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Bit Allocation Laws for Multi-Antenna Channel
Quantization: Multi-User Case
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Abstract—This paper addresses the optimal design of limited-
feedback multi-user spatial multiplexing systems. A base station
with M antennas is considered serving M single-antenna users,
which share a common feedback link with a total rate of B bits
per fading block. The optimization problem is cast in form of
minimizing the average transmission power at the base station
subject to users’ outage probability constraints. Our goal is to
optimize the bit allocations among users and the corresponding
channel magnitude and direction quantization codebooks in the
asymptotic regime where B tends to infinity. In order to achieve a
tractable formulation, we first fix the quantization codebooks and
study the optimal power control problem. This leads to an upper
bound for the average transmission sum power, which is then
used to optimize the quantization codebooks and to derive the
bit allocation laws. The paper shows that for channels in the real
space, the number of channel direction quantization bits should
be (M−1) times the number of channel magnitude quantization
bits. It is further shown that users with higher requested QoS
(lower target outage probabilities) and higher requested downlink
rates (higher target SINR’s) should receive larger shares of
the feedback rate. The paper also shows that, for the target
QoS parameters to be feasible, the total feedback bandwidth
should scale logarithmically with γ̄, the geometric mean of the
target SINR values, and 1/q̄, the geometric mean of the inverse
target outage probabilities. Moreover, the minimum required
feedback rate increases if the users’ target parameters deviate
from the average parameters γ̄ and q̄. Finally, we show that, as B
increases, the limited-feedback system performance approaches
the performance of the perfect channel state information system
as 2

− B
M2 .

Index Terms—Beamforming, bit allocation, channel quanti-
zation, limited feedback, multiple antennas, outage probability,
power control, spatial multiplexing.

I. INTRODUCTION

The availability of channel state information (CSI) at trans-
mitter is critical for the operation of multiuser spatial multi-
plexing systems. The base station needs this information to
distinguish the users spatially and perform rate and/or power
adaptation for each user. In frequency-division duplex (FDD)
systems, CSI is achieved by quantizing the user channels and
sending back the quantized information through a rate-limited
feedback channel. Such systems are generally referred to as
limited-feedback systems in the literature.

The scarcity of feedback bandwidth in limited-feedback
systems necessitates an efficient channel quantization and an
optimal allocation of feedback bits among users. This paper
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aims at deriving these structures and bit allocations for limited-
feedback single-cell multi-user spatial multiplexing systems.

A. Related Work

Multi-antenna communications with limited CSI is exten-
sively studied in the literature of single-user systems [1]–
[8], multi-user systems [9]–[18], and cooperative multi-cell
networks [19]–[21]. This paper focuses on single-cell multi-
user systems. A review of the literature on single-user systems
in available in [7].

The major advantage of multi-antenna multi-user systems
with respect to single-user systems, is the sum-rate multiplex-
ing gain, which allows for establishing multiple simultaneous
downlink transmissions. In order to preserve this gain in
limited-feedback systems, the author of [9] shows that the
total feedback rate should scale linearly with the signal-to-
noise ratio (SNR) in dB scale. The work in [9] addresses
a setup with small number of users. In a network with
large number of users, there is another source of sum-rate
improvement, referred to as multi-user diversity gain, which
is realized by the base station opportunistically scheduling
users with favorable channel conditions. For scheduling, a
well justified approach is to choose users with high channel
gains and near-orthogonal channel directions [10]–[16]. The
authors of [10] specifically show that one needs the channel
gain information (CGI) in addition to the quantized direction
information in order to realize the multi-user diversity gain.
The gain information however is assumed to be perfect in [10].
The split of feedback bits between CGI and CDI quantization
introduces an interesting tradeoff between multiplexing gain
and diversity gain. This tradeoff is studied by [16], where the
authors numerically show that more bits should be used for
CGI quantization in order to benefit from multiuser diversity
gain as the number of users increases.

For the purpose of precoding the information intended
to scheduled users, two distinct approaches are proposed in
the literature. The first group of work, uses zero-forcing
beamforming based on the quantized directions [10], [12]. The
second group adopts a codebook (or multiple codebooks) of
orthonormal beamforming vectors and selects beamforming
directions based on the signal-to-interference-plus-noise ratio
(SINR) feedbacks from the users [13]–[15]. The authors of
[13] specifically discuss that in the regime of large number of
users, the orthogonal beamforming approach outperforms the
zero-forcing method.

Finally, the authors of [11] present a more thorough anal-
ysis of multi-user limited-feedback systems considering joint
training, scheduling, and beamforming.
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B. System Model

This paper considers a limited-feedback multi-user system
with a M -antenna base station and M single-antenna users.
The users send their quantized CSI to the base station through
a feedback link with a capacity of B bits per each downlink
transmission block. Based on these quantized information, the
base station then comes up with the downlink transmission
powers and beamforming vectors.

Our goal is to optimize the system performance subject
to the total feedback rate constraint. Although the proposed
approach is rather generic, we impose several simplifying
assumptions on the system model in order to achieve closed-
form solutions. These assumptions are listed below and will be
explicitly mentioned and justified whenever needed throughout
the text:
Assumptions:
A1. Most of the analysis in this paper is based on the

assumption of high resolution quantization, i.e. B →∞.
However, the paper investigates, both numerically and
analytically, the finite values of B for which the high
resolution results are applicable.

A2. Users’ channels are independent and identically dis-
tributed (i.i.d.).

A3. Users’ channel directions are uniformly distributed over
the M -dimensional unit hypersphere.

A4. Users’ channel magnitudes are independent from channel
directions and have an arbitrary distribution.

A5. The paper assumes a product structure for the chan-
nel quantization codebook, i.e. channel magnitudes and
channel directions are quantized independently. If we
denote the magnitude and direction codebook sizes by
Ṅk and N̈k, the high resolution assumption implies that
Ṅk, N̈k →∞ for each user 1 ≤ k ≤M .

A6. The beamforming vectors are zero-forcing directions for
the quantized directions.

A7. The user channels are assumed to be real vectors. The
extension of the analysis to complex space is discussed
in Section VIII.

C. Problem Formulation

We formulate the system design problem as minimization of
the average sum power subject to the users’ outage probability
constraints. In order to differentiate between the users’ QoS
requirements, we assume different target SINR’s and outage
probabilities across the users. Our goal is to derive the optimal
split of feedback bits among users and their corresponding
magnitude and direction quantization codebooks.

Different variations of the power minimization formulation
are used in the literature, e.g. in [22]–[26], as an appropriate
formulation for fixed-rate delay-sensitive applications, e.g.
voice over IP, video conferencing, and interactive gaming.
The reliability of the fixed-rate link is usually achieved by
applying power control at the base station to compensate for
the channel fading, as in Wideband Code Division Multiple
Access (WCDMA) system standards [27].

An alternative problem formulation is to maximize the
average sum rate subject to a power constraint [9], [10], [12]–

[16]. In most of these formulations, the transmission power is
fixed and the quantized information is used only to adapt the
transmission rates. This sort of formulation is more appropri-
ate for variable-rate communication systems, e.g. Worldwide
Interoperability for Microwave Access (WiMAX) and 3GPP
Long Term Evolution (LTE) system standards [28], [29]. Nev-
ertheless, there are two main shortcomings with the existing
formulations in the literature:

1. The sum-rate maximization problem assumes equal pri-
ority for all users in terms of their applications. Since the
users are not differentiated based on their QoS measures,
this formulation cannot answer the question of how
to optimally split the feedback bits among users with
different QoS requirements.

