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ABSTRACT

The performance of low-density parity-check (LDPC) codes trans-

mitted over a memoryless binary-input continuous output additive

white Gaussian noise (AWGN) channel and decoded with quantized

min-sum decoding is strongly influenced by the decoder’s quanti-

zation scheme. This paper presents an efficient algorithm that de-

termines the best uniform scalar quantizer for a particular code. To

maximize performance, it is necessary to determine degree distrib-

utions that best match the characteristics of the quantized min-sum

decoder. Toward this end, an iterative optimization framework that

jointly optimizes the degree distributions and the quantizer is pre-

sented.

1. INTRODUCTION

The problem of designing high-performance irregular low-density

parity-check (LDPC) codes under different decoding algorithms and

channel models has been studied extensively in the literature (e.g.

[1, 2, 3]). Usually, the design objective is to find a code degree

distribution that maximizes the decoding threshold for a given rate

or, equivalently, to find a degree distribution that maximizes the code

rate for a given channel condition (decoding threshold).

The outstanding performance of LDPC codes can be attributed

to several factors, including the powerful and efficient probabilistic

decoding schemes that they admit. More specifically, since an LDPC

code can be represented by a sparse bipartite graph, decoding is per-

formed by passing messages over the edges between check nodes

and variable nodes. These messages represent estimates of the vari-

able node values, and may also provide an associated reliability of

the estimate. The most powerful message passing algorithm is the

sum-product algorithm [4], which computes the posterior distribu-

tion of each codeword bit, under the assumption that the graph is

cycle free.

A significant benefit associated with LDPC codes is that a wide

variety of decoding algorithms exist, each providing a particular

performance-complexity tradeoff. The traditional design methodol-

ogy is to determine threshold-optimized degree distributions under

the assumption of a sum-product decoder, but to decode the result-

ing code with a less complex decoder. A variety of approaches ex-

ist that simplify the implementation of the decoder, while attempt-

ing to closely approximate the sum-product algorithm. Toward this

end, several methods have been suggested to approximate the input-

output behaviour of the check node message update equation [5, 6].

These approaches typically use look-up tables and piecewise ap-

proximations to the update equation. Furthermore, the messages

passed are typically quantized, further simplifying the implemen-

tation of the decoder. An alternative approach to the design of low-

complexity decoders is suggested in [7, 8], and permits the use of

non-uniformly quantized messages, due to a clever implementation

of message maps at the variable and check nodes. However, this is

an ad-hoc method that is not particularly transparent, and has only

been applied to regular LDPC codes. In the following, we focus on

the discretized min-sum decoder, due to the fact that it is particularly

easy to implement in hardware, and we present code optimization

methods for min-sum decoding.

Several issues arise in the design of a practical LDPC coding

system that implements discretized min-sum decoding. Foremost

among these is the choice of degree distributions. The traditional

view is that, since we are attempting to approximate sum-product

decoding, we should use threshold-optimized distributions for the

sum-product algorithm, such as those produced by LdpcOpt [9].

However, it is not clear that these degree distributions remain op-

timal when the decoder implementation changes. Additionally, the

issue of message quantization is not addressed by traditional thresh-

old optimization tools, since the messages are assumed to exist in a

continuous domain. In practice, messages passed within the decoder

are represented with some small number (say 3 to 6) of bits. The

designer must judiciously select the range of values that these quan-

tized messages represent. In the following, we show that significant

performance gains occur when one jointly designs the quantizer and

degree distributions.

2. BACKGROUND

Following the notations of [1] we define an ensemble of irregular

LDPC codes by its variable-degree distribution λ(x) =
P

λix
i−1

and its check-degree distribution ρ(x) =
P

ρix
i−1, where λi de-

notes the fraction of edges incident on variable nodes of degree i

and ρj denotes the fraction of edges incident on check nodes of de-

gree j. If all the parity constraints are linearly independent, the rate

of an irregular LDPC code is related to its degree distribution by

R(λ, ρ) = 1 −

P
i

ρi

iP
i

λi

i

. (1)

If, due to the random construction of the code, some of the parity

check constraints are linearly dependent, the actual rate of the code

will be slightly higher.

