σ2

)
≥ ξn(1− Cl/F ),

l ∈ L, n ∈ N , (9b)
(8b) and (8c).

The above problem (9) is smooth but still nonconvex due to
the term ξn(1 − Cl/F ). To deal with the nonconvex term,
we approximate it by its first-order Taylor expansion at some
appropriate point (ξ̄n, C̄l), i.e.,

ξn(1− Cl/F ) ≈ ξ̄n(1− C̄l/F ) +
[
1− C̄l/F, −ξ̄n/F

][
ξn − ξ̄n, Cl − C̄l

]T
= ξ̄n (1− Cl/F ) +

(
1− C̄l/F

) (
ξn − ξ̄n

)
.

An iterative first-order approximation leads to the Algo-
rithm 1 for solving problem (8) shown on the next page.

More specifically, let {ξn(t), Cl(t)} be the iterates at the t-th
iteration, the algorithm solves

maximize
{Cl, Wn, ξn}

N∑
n=1

ξn (10a)

subject to log

(
1 +

Tr (Hn
l W

n)

σ2

)
≥ ξn(t) (1− Cl/F )

+ (1− Cl(t)/F ) (ξn − ξn(t)), l ∈ L, n ∈ N ,
(10b)

|ξn − ξn(t)| ≤ r(t), n ∈ N , (10c)
(8b) and (8c),

where (10c) is the trust region constraint (i.e., within the re-
gion the linear approximation in (10b) is trusted to be of good
quality) and r(t) is the radius of the trust region at the t-th
iteration; then the algorithm updates the parameters for the
next iteration as

ξn(t+ 1) = min
l∈L

 log
(

1 +
Tr(Hn

l W
n∗(t))

σ2

)
1− C∗l (t)/F

 , n ∈ N ,

(11)

Cl(t+ 1) = C∗l (t), l ∈ L, (12)

where Wn∗(t) and C∗l (t) are solutions to problem (10). For
the initial point, we can set Cl(1) to be C/L for all l ∈ L,
and decouple problem (9) into N convex optimization sub-
problems to solve for ξn(1) for all n ∈ N .

It remains to solve problem (10). Note that problem (10)
is a convex problem but with a (potentially) large number of
variables (due to the large sample size). We propose to use
the ADMM [12] to solve problem (10), which decouples the
high-dimensional problem into many small-dimensional sub-
problems. In particular, we introduce the so-called consensus
constraints Cnl = Cl, ∀l, n and reformulate problem (10) as

maximize
{ξn,Wn,
Cn

l , Cl}

N∑
n=1

ξn (13a)

subject to log

(
1 +

Tr (Hn
l W

n)

σ2

)
≥ ξn(t) (1− Cnl /F )

+ (1− Cl(t)/F ) (ξn − ξn(t)) , l ∈ L, n ∈ N ,
(13b)

Cnl = Cl, l ∈ L, n ∈ N , (13c)
|ξn − ξn(t)| ≤ r(t), n ∈ N , (13d)
(8b) and (8c).

The partial augmented Lagrangian of problem (13) is

Lρ (ξn,Wn, Cnl , Cl;λ
n
l ) = −

N∑
n=1

ξn+

∑
l∈L

∑
n∈N

[
λnl (Cnl − Cl) +

ρ

2
(Cnl − Cl)

2
]
, (14)



Algorithm 1 Proposed Algorithm for Problem (8)
Initialization: Initialize Cl(1) = C/L, l ∈ L, and ξn(1) as
the solution to problem (8) with Cl = Cl(1); set t = 1;
Repeat:

1. Use the ADMM to solve problem (10);

2. Update {ξn(t+ 1), Cl(t+ 1)} according to (11) and
(12), respectively;

3. Set t = t+ 1;

Until convergence

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multicast Rate in bps/Hz

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

 

 

Uniform, C = 100
Proportional, C = 100
Optimized, C = 100
Upper Bound, C = 100
Uniform, C = 200
Proportional, C = 200
Optimized, C = 200
Upper Bound, C = 200