2. The channel gain information (CGI) is clearly an impor-
tant factor in scheduling the users and also in setting the
downlink rate for each user. However, most of the existing
literature, either assumes perfect channel gain information
(CGI) or completely ignores this information. It is there-
fore not clear how to optimally split the feedback bits
between channel direction and channel gain quantizers
in the context of sum-rate maximization problem. The
works that look into this problem are mainly numerical
and lack closed-form solutions in this regard [13], [16]

One solution to the first issue raised above is to prioritize
users with certain weights and consider the weighted sum-rate
maximization instead of the sum-rate itself. These weights can
be set by the scheduler based on users’ QoS requirements. The
proportional fairness scheduler for example sets the weights
based on users’ backlogged traffic by assigning a higher
weight to a user with larger backlog. This kind of formulation
appears for example in [30], where the authors study the
problem of joint scheduling, beamforming, and power control
with perfect CSI. We are not however aware of any work that
uses a similar formulation for limited-feedback systems.

D. Proposed Approach

Our approach for solving the power minimization problem
is to fix the channel outage regions in advance and transform
the problem to a robust optimization problem. Assuming zero-
forcing beamforming vectors, we first formulate the robust
power control problem in form of a semi-definite programming
(SDP). Using an approximate upper bound solution to the SDP
problem, we then optimize the codebook structures and derive
the bit allocations in the asymptotic regime where B → ∞.
We show that

1. The optimal number of channel direction quantization
bits is M − 1 times the number of channel magnitude
quantization bits, where M is the number of base station
antennas.

2. The share of the kth user from the total feedback rate
is controlled by log γk and log 1/qk, where γk and
qk are the user’s target SINR and outage probability.
As a general rule, a user with a lower target outage
probability and higher target SINR needs a higher channel
quantization resolution and therefore requires a larger
share of the total feedback rate.
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3. For the outage probability constraints to be feasible,
the total feedback rate should scale logarithmically with
γ̄, the geometric mean of the target SINR values, and
1/q̄, the geometric mean of the inverse target outage
probabilities. Moreover, the minimum required feedback
rate increases if the users’ target parameters deviate from
the average parameters γ̄ and q̄, i.e. there is a feedback
rate penalty for serving users with non-similar target
parameters. The higher the deviation, the higher is the
penalty.

4. As the total feedback rate B increases, the performance
of the limited CSI system approaches the performance of
the perfect CSI system as 2−

B
M2 .

Needless to say, these optimality results are based on minimiz-
ing an upper bound of the sum power. The closeness of the
upper bound to the exact sum power is verified numerically
in the paper.

The remainder of this paper is organized as follows. Section
II provides an overview of the perfect CSI system. Section
III presents the system design problem in its general form
and describes our approach in transforming it to a robust
design problem. Section IV describes the product channel
quantization codebook structure. In Section V, we study the
power control optimization for fixed quantization codebooks
and derive an upper bound for the average sum power. By
using the sum power upper bound, we then optimize the
product codebook structures in Section VI and derive the
asymptotically optimal bit allocation laws. Finally, Section VII
presents the numerical results and Section VIII concludes the
paper.

Notations: All the computations in this paper are in real
space. The logarithm functions are base 2. The angle between
any two unit-norm vectors u and v is defined as ∠(u,v) =
arccos |uTv| so that 0 ≤ ∠(u,v) ≤ π/2.

II. MULTIUSER SPATIAL MULTIPLEXING SYSTEM WITH
PERFECT CSI: OUTAGE IS INEVITABLE

We start by assuming perfect CSI at the base station and
show that, unlike a single-user system, outage is inevitable in
the multi-user system even with perfect CSI. The difference
with the single-user case is due to the fact that the base
station in a multi-user system needs to distinguish the users
spatially and when the user channels are closely aligned it is
not possible to satisfy the users’ target SINR’s with a bounded
average transmission power.

Consider a multi-user downlink channel with M antennas
at the base station and M users each with a single antenna.
Let hk ∈ RM , vk ∈ RM , Pk, and γk denote respectively, the
user channel, the unit-norm beamforming vector, the allocated
power, and the target SINR for the kth user, 1 ≤ k ≤M . The
minimization of the transmission sum power subject the user
SINR constraints is formulated as follows:

min
Pk,vk

M∑
k=1

Pk (1)

s.t.
Pk
∣∣hTk vk∣∣2∑

l 6=k
Pl
∣∣hTk vl∣∣2 + 1

≥ γk, k = 1, 2, · · · ,M

where the receiver noise power is assumed to be 1 for all users.
A suboptimal solution for problem (1) is to use zero-forcing

(ZF) beamforming vectors vk to eliminate the interference
and find the power values Pk that satisfy the constraints with
equality. This solution is asymptotically optimal in the high
SNR regime [31], [32].

An important matter to consider with this solution is that the
transmission powers would need to be extremely high when
the users’ channels are closely aligned, as the ZF beamforming
vectors would be almost perpendicular to the corresponding
channels in such cases. Therefore, it is not possible to always
satisfy the SINR constraints with a bounded average power
and as a result, a certain degree of outage should be tolerated
by the users.

To see this rigorously, define θk = ∠(hk,H−k), where
0 ≤ θk ≤ π

2 , and H−k = span({hl|l 6= k}). For zero-forcing
beamforming vectors vk therefore ∠(vk,hk)=π

2−θk. Assume
that the users’ channels are i.i.d. with uniformly distributed
directions and independent channel magnitudes (with arbitrary
distributions). The average sum power of the zero-forcing
method is given by

PMU,CSI =

M∑
k=1

γkE
{

1/‖hk‖2
}
E
{

1/sin2(θk)
}
.

As θk is uniformly distributed in [0, π2 ], the expectation of
1/ sin2(θk) becomes unbounded.

To avoid unbounded transmit power, the users should tol-
erate certain degrees of outage. A reasonable approach is to
declare outage for user k, i.e. set Pk = 0, when

0 ≤ θk < θ◦k,

where θ◦k � 1 is the smallest acceptable angle between hk and
H−k. With this assumption the average sum power is given
by

PMU,CSI =
2

π

M∑
k=1

γk cot(θ◦k)E
{

1/‖hk‖2
}
≈

2ρMU,CSI

π

M∑
k=1

γk
θ◦k
,

(2)
where the approximation holds for θ◦k � 1 and

ρMU,CSI

def
= E

{
1/‖hk‖2

}
(3)

for i.i.d. users. The corresponding outage probabilities are
pout,k = 2θ◦k/π for 1 ≤ k ≤M .

Having studied the perfect CSI system, the next section
describes a general framework for the limited-feedback system
design. The insights achieved by studying this general form are
used in the later sections for system design and optimization
with product channel quantization codebooks.

III. SYSTEM DESIGN PROBLEM AND VECTOR CHANNEL
QUANTIZATION: GENERAL FORM

This section presents the multi-user system design problem
in its general form. To clarify the arguments, we start by some
basic definitions.



4

By a vector channel quantization codebook C of size N , we
mean a partition of RM into N disjoint quantization regions
S(n), 1≤n≤N :

C={S(1), S(2), · · · , S(N)}.

For every quantization codebook C, we also define a quanti-
zation function

S(h) : RM → C,

which returns the quantization region that h ∈ RM belongs
to.

Now, for each user 1≤k≤M , associate a codebook Ck of
size Nk and the corresponding quantization function Sk(hk),
where hk is the kth user’s channel. Further, define the ordered
M -tuples

H
def
= [hT1 ,h

T
2 , · · · ,hTM ] ∈ RM

2

,

S(H)
def
= [S1(h1),S2(h2), · · · ,SM (hM )] ∈

M∏
k=1

Ck.