2.1. Density evolution

There are many decoding algorithms for LDPC codes. If the decod-

ing algorithm and the channel satisfy some symmetry properties [7],

the performance of a given code can be studied by density evolution.

The inputs to the density evolution algorithm [7] are the probability

density function (pdf) of channel log-likelihood ratio (LLR) mes-



sages1, and the pdf of the extrinsic LLR messages from the previous

iteration. The output is the pdf of the extrinsic LLR messages at the

current iteration. This density will be used as input for finding the

message density in the next iteration. The negative tail of the LLR

density is the message error rate. Successful decoding implies that

the tail vanishes as the number of iteration tends to infinity.

2.2. EXIT charts

An EXIT chart is a design tool that graphically presents the results

of density evolution. In the following, we use EXIT charts based on

message error rate [10]. EXIT chart analysis based on message error

rate allows one to express the EXIT chart of an irregular code as a

linear combination of EXIT charts of regular codes (i.e., elementary

EXIT charts), which is central to the formulation of the optimization

problems herein.

2.3. Decoding algorithms

LDPC codes admit a wide variety of decoding algorithms, each with

a particular performance-complexity tradeoff. The most powerful of

these is the sum-product algorithm, which computes the posterior

distribution of the individual codeword bits, under the assumption

that the underlying graph is cycle free. The sum-product algorithm

operates by passing messages through the code’s graph. Under the

usual representation of messages as log likelihood ratios (LLRs), the

update equation at a variable node v is

mv→c = m0 +
X

h∈n(v)−c

mh→v,

and the update equation at a check node c is

mc→v = 2 tanh−1

0� Y
y∈n(c)−v

tanh
�

my→v

2

�1A ,

where m0 is the intrinsic message for variable node v. Immediately,

it is apparent that the check node operation will be difficult to im-

plement in practice. However, noting that the tanh−1 of the product

of tanh’s is approximated by the minimum of the absolute value of

the messages times the product of their signs, the check node update

rule can be simplified to

mc→v = min
y∈n(c)−v

|my→v| ·
Y

y∈n(c)−v

sign(my→v). (2)

The decoding algorithm that replaces the sum-product update equa-

tion with (2), while maintaining the same variable update equation,

is known as the min-sum algorithm. In the following, we focus ex-

clusively on the min-sum algorithm, due to the relative simplicity of

its implementation.

In order to further simplify the implementation of the min-sum

decoder, a discretized implementation is required. Following the

framework of discretized density evolution for the sum-product al-

gorithm [3], we consider the code design problem for a min-sum

decoder whose messages are quantized into n-bit messages.

1Under the assumption that the all-zero codeword is transmitted.

3. QUANTIZING DECODER MESSAGES

In order to facilitate a practical implementation, we consider a de-

coder that implements a discretized min-sum algorithm with uni-

formly quantized messages. We study the design of codes for trans-

mission over a binary input AWGN channel (with noise variance σ)

using binary antipodal signalling ±1. Additionally, our quantization

scheme is symmetrical about the origin, and the message associated

with an LLR value of zero is required in the decoder. Therefore, for

an n-bit decoder, we have 2n − 1 distinct quantization levels. Given

that our quantization scheme is uniform, an n-bit quantizer is fully

specified by the channel output value associated with the largest pos-

itive quantization level.

In the case of regular LDPC codes, a quantization scheme that

maximizes the mutual information between the binary channel in-

puts and the quantized channel output, results in an effective de-

coder. Such a scheme is satisfying in an information theoretic sense,

as it maximizes the capacity of the resulting discrete memoryless

channel. However, for n ≥ 3, the mutual information is relatively

insensitive to the quantization scheme. Put another way, there exist

many reasonable n-bit quantizers that result in similar mutual infor-

mations. Table 1 presents the threshold of a (3,6) regular LDPC code

under 4-bit min-sum decoding, as the maximum quantized channel

output value varies. Also shown in Table 1 is the mutual informa-

tion between the binary channel inputs and the quantized channel

output. Note that the threshold is maximized for a maximum quan-

tization level at 1.25, while the mutual information is maximized at

1.5. Nevertheless, the mutual information measure introduces min-

imal losses when used to design the uniform quantizer for a (3,6)

regular LDPC code.