Fig. 1. CDF of multicast rates under different caching schemes.

where λnl is the Lagrange multiplier corresponding to the con-
straint Cl = Cnl and ρ > 0 is the penalty parameter. To solve
the original problem, the ADMM sequentially updates the pri-
mal variables via minimizing the augmented Lagrangian, fol-
lowed by an update of the dual variable. In our case, at each
iteration, the ADMM first minimizes (14) subject to (13b),
(13d), and (8c) over the variables {ξn,Wn, Cnl } ; then mini-
mizes (14) subject to (8b) over {Cl} ; and finally updates the
Lagrange multiplier. All subproblems at each iteration of the
ADMM here are easy to solve. In particular, the subprob-
lem of minimizing (14) subject to (13b), (13d), and (8c) over
the variables {ξn,Wn, Cnl } automatically decouples into N
low-dimensional convex problems.

6. SIMULATION RESULTS

We consider a downlink C-RAN model with L = 5 BSs lo-
cated at distances (398, 278, 473, 286, 267) meters from the
cloud. The cloud transmitter is equipped with M = 10 trans-
mit antennas. We generate 1000 sets of channel realizations
according to hl = K

1/2
l vl, where Kl is fixed and generated

in the same fashion as in [13] with path-loss component mod-
eled as 128.1 + 37.6 log10(d) dB and d is the distance be-

Table 1. Cache allocations for (BS1, . . . ,BS5) at distances
(398, 278, 473, 286, 267) meters from the cloud transmitter
with file size F = 100.

C = 100 C = 200
Uniform (20, 20, 20, 20, 20) (40, 40, 40, 40, 40)

Proportional (23, 17, 26, 18, 16) (42, 38, 45, 38, 37)
Optimized (25, 10, 45, 13, 7) (44, 33, 58, 35, 30)

tween the cloud and the BS; vl is a Gaussian random vector
with each element independently and identically distributed
as CN (0, 1). The first N = 100 sets of channel realizations
are used in problem (8) to optimize the cache allocation while
the rest 900 are used to evaluate the multicast rates under the
optimized cache allocation. The transmit power at the cloud
is set to be 40 watts and the background noise level is set to
be −150 dBm/Hz. The file size is set as F = 100.

We compare our proposed cache allocation scheme with
the following two benchmarks: the uniform cache allocation
scheme and the proportional allocation scheme which allo-
cates cache such that log

(
1 + PTr(Kl)

Lσ2

)
/ (1− Cl/F ) for all

l are equalized (if possible). We also simulate an (imprac-
tical) scheme of dynamically and optimally allocating cache
based on each channel realization, which provides a (gener-
ally not achievable) upper bound of the optimal multicast rate
in problem (8). Note that the cache allocation problem based
on each channel realization is a convex optimization problem.

In Table 1, we list the cache size allocated to each BS
under two different settings of the total cache size C = 100
and 200 for the proposed optimized scheme as compared to
the two benchmarks. Fig. 1 plots the cumulative distribu-
tion functions (CDF) of the effective multicast rates under
the cache allocation in Table 1. As we can see from Fig. 1,
the proposed optimized caching scheme exhibits considerable
performance improvement as compared to the other two naive
baseline schemes (i.e., the uniform and proportional alloca-
tion schemes). The improvement is due to that the BSs farther
away from the cloud are more aggressively allocated larger
amount of cache under the optimized scheme.

7. CONCLUSION

This paper studies the optimal BS cache allocation problem
in the downlink C-RAN with edge caching. We first derive
the optimal file downloading rate with given BS cache size,
then formulate the cache optimization problem of maximiz-
ing the expected downloading rate over channel fading real-
izations subject to the total cache size constraint. By lever-
aging the sample approximation method and the ADMM, we
propose an efficient cache allocation algorithm. Simulation
results show that the optimized cache allocation scheme sig-
nificantly outperforms the heuristic caching schemes.
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