For a given total number of quantization (feedback) bits B,
target SINR values γk, and target outage probabilities qk, the
system design problem is formulated as follows:

min
Ck,Nk,

Pk(S(H)),
vk(S(H))

EH

[
M∑
k=1

Pk(S(H))

]
(4)

s.t.
M∏
k=1

Nk = 2B ,

prob

 Pk(S(H))
∣∣hTk vk(S(H))

∣∣2∑
l 6=k

Pl(S(H))
∣∣hTk vl(S(H))

∣∣2+1
<γk

≤qk,
k = 1, 2, · · · ,M

where the optimization is over the quantization codebooks Ck,
codebook sizes Nk, the power control functions Pk(S(H)) :∏M
k=1 Ck → R+, and the beamforming functions vk(S(H)) :∏M
k=1 Ck → UM , where UM is the unit hypersphere in RM .
An exact solution to this problem is clearly intractable. Our

approach to simplify the problem is to fix the outage scenarios
in advance and transform the design problem to a robust design
problem that guarantees the target SINR’s for the no-outage
scenarios.

Define the outage region Ωk ⊂
∏
k Ck for user k such that

prob[S(H) ∈ Ωk] = qk. Also define Ik(S(H)) be the activity
flag for user k:

Ik(S(H)) = I(S(H) ∈ Ωck),

where I(·) is the logic true function. Whenever a user’s
channel resides outside the user’s predefined outage region,
the activity flag is on and the user must be served by the base
station, i.e. the user should not face an outage.

Let us fix the codebook sizes Nk for now. For a robust
system design, we need to design the codebooks, the power

control functions, and the beamforming functions such that the
target SINR’s are guaranteed whenever Ik(S(H))=1:

min
Ck,

Pk(S(H)),
vk(S(H))

EH

[
M∑
k=1

Pk(S(H))

]
(5)

s.t. inf
w∈Sk(hk)

Pk(S(H))
∣∣wTvk(S(H))

∣∣2∑
l 6=k

Pl(S(H)) |wTvl(S(H))|2+1
≥ γkIk(S(H)),

for all H ∈ RM
2

and k = 1, 2, · · · ,M
(6)

Note that by including the activity flag in the constraint (6),
this formulation guarantees the target SINR when Ik = 1 and
returns Pk=0 when Ik=0. Also note that the activity flags are
fixed in advance such that prob[Ik(S(H))=0]=qk.

The design problem in (5) is a complicated problem. In
order to achieve a tractable reformulation, we accept two main
simplifying assumptions (Assumptions A5 and A6 in Section
I-B):
• We assume a product structure for the channel quan-

tization codebook, where the channel magnitude and
the channel direction are quantized independently. Such
a product structure, also known as shape-gain quanti-
zation in the literature [33], provides several practical
advantages including faster quantization and lower stor-
age requirement for the quantization codebooks. Product
codebook structures are also shown to be a sufficient
structures for effective interference management in multi-
user systems [17].

• We further assume that the beamforming functions
vk(S(H)) are the zero-forcing beamforming vectors for
the quantized directions. Without this assumption, the
problem is shown to be non-convex and difficult to solve
in general [34]–[36]; however, by fixing the beamforming
vectors as zero-forcing directions, we show that the
optimization of the power levels is a convex problem and
can be solved efficiently.

With these simplifying assumptions, the robust design prob-
lem reduces to the following subproblems: 1) optimizing
the power control function for fixed beamforming vectors
and codebook structures; 2) optimizing the product codebook
structure itself.

The following sections address these subproblems. First,
we describe the structure of the product codebook structure
in Section IV. Then, for a fixed product codebook structure,
we address the optimization of the power control function
in Section V. This leads to an upper bound on the average
transmission sum power, which is then used in Section VI to
optimize the product codebook structures.

IV. PRODUCT QUANTIZATION CODEBOOK STRUCTURE

In this section, we describe the product quantization code-
book structures and specify the corresponding outage regions.
To be more exact, for a given target outage probability qk, we
specify the magnitude and direction outage regions such that

qk = q̇k + q̈k,
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where the magnitude outage probability q̇k is the probability
that the channel magnitude resides in the specified magnitude
outage region and the direction outage probability q̈k is the
probability that the channel direction resides in the specified
direction outage region.

A. Magnitude Quantization Codebook and Magnitude Outage
Region

For each user 1 ≤ k ≤M , we use a magnitude quantization
codebook

Yk =
{
y
(1)
k , y

(2)
k , · · · , y(Ṅk)

k

}
for quantizing the channel magnitude squared Yk

def
= ‖hk‖2.

Here y(n)k are the quantization levels and Ṅk is the magnitude
codebook size.

For a given magnitude outage probability q̇, we define the
magnitude outage region as the leftmost quantization interval[
0, y

(1)
k

)
. The first quantization level is therefore fixed as

y
(1)
k = F−1(q̇k), (7)

where F−1(·) is the inverse cumulative distribution function
(cdf) of Yk

def
= ‖hk‖2.

We further define Ċk as the set of magnitude quantization
regions, i.e. the set of quantization intervals for ‖hk‖ =

√
Yk:

Ċk =
{
J
(1)
k , J

(2)
k , · · · , J (Ṅk)

k

}
, (8)

where J
(n)
k = [

√
y
(n)
k ,

√
y
(n+1)
k ) and y

(Ṅk+1)
k

def
= ∞. Note

that the definition uses the square root of the levels as the
quantization levels y(n)k are defined for quantizing ‖hk‖2.

Finally, for Yk ≥ y
(1)
k , we define the quantized magnitude

Ỹk as the quantization level in Yk that is in the immediate left
of Yk, i.e.,

Ỹk = y
(n)
k if y

(n)
k ≤ Yk < y

(n+1)
k . (9)

For the reasons that are clarified later in Section VI, we
are interested in a magnitude quantization codebook that min-
imizes E

[
1/Ỹk

]
. It is shown in [7] that the optimal codebook

with such a criterion is uniform (in dB scale) in the asymptotic
regime where Ṅk →∞. We denote such an optimal codebook
by Y?k and refer to it as the uniform magnitude quantization
codebook in the remainder of this paper.

The work in [7] further shows that the uniform codebook
Y?k satisfies the following upper bound:

E

[
1

Ỹ ?k

]
< ρMU,CSI

(
1 + Ṅ

−ζk(Ṅk)
k + ωṄ

−2ζk(Ṅk)
k

)
, (10)

where
ρMU,CSI = E[1/Yk] = E[1/‖hk‖2]

as defined in (3). On the left hand side of (10), the variable
Ỹ ?k is the quantized magnitude variable associated with the
uniform codebook Y?k. On the right-hand side of (10),

ω
def
=

E[Yk]

η2E[1/Yk]
,

where
η = lim

y→∞
−f(y)/f ′(y)

and f(·) is the probability density function (pdf) of Yk. The
function ζk(n) depends on the magnitude outage probability
q̇k and is defined as the solution to the following equation:

n−ζk(n)
(

1 + n−ζk(n)
)n−1

=
η

y
(1)
k

,

where y(1)k = F−1(q̇k) as defined earlier. It can be shown that
for any q̇k > 0 and hence y(1)k > 0, we have

lim
n→∞

ζk(n) = 1. (11)

The bound in (10) and the limit in (11) are used in Sec-
tion VI for optimization of the product channel quantization
codebook structure.