Max. Channel Output Mutual Info. Threshold (σ⋆)

0.5 0.5805 0.7911

0.75 0.5983 0.8135

1 0.6066 0.8247

1.25 0.6100 0.8275

1.5 0.6110 0.8252

1.75 0.6109 0.8209

2 0.6103 0.8165

Table 1. Mutual information and threshold of (3,6) regular LDPC

code, under 4 bit uniformly quantized min-sum decoding with the

specified maximum channel output value. Note that the mutual in-

formations are evaluated at σ = 0.8275.

While a quantization scheme that maximizes mutual informa-

tion yields an effective decoder for regular codes, in the irregular

case this is no longer true. Recall the intuitive justification for the

superior performance of irregular codes. For a given check degree

distribution, low degree variable nodes contribute significantly to

the code’s rate but decrease its threshold, while high degree vari-

able nodes contribute negligibly to the rate but greatly increase the

threshold. Therefore, an intelligent choice of variable degree irreg-

ularity allows one to achieve a desired code rate while maximizing

the threshold. However, note that this implicitly assumes that the de-

coder is capable of sending messages that represent a wide range of

reliabilities (LLR values). In particular, if the range of message reli-

abilities is not sufficiently large, the increase in threshold associated

with high degree variable nodes vanishes.

For an irregular code and a fixed number of quantization bits n,

the appropriate quantizer balances the requirements of maintaining



high mutual information, while also supplying a sufficiently wide

range of message reliabilities. Therefore, to maximize the effective

threshold, the quantization scheme must account for the dynamics

of the code/decoder pair. Due to the strong relationship between a

code’s threshold and its performance, it is apparent that the design

of the quantizer must depend on the particular code/decoder pair.

Therefore, we propose an iterative design process to determine the

quantizer and degree distributions.

4. DESIGN METHODOLOGY

We focus on the design of threshold-optimized codes. It is important

to note that even though the threshold relates to the asymptotic prop-

erties of the code, the benefits of threshold-optimized degree distrib-

utions remain apparent at short block-lengths [11]. In the following,

we design degree distributions that maximize the decoding thresh-

old under n-bit min-sum decoding. We assume throughout that the

check degree distribution is concentrated on a single degree, since

it simplifies the implementation of a practical decoder, and because

such a restriction has a minimal effect on the achievable performance

of LDPC codes [12].

For a particular discretized n-bit min-sum decoder, with an as-

sociated quantization scheme Qc, and a particular code with degree

distributions λ(x) and ρ(x), it is straightforward to evaluate the

threshold of the system by discretized min-sum density evolution.

For n in our range of interest, say 3≤ n≤ 7, this is not particularly

computationally intensive, allowing one to repeat the same proce-

dure for a variety of different Qc, while maintaining constant values

of n, λ(x) and ρ(x). Furthermore, given that Qc is entirely speci-

fied by its associated maximum channel output value, a search over

a suitable range of such values yields a clear picture of the effects of

the quantizer.

Starting with some concentrated check distribution and a reason-

able n-bit quantizer, we wish to determine the λ(x) that maximizes

the threshold while achieving a target rate. Our approach is based on

EXIT charts that track the message error rate, but whose elementary

EXIT curves are computed by performing n-bit min-sum density

evolution. Since the elementary EXIT curves are themselves a func-

tion of λ(x), an iterative linear programming formulation is required

to solve the threshold maximization program.