B. Direction Quantization Codebook and Direction Outage
Region

For each user 1≤k≤M , we use a Grassmannian codebook
Uk of size N̈k for direction quantization:

Uk =
{
u
(1)
k ,u

(2)
k , · · · ,u(N̈k)

k

}
, (12)

where u
(n)
k vectors are M -dimensional unit-norm Grassman-

nian codewords.
Every channel realization hk is mapped to a vector

ũk(hk) ∈ Uk that has the smallest angle with hk:

ũk(hk) = arg min
u∈Uk

∠(hk,u). (13)

The vector ũk is referred to as the quantized direction for
the channel realization hk. The corresponding quantization
regions, according to the Gilbert-Varshamov argument [37],
can be covered by the following spherical caps:

C̈k =
{
B

(1)
k , B

(2)
k , · · · , B(N̈k)

k

}
, (14)

where
B

(n)
k =

{
w ∈ UM

∣∣∣∠(w,u
(n)
k ) < φk

}
is the spherical cap around u

(n)
k . In this definition,

φk = arcsin δk

is the angular opening of the caps and δk is the minimum
chordal distance of Uk. It should be note that covering the
direction quantization regions with the spherical caps enlarges
the quantization regions. By considering the constraint (6) in
the robust design problem (5), such enlargement of the regions
will lead to an upper bound for the average transmission
power.

In order to describe the direction outage regions, define

θk = ∠(ũk, Ũ−k),

where
Ũ−k = span({ũl|l 6= k})

and ũk is quantized direction for user k. This is a similar
definition as in Section II, except that the exact channels hk
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are replaced with the quantized directions ũk. Similar to the
discussion in Section II for the perfect CSI system, we say
that user k is in direction outage if

0 ≤ θk < θ◦k,

where θ◦k is the minimum acceptable angle between ũk and
U−k. This implicitly defines the direction outage regions of
the users. Finally, assuming that θk is approximately uniform
in [0, π/2]1, the direction outage probability is given by

q̈k ≈
2

π
θ◦k. (15)

In Section VI, which addresses the product codebook
optimization, we will need the following inequality, which
describes the dependence between the angular opening φk and
the direction codebook size N̈k:

φk ≈ sinφk < 4λM N̈
− 1

M−1

k , (16)

where λM= (
√
πΓ((M+1)/2)/Γ(M/2))

1
M−1 . This inequality

holds for large enough values of N̈k and its proof is presented
in [7]. The approximation on the left-hand side of (16) assumes
φ � 1, which is justified by the high resolution assumption
N̈k � 1 (Assumption A1 and A5 in Section I-B).

C. Product Codebook Structure

By using our definitions of the magnitude and direction
quantization regions, we define product channel quantization
codebook Ck for each user k as follows:

Ck = (Ċk × C̈k) ∪ Ok, (17)

where Ċ and C̈ are the magnitude and direction quantization
regions in (8) and (14), and

Ok =

{
h

∣∣∣∣‖h‖ <√y(1)k }
is a ball centered at origin corresponding to the magnitude
outage region.

Based on our definitions of the magnitude and direction
outage regions, the activity flag for user k is given by

Ik = I
(
θk ≥ θ◦k ∧ ‖h‖ ≥

√
y
(1)
k

)
, (18)

where I(·) is the logic true function, and θk, θ◦k, and y(1)k are
defined in Sections IV-A and IV-B.

Assuming that the channel magnitude and channel direction
are independent (Assumption A4 in Section I-B), the outage
probability of user k is therefore given by

qk = prob[Ik = 0] = q̇k + q̈k ≈ F (y
(1)
k ) +

2

π
θ◦k, (19)

where q̇k and q̈k are the magnitude and direction outage
probabilities respectively and y

(1)
k is the smallest magnitude

quantization level for user k.
Finally, the product channel quantization codebook size is

given by
|Ck| = Nk = ṄkN̈k + 1, (20)

1This holds if the channel direction are uniformly distributed (Assumption
A3 in Section I-B) and the codebooks Uk undergo sufficient random rotations.

Fig. 1. Sector-type channel uncertainty region S(R, r, ũ, φ).

where Ṅk and N̈k are the magnitude and direction codebook
sizes respectively.

To summarize, for a given target outage probability qk and a
given codebook size Nk, we proposed a product quantization
structure and specified its outage regions and the correspond-
ing activity flags such that

prob[Ik = 0] = qk.

The proposed product codebook structure is parameterized
by the magnitude and direction codebook sizes Ṅk and N̈k,
the minimum acceptable channel magnitude y

(1)
k , and the

minimum acceptable directional separation θ◦k.

V. OPTIMIZATION OF THE POWER CONTROL FUNCTION
WITH SECTOR-TYPE CHANNEL UNCERTAINTY REGIONS

Assuming the product codebook structure in Section IV,
this section addresses the optimization of the power control
function. For this purpose, we fix the quantization codebooks
Ck and the corresponding outage regions. Furthermore, as
mentioned in Section III, we make the simplifying assumption
that the beamforming vectors are the zero-forcing vectors for
the quantized directions.

For the product quantization codebooks considered in this
paper, the quantization (or channel uncertainty) regions are
sector-type regions as shown in Fig. 1. A sector-type region
is parameterized as

S(R, r, ũ, φ) =
{
h ∈ RM

∣∣√r ≤ ‖h‖ < √R, ∠(h, ũ) < φ
}
,

where in the terminology of Section IV, ũ is the quantized
direction and r is the quantized magnitude, which is denoted
as Ỹ in (9).

For a specific point in time, consider the channel realizations
H = [hT1 ,h

T
2 , · · · ,hTM ] and the corresponding quantization

(or channel uncertainty) regions

Sk = S(Rk, rk, ũk, φk)
def
= Sk(hk),

where the quantization functions Sk(hk), 1≤k≤M , are de-
fined in Section III. Also, let Ik denote the corresponding
activity flags.

The goal is to optimize the power control function for the
robust design problem (5). Therefore, for the current channel
realizations H, we have to find the transmission power levels
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Pk that minimize the instantaneous sum power subject to the
worst-case SINR constraints:

min
Pk

M∑
k=1

Pk (21)

s.t. inf
w∈Sk

Pk
∣∣wTvk

∣∣2∑
l 6=k

Pl |wTvl|2 + 1
≥ γkIk, k=1,2,· · ·,M (22)

where the beamforming vectors vk are fixed, since the quan-
tized directions ũk are fixed. Let us refer to the users with
Ik = 0 as the silent users and the users with Ik = 1 as the
active users and let the set K denote the set of active users:

K = {1≤k≤M |Ik = 1}.

In general K is a random set depending on the channel
realizations and the specified outage regions. Now, considering
the power control problem in (21), we note that if a user k is
silent, i.e. Ik = 0, the corresponding SINR constraint in (22)
is redundant as the problem returns Pk = 0 for such a user.
We therefore confine the SINR constraints in (22) to the set
of active users, i.e. the indices k ∈ K.

According to the robust design formulation in (5), for any
channel realization H = [hT1 ,h

T
2 , · · · ,hTM ], the base station is

required to serve (guarantee the target SINR’s for) all active
users k ∈ K. The power control problem in (21) therefore
must be feasible for the active users. The following theorem
presents a sufficient condition that guarantees feasibility.

Theorem 1: To ensure the feasibility of the robust power
control problem in (21), it is sufficient to have the following
for all 1 ≤ k ≤M :

N̈k ≥

(
4λM/sin

(
arctan

(
sin θ◦k

1 +
√

(M − 1)γk

)))M−1
.

(23)
Proof: See Appendix I.

This condition is referred to as the minimum quantization
codebook size (MQCS) condition in the remainder of this
paper.

In the high resolution regime, where the codebook sizes tend
to infinity, the MQCS conditions in clearly satisfied; therefore,
feasibility of the power control problem is not an issue as far
as the high resolution analysis is considered. This condition
however plays a key role in finding the minimum number
of feedback bits B for which the asymptotic bit allocation
laws are applicable. This issue is discussed in further detail in
Theorem 5 of Section VI.

We are now ready to solve the power control problem in
(21). An exact numerical solution to this problem can be
obtained by transforming it into a semidefinite programming
(SDP) problem as described in the following.

Theorem 2: The problem in (21) is equivalent to the fol-

lowing SDP problem for M ≥ 3:

min
Pk,λk,µk

∑
k∈K

Pk (24)

s.t.
1

γk
Pkvkv

T
k−

∑
l 6=k

Plvlv
T
l �(λk−µk)IM+

µk
cos2 φk

ũkũ
T
k

λk ≥
1

rk
, µk ≥ 0, Pk ≥ 0, k ∈ K,

where IM is the M×M identity matrix.
Proof: The proof is based on the Polyak’s theorem in

[38]. See Appendix I for details.
Although the SDP reformulation provides a numerically

efficient solution, it does not give the minimized sum power in
a closed form. The availability of a closed-form expression for
sum power is crucial in optimizing the quantization codebook
structures. Moreover, for practical systems where the base
station needs to continuously compute and update the trans-
mission powers for each fading block, the SDP reformulation
would be of a limited application. We therefore resort to a
suboptimal solution to the problem in (21) that provides a
closed-form upper bound to the sum power. This upper bound
solution is used later in Section VI as the objective function
for optimization of the users’ quantization codebooks.

First, we bound the SINR terms as follows. For the sector-
type regions Sk we have

inf
w∈Sk

Pk
∣∣wTvk

∣∣2∑
l 6=k

Pl |wTvl|2 + 1

(a)
= inf

w∈Sk

Pkrk|ŵTvk|2

rk
∑
l 6=k

Pl|ŵTvl|2 + 1

≥ Pkrk infw∈Sk
|ŵTvk|2

rk
∑
l 6=k

Pl supw∈Sk
|ŵTvl|2+1

(25)

(b)
=

Pkrk sin2 (θk−φk)

(
∑
l 6=k Pl)rk sin2 φk+1

, (26)

where ŵ = w/‖w‖. The equality (a) holds since the SINR
term is monotonic in ‖w‖, i.e. the minimum occurs on the
spherical boundary region ‖w‖=

√
r in Fig. 1. The equality

(b) holds since vk’s are the zero-forcing directions for ũk’s.
To see this, consider θk = ∠(ũk, Ũ−k) as defined earlier. By
considering the zero-forcing principle we have ∠(vk, ũk) =
π
2−θk and ∠(vl, ũk) = 0 for l 6= k. Now, noting the definition
of the sector-type region Sk, we have

max
w∈Sk

∠(w,vk) =
π

2
− θk + φk,

min
w∈Sk

∠(w,vl) =
π

2
− φk.

By substituting the cosine of these angles in the numerator
and denominator of (25) we achieve the final expression in
(26).

In order to obtain an upper bound on the sum power, we
set the last term in (26) to be equal to γk:

Pkrk sin2 (θk−φk)

(
∑
l 6=k Pl)rk sin2 φk+1

= γk.

This is a set of linear equations in Pk, k ∈ K, where K is the
set of active users. By solving these equations and computing
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∑
k∈K Pk, we achieve the following upper bound for the sum

power:

PMU

def
=
∑
k∈K

Pk =

∑
k∈K αk/βk

1−
∑
k∈K αk

, (27)

where αk =
(

1 + sin2 (θk−φk)
γk sin2 φk

)−1
and βk = rk sin2 φk. The

subscript MU in PMU stands for multi-user. The closeness of
the upper bound solution in (27) and the solution to the SDP
problem in (24) is verified numerically in Section VII.

The upper bound in (27) is a bound on the instantaneous
sum power for a single snapshot of channel realizations in
time. As the users’ channels change over time, the quantized
magnitudes rk = Ỹk, the quantized directions ũk and the
corresponding angles θk = ∠(ũk, Ũ−k) all change with
time. The variables αk and βk in (27) are therefore random
variables. Since we are interested in the expected value of the
sum power as the design objective in (5), we use the following
sum-power upper bound approximation so that the expectation
operation can be applied conveniently.

Theorem 3: In the asymptotic regime with large quantiza-
tion codebook sizes and small values of φk, we have

PMU =
∑
k∈K

ek +
∑
k∈K

fkφk +
∑
k∈K

o(φk), (28)

where

ek =
γk
rk

(1+ζ2k), fk =
2γk
rk

(ζk+ζ3k), ζk = cot θk. (29)

Proof: See Appendix I.
So far, we have only considered the active users k ∈ K.

In order to make the results applicable to the general case
where some users might be in outage, we substitute γk with
γkIk in definitions of ek and fk in (28) so that users with
Ik = 0 contribute zero power to the sum-power upper bound.
We therefore use the following expression for the average sum-
power upper bound, where we have also replaced rk by the
quantized magnitude Ỹk:

E[PMU ] ≈
∑
k

E[ek] +
∑
k

E[fk]φk, (30)

where ζk= cot θk and ek and fk are redefined as follows:

ek =
γkIk

Ỹk
(1 + ζ2k), fk =

2γkIk

Ỹk
(ζk + ζ3k).

This concludes the optimization of the power control func-
tion. In the next section, we use the average sum-power upper
bound in (30) to optimize the product quantization codebook
structures and to derive the asymptotic bit allocation laws.

VI. PRODUCT CODEBOOK OPTIMIZATION AND
ASYMPTOTIC BIT ALLOCATION LAWS

In this section, we study the quantization codebook opti-
mization. For this purpose, we use the average transmission
power bound in (30) in order to the optimize the users’
magnitude and direction codebook sizes for a given feedback
link capacity constraint and to derive the optimal bit allocation
across the users and their magnitude and direction quantization
codebooks. The optimization process is asymptotic in the

feedback rate B and assumes large quantization codebook
sizes, Ṅk, N̈k � 1.

Consider the sum-power upper bound in (30). Assuming
that θk = ∠(ũk, Ũ−k) is approximately uniform in [0, π/2]
and using the definition of the activity flag in (18), we have

E[ek] = γkE
[
1/Ỹk

] ∫ π/2

θ◦k

1 + ζ2k dθk ≈
2γk
πθ◦k

E
[
1/Ỹk

]
,

E[fk] = 2γkE
[
1/Ỹk

] ∫ π/2

θ◦k

ζk + ζ3k dθk ≈
2γk

πθ◦k
2E
[
1/Ỹk

]
,

where the approximations hold for θ◦k�1. By substituting
these in (30), we achieve

E[PMU ] ≈ 2

π

M∑
k=1

γk
θ◦k

E
[

1

Ỹk

](
1 +

φk
θ◦k

)
. (31)

The parameter φk in (31) is controlled by the direction
codebook size N̈k as described by (16). The term E[1/Ỹk]
on the other hand is controlled by the magnitude codebook.
The asymptotically optimal codebook that minimizes this term
is the uniform (in dB) magnitude quantization codebook Y?.
By setting Y = Y? and by using (10) and (16), we can bound
the average sum power in (31) as follows:

E [PMU ] <
2ρMU,CSI

π
·

M∑
k=1

γk
θ◦k

(
1+Ṅ

−ζk(Ṅk)
k +ωṄ

−2ζk(Ṅk)
k

)(
1+

4λM
θ◦k

N̈
− 1

M−1

k

)
(32)

where ρMU,CSI is defined in (3) and the variable ω and the
function ζk(·) depend on the magnitude outage probability
and the distribution of the channel magnitude as described in
Section IV-A.