The search for the best (Qc,λ(x),ρ(x)=xdc−1) triple is simpli-

fied by the following empirical observations. For fixed values of dc

and n, the maximum achievable threshold is a unimodal function of

the maximum quantized channel output value. Similarly, for a fixed

value of n, the maximum achievable threshold (over all uniform n-

bit quantizers at each dc) is a unimodal function of the check de-

gree. Therefore, one can perform an iterative search over the design

parameters, thus determining the threshold optimal (Qc,λ(x),ρ(x))

triple of the desired rate. More specifically, beginning with a rea-

sonable value for dc and a fixed n, one must determine the threshold

optimal λ(x) over a range of maximum quantized channel output

values, while exploiting its unimodal relationship with the thresh-

old. This process is repeated over several values of dc, where the dc

are selected to exploit its unimodal relationship with the threshold.

5. NUMERICAL RESULTS

We present our results for the case of a rate 1/2 code with a 4-bit min-

sum decoder, with a constraint that the maximum allowable variable

degree be less than or equal to 15. Using the methods of Section 4,

the best code has λ(x) = 0.213387x+0.471904x2 +0.023227x9+

0.291482x14 , ρ(x) = x6, and the highest quantization level corre-

sponds to a channel output value of 3.75. Recall from Table 1 that

the mutual information measure for a code of rate one-half would

suggest a channel output value of 1.5, but this decreases the effec-

tive threshold of the irregular code drastically.

In order to justify the need to obtain degree distributions specif-

ically designed for a quantized min-sum algorithm, we consider the

performance of a threshold-optimized, rate 1/2 code, designed for

the sum-product algorithm, with the same constraint on the maxi-

mum variable degree [2]. It is important to note that even when we

are given a particular set of degree distributions, it remains neces-

sary to use the techniques of Section 4 to determine the best n-bit

uniform quantizer. For the present code, the best 4-bit quantizer has

a maximum level which corresponds to a channel output value of

4.0.

The simulation results of the preceding codes are presented in

Fig. 1, which also includes the results of a (3,6) regular LDPC code.

The results are those for a 4 bit uniformly quantized min-sum de-

coder, with a maximum quantized channel output value optimized

for each case. Interestingly, the regular code’s performance is far su-

perior to that of the code optimized for the sum-product algorithm,

and is only 0.14dB worse than the code designed specifically for

a quantized min-sum decoder. This emphasizes the relative perfor-

mance loss incurred when a uniformly quantized discretized decoder

is used to decode an irregular code. However, as the number of quan-

tization bits grows, the merits of irregular code constructions become

more apparent, since the decoder more closely approximates the true

min-sum algorithm. Furthermore, when n is small, a non-uniformly

quantized decoder would allow one to more fully exploit the advan-

tages of irregularity, at the expense of a more difficult decoder im-

plementation. However, non-uniform quantization schemes are not

considered in this paper.

6. CONCLUDING REMARKS

We have presented an efficient optimization procedure to determine

the (Qc,λ(x),ρ(x)) that maximize decoding threshold under n-bit

uniformly quantized min-sum decoding. The presented results imply

several important facts. First, for an irregular code and some fixed

number of quantization bits n, the decoder’s quantization scheme

must balance the requirements to maintain high mutual information,

while providing a sufficiently wide range of message reliabilities.

Put another way, high degree variable nodes increase the threshold

only when the quantization scheme allows messages with high reli-

abilities relative to the noisiest channel messages.

Secondly, a threshold optimized degree distribution for a de-

coder that implements the sum-product algorithm with infinite pre-

cision, is no longer optimal when decoded with a quantized min-

sum decoder. Recall, that due to the minimal extrinsic information

that degree two variable nodes receive, they are the most difficult

to decode. Furthermore, in a quantized decoding scheme, the relia-

bility of the strongest messages is necessarily capped. For an n-bit

min-sum decoder, degree two variable nodes are therefore even more

harmful, relative to their effects in the presence of an infinite preci-

sion decoder. Hence, to maximize performance, it is necessary to

design degree distributions specifically for the quantized decoder.
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