Our goal is to minimize the average sum-power upper bound
in (32) in terms of the magnitude and direction quantization
codebook parameters. The optimization constraints are as
follows. Assuming a total number of feedback bits B we have
the following constraint on the codebook sizes:

M∏
k=1

Nk =

M∏
k=1

(
ṄkN̈k + 1

)
= 2B . (33)

The two other constraints are the target outage probability
constraints given by (19) and the MQCS conditions in (23).
For the total feedback rate B, the target outage probabilities
qk, and the target SINR values γk, the product codebook
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optimization problem is therefore formulated as follows:

min
Ṅk,N̈k

y
(1)
k ,θ◦k

M∑
k=1

γk
θ◦k

(
1+Ṅ

−ζk(Ṅk)
k +ωṄ

−2ζk(Ṅk)
k

)(
1+

4λM
θ◦k

N̈
− 1

M−1

k

)
(34)

s.t.
M∏
k=1

(
ṄkN̈k + 1

)
= 2B , (35)

F (y
(1)
k ) +

2

π
θ◦k = qk, (36)

N̈k≥

(
4λM/sin

(
arctan

(
sin θ◦k

1+
√

(M−1)γk

)))M−1
.

(37)

In order to obtain a closed-form solution for the optimal
product structure, we simplify this problem as follows.

First, by assuming Ṅk, N̈k � 1 and using the fact that
limṄk→∞ ζk(Ṅk) = 1, we use the following approximation
for the objective function:(

1 + Ṅ
−ζk(Ṅk)
k + ωṄ

−2ζk(Ṅk)
k

)(
1 +

4λM
θ◦k

N̈
− 1

M−1

k

)
≈
(

1 + Ṅ−1k

)(
1 +

4λM
θ◦k

N̈
− 1

M−1

k

)
≈ 1 + Ṅ−1k +

4λM
θ◦k

N̈
− 1

M−1

k . (38)

We therefore have the following approximate upper bound:

E [PMU ] <
2ρMU,CSI

π

M∑
k=1

γk
θ◦k

(
1+Ṅ−1k +

4λM
θ◦k

N̈
− 1

M−1

k

)
. (39)

Next, we simplify the optimization constraints as follows.
We approximate the first constraint (35) as

∏M
k=1 ṄkN̈k = 2B .

For the second constraint in (36), we make the simplifying as-
sumption that the magnitude and direction outage probabilities
are equally likely:

q̇k=F (y
(1)
k ) =

qk
2

(40)

q̈k=
2

π
θ◦k =

qk
2
. (41)

According to this assumption, y(1)k = F−1(qk/2) and

θ◦k =
π

4
qk (42)

are fixed and the codebook optimization is only over the
codebook sizes. Finally, since the optimization is asymptotic
in the codebook sizes Ṅk and N̈k, the last constraint in (37)
is redundant. This constraint however is used later to derive a
lower bound on the total feedback rate B such that the target
outage probabilities are feasible.

Now, by using the approximation in (38), the optimization
problem in (34) simplifies to the following optimization prob-
lem:

min
Ṅk,N̈k

M∑
k=1

γk
θ◦k

(
1 + Ṅ−1k +

4λM
θ◦k

N̈
− 1

M−1

k

)
(43)

s.t.
M∏
k=1

ṄkN̈k = 2B . (44)
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Fig. 2. Analytical magnitude and direction bit allocations in (47) and (48)
vs. numerical bit allocations for three users with γ1 = 15dB, q1 = 0.02 and
γ2 = γ3 = 10dB and q2 = q3 = 0.05.

Define Ḃk
def
= log Ṅk and B̈k

def
= log N̈k as the number of

magnitude and direction quantization bits respectively.
Theorem 4: Define

Ḃave=
1

M2
B − M−1

M
log

1

q̄
− κMU (45)

B̈ave=
M−1

M2
B +

M−1

M
log

1

q̄
+ κMU , (46)

where κMU=M−1
M log 16λM

π(M−1) and q̄= (
∏
k qk)

1/M is the ge-
ometric mean of the target outage probabilities. The optimal
values of Ḃk and B̈k are given by

Ḃk=Ḃave + log
γk
γ̄

+ log
q̄

qk
(47)

B̈k=B̈ave + (M−1) log
γk
γ̄

+ 2(M−1) log
q̄

qk
, (48)

where γ̄= (
∏
k γk)

1/M is the geometric mean of the target
SINR values.

Proof: See Appendix II.
Although the bit allocation laws in Theorem 4 are derived

with the simplifying assumption of equal magnitude and
direction outage probabilities in (40) and (41), the numerical
results, as shown in Fig. 2, verify that the analytical results
in (47) and (48) are close to the bit allocations derived by
numerical minimization of (34). For the example in this figure,
the base station has M = 3 antennas and serves three users
with the target parameters γk = 15dB and qk = 0.02 for
the first user (k = 1) and γk = 10dB and qk = 0.05 for
the two other users (k = 2, 3). The user channels are i.i.d.
and hk ∼ N (0, IM ), where IM is the M×M identity matrix.
Also, the number of bits are rounded to the closest integer
numbers.

Corollary 1: For each user k, the optimal number of mag-
nitude and direction quantization bits are related as follows:

B̈k = (M−1)Ḃk + (M−1) log
1

qk
+MκMU , (49)

where κMU is defined in Theorem 4. Moreover the total number
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of quantization bits for user k is given by

Bk = Ḃk + B̈k =
1

M
B+M log

γk
γ̄

+ (2M−1) log
q̄

qk
. (50)

As it is expected, if the users are homogenous in their
requested target parameters, i.e. qk and γk are the same for
all users, each user takes an equal share of 1

MB of the
total feedback rate. In the case of heterogenous users, on the
other hand, a user with a higher QoS (lower target outage
probability) and a higher target downlink rate (higher target
SINR) uses a higher feedback rate Bk.

The bit allocation laws in Theorem 4 are asymptotic results
in the feedback rate B →∞. In the following, we answer the
question that how high the total feedback rate should be so
that the target SINR values γk are in fact achievable with the
target outage probabilities qk.

Theorem 5: Assume γk > 1 and qk � 1 and define

Qk
def
=

√
γk

qk
.

For the target SINR’s γk to be satisfied with outage probabil-
ities qk, the following total feedback rate B is sufficient:

B >
1

2
M2 log γ̄ + (M2−M) log

1

q̄
+M2 log ∆ + b, (51)

Here γ̄ and q̄ are the geometric means of γk’s and qk’s
respectively and

∆ =
Q̄

min
1≤k≤M

Qk
,

where Q̄ is the geometric mean of Qk’s. The constant b in
(51) is defined as b= 1

2M
2+ 3

2M
2 logM+M2κMU , where κMU

is defined in Theorem 4.
Proof: See Appendix II.

Several interesting results can be extracted from Theorem
5. First, we observe that for the QoS constraints to remain
feasible, the system feedback link capacity should scale loga-
rithmically with the geometric mean of the target SINR values
and the geometric mean of the inverse target outage probabil-
ities. Second, if we compare the case of homogenous users
with the case of heterogenous users, we see that heterogenous
users impose an additional requirement, M2 log ∆, on the total
feedback rate. If we think of Qk’s as users’ QoS indicators,
the variable ∆ can be interpreted as a measure of discrepancy
among users’ QoS requirements. A higher QoS discrepancy
requires a higher feedback bandwidth.

Finally, in order to study the performance of the limited-
feedback system as the feedback rate increases, we substitute
the optimal magnitude and direction codebook sizes given by
Theorem 4 into the average sum-power upper bound in (39).
The following theorem shows the scaling of the average sum
power with the feedback rate B.

Theorem 6: For a limited-feedback system with a total
number of B feedback bits, we have

E [PMU ] < PMU,CSI

(
1 +

σMU

q̄
· 2−

B
M2

)
, (52)
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Fig. 3. SDP solution in (24) vs. the upper bound solution in (27) for three
users with target SINR’s of γ1 = 3dB and γ2, γ3 = 6dB.

where PMU,CSI is defined in (2), q̄ is the geometric mean of the
target outage probabilities, and

σMU =
16M

π(M−1)

(
π3/2(M − 1)Γ((M + 1)/2)

16Γ(M/2)

)1/M

.

Proof: See Appendix II.
If we define a quantization distortion measure as

D(B) =
E [PMU ]− PMU,CSI

PMU,CSI

, (53)

Theorem 6 implies that the distortion measure scales as 2−
B

M2

as B →∞.

VII. NUMERICAL RESULTS

This section presents the numerical results that support and
verify the analytical results in the earlier sections.

1) Upper Bound Approximation for The SDP Problem in
(24): The codebook optimizations in Section VI are based on
the sum-power upper bound solution in (27) as an approxi-
mation of the solution to the SDP problem in (24). Here we
investigate the accuracy of this approximation by comparing
the two solutions for M = 3 users with target SINR’s of
γ1 = 3dB and γ2, γ3 = 6dB.

To simplify the comparison, we assume perfect channel
magnitude information, i.e. the quantized magnitude variables
rk in (24) and (27) are equal to the exact channel magnitudes.
For direction quantization we use Grassmannian codebooks
from [39]. The same codebook size is used for all users. The
sum power values are averaged over 100 channel realizations
for which the SDP problem is feasible. The user channels are
i.i.d. and hk ∼ N (0, IM ).

Fig. 3 compares the two solutions as a function of the
direction quantization codebook size N̈ . As the figure shows,
the two solutions converge as N̈ increases2. We can there-

2This can made rigorous by showing that as N̈k → ∞ and φk → 0, the
inequality in (25) is satisfied with an equality and therefore the upper bound
solution is exact in the asymptotic high-resolution regime.



11

70 75 80 85 90 95

20

25

30

35

Total number of quantization bits (B)

N
u
m

b
er

o
f
q
u
an

ti
za

ti
o
n

b
it

s
fo

r
u
se

rs
k

=
1,

2,
3

 

 

k = 1 (analytical)
k = 2 (analytical)
k = 3 (analytical)
k = 1 (numerical)
k = 2 (numerical)
k = 3 (numerical)

Fig. 4. Bit allocations Bk for three users with γ1=2dB, γ2=5dB, γ3=8dB,
and q1=q2=q3=0.1.

fore safely use the upper bound solution as the optimization
objective in our high resolution analysis.

2) Bit Allocations and Distortion Scaling: Fig. 2 in Section
VI compares the numerical and analytical bit allocations for
M = 3 users with different target parameters. Here we repeat
the process with different set of parameters and record the
share of each user Bk from the total number of feedback bits
B. The target parameters are γ1=2dB, γ2=5dB, γ3=8dB, and
q1=q2=q3=0.1. Channel models are similar to those used in
Figs. 2 and 3 and the bit allocations are rounded to the closest
integer numbers. As the figure verifies, users with higher target
SINR’s receive larger shares of the total feedback rate.

Finally, we investigate the system performance scaling with
the number of feedback bits for the same set of parameters
as in Fig. 4. For this purpose we use the average sum-
power upper bound E [PMU ] in (32) and the definition of the
distortion measure D(B) in (53). Fig. 5 shows the distortion
measure as a function of B when numerical and analytical bit
allocations are utilized. As expected, the two bit allocations
show close performances. The figure also shows the distortion
upper bound in Theorem 6 for the purpose of comparison.

VIII. CONCLUSIONS

We conclude this paper by comparing the asymptotic
magnitude-direction bit allocation law for the multi-user sys-
tem with that of the single-user system discussed in [7]. For
the multi-user system and in the asymptotic regime where
B → ∞, the relation in (49) implies that the number of
magnitude and direction quantization bits (for each user) are
related as follows:

B̈MU = (M − 1)ḂMU . (54)

The subscript MU in (54) stands for multi-user. For single-
user systems, on the other hand, we have the following bit
allocation law [7]:

B̈SU =
M − 1

2
ḂSU , (55)
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Fig. 5. Distortion measure with numerical and analytical bit allocations for
three users with γ1=2dB, γ2=5dB, γ3=8dB, and q1=q2=q3=0.1.

with SU standing for single-user. If we define a relative
quantization resolution as Υ = B̈/Ḃ, then we have

ΥMU = 2 ΥSU , (56)

which means that for the same number of magnitude quantiza-
tion bits, the number of multi-user direction quantization bits
is twice the number of single-user direction quantization bits.
This is shown schematically in Fig. 6. As the figure implies,
in order to make a single-user channel quantization codebook
applicable to the multi-user system, each direction quantization
region in the single-user codebook should be further quantized
with the same resolution as the whole unit hypersphere.

As the final note we mention that the results in this paper
are based on real channel space assumption. However, the
exact same approach introduced in this paper can be applied to
complex space channels. The only main difference is in using
the upper bound in (16) for real Grassmannian codebooks.
For complex Grassmannian codebooks we need to use the
following bound [4]:

sinφk < 2N̈
− 1

2(M−1)

k , (57)

By doing so, the rest of the analysis can be applied in a similar
fashion to derive the bit allocation laws. In fact, due to the
difference between (16) and (57), the asymptotic magnitude-
direction bit allocation in the complex space turns out to be
B̈ = 2(M − 1)Ḃ in the multiuser case and B̈ = (M − 1)Ḃ
in the single-user case. Therefore, the relation in (56) is also
valid for the complex space channels.

APPENDIX I
A. Proof of Theorem 1

Proof: In order to prove the theorem, we use the following
lemma:

Lemma 1: To ensure the feasibility of the power control
problem in (21), it is sufficient to have

tanφk
sin θk

<
1

1 +
√

(M − 1)γk
, (58)
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Fig. 6. ΥMU =2ΥSU ; single-user and multiuser direction quantization regions
are shown as spherical caps on the unit hypersphere.

for all active users k ∈ K.
Proof: The idea is to show that if the condition (58) holds,

the upper bound solution in (27) is a valid solution to the
power control problem in (21). For this purpose, it suffices to
show that

∑
k∈K αk<1.

According to the condition (58), we have

tanφk
sin θk

<
1

1 +
√

(M − 1)γk
.

Then

sin(θk−φk)

sinφk
=

sin θk
tanφk

− cos θk >
sin θk
tanφk

−1 >
√

(M−1)γk.

(59)
Therefore

αk =

(
1 +

sin2 (θk − φk)

γk sin2 φk

)−1
<

1

M
, (60)

and
∑
k∈K αk < 1, since |K| ≤M .

The MQCS condition in (23) is equivalent to

4λM N̈
− 1

M−1

k < sin

(
arctan

(
sin θ◦k

1 +
√

(M − 1)γk

))
. (61)

Combining this with the inequality in (16), we have

sinφk < sin

(
arctan

(
sin θ◦k

1 +
√

(M − 1)γk

))
, (62)

which leads to

tanφk <
sin θ◦k

1 +
√

(M − 1)γk
. (63)

Now for all active users k ∈ K, we have θk ≥ θ◦k, since θ◦k
is the smallest acceptable angle between user k’s channel and
the subspace spanned by all other users’ channels. Combining
θk ≥ θ◦k with (63) leads to

tanφk <
sin θk

1 +
√

(M − 1)γk
,

which according to Lemma 1 guarantees feasibility and there-
fore completes the proof.

B. Proof of Theorem 2

Proof: Consider the definition of the uncertainty region

Sk =
{
w ∈ RM

∣∣√r ≤ ‖w‖ < √R, ∠(w, ũ) < φ
}
.

As far as the constraint in (22) in concerned, the constraint
‖w‖ <

√
R is redundant since the infimum occurs on the

lower surface ‖w‖ =
√
r (see the process of deriving the

upper bound solution in (25)).
Now define

T0 =

w

∣∣∣∣∣∣∣
Pk
∣∣wTvk

∣∣2∑
l 6=k

Pl |wTvl|2 + 1
> γk

 , (64)

T1 =
{
w
∣∣‖w‖ ≥ √r} , (65)

T2 =
{
w
∣∣|wT ũk| > cosφ

}
. (66)

The constraint in (22) is therefore equivalent to

T1 ∩ T2 ⊂ T0. (67)

With the appropriate choices of An and τn, the sets T0, T1,
T2 can be expressed as sublevels of quadratic functions

Tn =
{
w
∣∣wTAnw ≤ τn

}
, n = 0, 1, 2.

We therefore can use the following theorem from [38] to re-
place the condition (67) with an SDP condition. This theorem
is an important extension of what is known as S-procedure in
the optimization literature [40].

Theorem 7: Let M ≥ 3 and An ∈ RM×M be symmetric
matrices for n = 0, 1, 2 and assume

∃ ν1, ν2 ∈ R s.t. ν1A1 + ν2A2 � 0.

Define the quadratic functions fn(w) = wTAnw. Then the
following two statements are equivalent:

I. f1(w) ≤ τ1 , f2(w) ≤ τ2 ⇒ f0(w) ≤ τ0 (68)

II. ∃ µ > 0, λ > 0 s.t.
{
A0 � µA1 + λA2

τ0 ≥ µτ1 + λτ2
(69)

For the problem in hand, one can easily find ν1 and ν2 such
that the condition ν1A1 + ν2A2 � 0 is satisfied; therefore, the
constraint in (67) translates to the SDP constraints in (24).

C. Proof of Theorem 3

Proof: From the definitions of αk and βk in (27), we have

αk =
γk sin2 φk

γk sin2 φk + sin2 (θk − φk)
,

αk
βk

=
γk/rk

γk sin2 φk + sin2 (θk − φk)
.

For small values of φk � 1, it is easy to verify that

γk sin2 φk = γkφ
2
k + o(φ2k),

sin2 (θk − φk) = sin2 θk − (sin 2θk)φk + o(φk).

After a few manipulations, one can show that

αk =ekrkφ
2
k + o(φ2k),

αk
βk

=ek + fkφk + o(φk),
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and

PMU =

∑
k∈K αk/βk

1−
∑
k∈K αk

=
∑
k∈K

ek+fkφk+o(φk).

APPENDIX II
A. Proof of Theorem 4

Proof: By applying Lagrange multipliers method, we
achieve

Ṅk =
1

Λ
· γk
θ◦k

(70)

N̈k =
1

ΛM−1
·
(

4λM
M − 1

· γk
(θ◦k)2

)M−1
, (71)

where Λ is a Lagrange multiplier that should satisfy the
constraint

∏M
k=1 ṄkN̈k = N . By solving for Λ we get

Λ =

(
4λM
M − 1

)M−1
M

(
M∏
k=1

γk

) 1
M
(

M∏
k=1

1

θ◦k

) 2M−1

M2

·N−
1

M2 .

(72)
By substituting (72) in (70) and (71), and using θ◦k = π

4 qk
as in (42), and further manipulation, the optimal quantization
resolutions Ḃk = log Ṅk and B̈k = log N̈k can be expressed
as in (47) and (48).

B. Proof of Theorem 5

Proof: For the target parameters to be feasible, the
optimal direction codebook sizes N̈k=2B̈k are required to
satisfy the MQCS conditions in (37). With the assumption of
qk � 1, we have sin θ◦k ≈ θ◦k � 1 and the MQCS conditions
simplify to the following conditions:

N̈k ≥
(

4λM
θ◦k

(
1 +

√
(M − 1)γk

))M−1
. (73)

In the following, we find a lower bound on B that guarantees
the conditions in (73).

For M ≥ 2 and γk > 1, we have the following inequality:

1 +
√

(M − 1)γk <
√

2Mγk. (74)

To satisfy the conditions in (73), therefore, it is sufficient to
satisfy

N̈k ≥
(

4λM
θ◦k

√
2Mγk

)M−1
. (75)

By substituting N̈k from (71) in (75), we achieve
1

Λ
≥ (M − 1)

θ◦k
γk

√
2Mγk. (76)

Therefore it is sufficient to have
1

Λ
≥
√

2M3/2 θ◦k√
γk
. (77)

By substituting the expression for Λ in (72) into (77), we
achieve the following constraints on N = 2B for 1 ≤ k ≤M :

N ≥ C ·
(
γ̄ · θ̄◦

− 2M−1
M · θ

◦
k√
γk

)M2

(78)

where γ̄ = (
∏
k γk)

1/M and θ̄◦ = (
∏
k θ
◦
k)

1/M and

C =
(√

2M3/2
)M2 (

4λM
M − 1

)M(M−1)

.

Since (78) is to be satisfied for all 1 ≤ k ≤ M , we have
the following sufficient bound on N = 2B :

N≥C ·
(
γ̄ · θ̄◦

− 2M−1
M · max

1≤k≤M

θ◦k√
γk

)M2

=C ·
(√

γ̄ · θ̄◦
−M−1

M · max
1≤k≤M

θ◦k/
√
γk

θ̄◦/
√
γ̄

)M2

. (79)

By substituting θ◦k = π
4 qk and θ̄◦ = π

4 q̄ in (79) and taking
the logarithm of the both sides we achieve the lower bound in
(51), which completes the proof.

C. Proof of Theorem 6

Proof: By substituting the optimal values of Ṅk and N̈k
given by (70) and (71) into the average sum-power upper
bound in (32), we have

E [PMU ]<
2ρMU,CSI

π

M∑
k=1

γk
θ◦k

(
1 + Ṅ−1k +

4λM
θ◦k

N̈
− 1

M−1

k

)

=
2ρMU,CSI

π

M∑
k=1

(
γk
θ◦k

+ Λ + (M − 1)Λ

)

=
2ρMU,CSI

π

([
M∑
k=1

γk
θ◦k

]
+M2Λ

)
(a)
=

2ρMU,CSI

π

([
M∑
k=1

γk
θ◦k

]
+M2χγ̄

(
1

θ̄◦

)2− 1
M

2−
B

M2

)
,

(80)

where γ̄= (
∏
k γk)

1/M and θ̄◦= (
∏
k θ
◦
k)

1/M . For the equality
(a) we have used the expression (72) for Λ with N = 2B and
χ = (4λM/(M − 1))

(M−1)/M .
By further manipulating (80), we have

E [PMU ]

<
2ρMU,CSI

π

([
M∑
k=1

γk
θ◦k

]
+Mχ

[
M

γ̄

θ̄◦

]( 1

θ̄◦

)1− 1
M

2−
B

M2

)
(b)
<

2ρMU,CSI

π

([
M∑
k=1

γk
θ◦k

]
+Mχ

[
M∑
k=1

γk
θ◦k

](
1

θ̄◦

)1− 1
M

2−
B

M2

)

=
2ρMU,CSI

π

[
M∑
k=1

γk
θ◦k

](
1 +

Mχ

θ̄◦
θ̄◦

1
M 2−

B
M2

)
(c)
< PMU,CSI

(
1 +

Mχ

θ̄◦
2−

B
M2

)
, (81)

where in (b) we use the fact the geometric mean is smaller
than arithmetic mean:

γ̄

θ̄◦
=

(
M∏
k=1

γk
θk

) 1
M

≤ 1

M

M∑
k=1

γk
θk
,

and in deriving (c), we use the definition of PMU,CSI in (2) and
the fact that θ̄◦ = π

4 q̄ < 1, since q̄ is a probability measure.
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By substituting θ̄◦ = π
4 q̄ in (81), we achieve the bound in

(52) and the proof is complete.
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