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ABSTRACT

We investigate the use of finite-geometry low-density

parity-check (FG-LDPC) codes for channels with stuck-

at defects. Such a channel is corrupted by a stuck-at

defect pattern in addition to the usual channel-induced

noise. When the defect pattern is known to the encoder

but not to the decoder, the capacity of the channel is the

same as if the defect pattern were also revealed to the de-

coder. Capacity-achieving codes for such channels require

a good quantization code embedded inside a good error-

correcting code. The main idea of this paper is that such

an embedding may be realized by taking advantage of the

cyclic or quasi-cyclic structure of FG-LDPC codes, which

allows a quantization codes with low trellis complexity

to be constructed. Combining this with the good error-

correcting capability of low-density parity-check codes,

we demonstrate that FG-LDPC codes offers good perfor-

mance on channels with stuck-at defects.

1. Introduction

This paper investigates the coding problem for channels
with stuck-at defects. Such channels are a realistic model
for computer memory or CD-ROMs in which defect pat-
tern is known at the encoder but not at the decoder. The
coding problem for these channels has many similarities
with the well-known dirty-paper coding problem [1] and
is therefore of great theoretical interest.

The model of channels with stuck-at defects was first
proposed by Kusnetsov and Tsybakov [2], and then was
mainly studied in the Russian literature (e.g., [3], [4],
etc.). In [5], the capacity of such channels was derived by
Heegard and El Gamal; Heegard then proposed the idea
of “partitioned linear block codes” [6], which was the first
attempt on explicit construction of codes for such chan-
nels aiming at approaching the capacity. Another related
work is by Borden and Vinck [7], who derived bounds on
the resulting error probability when block and convolu-
tional codes are used for such channels.

Low-density parity-check (LDPC) codes [8] are cur-
rently the subject of much research due to their excellent
error-correcting performance under iterative decoding. In
this work, we investigate the design of LDPC codes for
channels with stuck-at defects. In particular, we take
advantage of the cyclic structure of a special family of
LDPC codes, namely finite-geometry LDPC (FG-LDPC)
codes [9], and show that a low-complexity quantization
code may be embedded in the LDPC codes to provide

good overall performance for channels with stuck-at de-
fects.

2. Channel Model

Imagine that a CD-ROM has some scratches, or a com-
puter memory has a fraction of cells damaged prior to
the information storage process; i.e., no matter what the
message is, some cells are always stuck at 1s or 0s. Be-
sides such defects, the memory read-out may suffer from
the usual channel-induced noise (due to dust, or memory
cell damage that occurs after the data are stored, etc.).
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Figure 1: Channel with stuck-at defects.

As depicted in Fig. 2, there are three categories of
memory cells: the stuck-at-0 cells, the stuck-at-1 cells,
and the normal cells, with fractions of p/2, p/2, and 1−p,
respectively. In coding terminology, we may refer to the
above three types of memory cells as three channel states.
By introducing a random variable S (S=0, 1 and 2) for
the channel state, we have

P (S = 0) = P (S = 1) = p/2, P (S = 2) = 1− p.

Let the input and output of the channel be X and Y ,
respectively. Then for any x ∈ {0, 1},

P (Y = 0|X = x, S = 0) = 1,

P (Y = 1|X = x, S = 1) = 1,

P (Y 6= x|X = x, S = 2) = ε.

In other words, each memory cell has probability p/2 of
being permanently stuck at 0 or 1, and probability 1− p
of behaving like a binary symmetric channel (BSC) with
cross-over probability ε. We assume that each cell is in-
dependent of other cells.

A natural question is how to design a coding system
for such channels. The coding problem is trivial if the
defect pattern is known at both the encoder and decoder.
A more interesting situation is that the defect pattern
is known only to the encoder but not to the decoder.
We may understand this by imagining that we are given
a stack of CD-ROMs with scratches (under a tolerable
level). We hope that after detecting the defect pattern,
the encoder (CD burner) can store as much data on these



CD-ROMs as possible. Due to the random nature of such
defects, instead of avoiding writing on the defective cells
(which will cause problems in reading out the data later),
a more desirable strategy is to have a universal scheme
that adapts the burning process to the defect pattern.
Then at the decoder end, a “universal” CD drive can
read out the data regardless of the defect pattern.

If both the encoder and the decoder know the defect
pattern, the channel capacity is given by

C = (1− p)(1−H(ε)) bits/cell. (1)

Interestingly, when the defect pattern is revealed only to
the encoder but not to the decoder, it has been shown that
the same capacity as in (1) can be achieved [5]. A similar
result for the Gaussian channel, known as writing on dirty
paper, has also been proved [1]. Coding for channels with
stuck-at defects is of great interest both practically and
theoretically.

As in dirty-paper coding, the proof in [5] is based
on a random binning argument. Heegard then proposed
partitioned linear block codes [6] as a practical binning
scheme to approach the capacity. However, the codes pro-
vided in [6] have relatively short block lengths (from 7 up
to 1023), thus cannot offer capacity-approaching perfor-
mance. As the length grows, explicit construction of such
codes becomes more complex.

3. System Design

LDPC codes are the most powerful linear block codes
known to date. In this paper, we investigate the use of
LDPC codes for channels with stuck-at defects. Heegard’s
idea of code-partitioning is adopted. For a given (n, k)
LDPC code C, l < k rows of the generator matrix G are
selected to form a sub-matrix G0; i.e.,

G =

[
G0

G1

]
. (2)

The sub-matrix G0 generates a subcode C0 of C. Let g1 be
an arbitrary element of the subcode C1 generated by G1.
Adding g1 to C0 produces a coset of C0 in C. The message
bits are encoded in cosets of C0. Every element in g1 +C0
is regarded as the same message by the decoder. There
are 2k−l cosets in total; thus, the maximum number of
message bits is k − l.

The encoder works as follows. For a given (k − l)-bit
message, the (k − l) bits are used as the index to iden-
tify a coset of C0. For a given stuck-at defect pattern
(which is known at the transmitter), the encoder tries
to select a codeword in the coset to match as many de-
fect locations as possible. (The unmatched locations be-
come part of the channel noise in the decoding process.)
This codeword is then transmitted through the channel,
where it is corrupted by additional channel-induced noise
in non-stuck-at positions. Upon receiving the corrupted
codeword, the decoder tries to correct as many errors as
possible. Finally, the decoder recovers the coset index
from the decoded codeword.

We may understand the asymptotic capacity limit of
the channel with stuck-at defects as follows. First, it
turns out that for a stuck-at channel with channel param-
eter (p, ε), the code parameter (n, k, l) should be chosen

so that in the encoding process the number of unmatched
positions (among np stuck-at positions) is at most εnp.
Thus, from a decoder point of view, the decoding process
is equivalent to that of a usual binary symmetric channel
with crossover probability ε. In this case, the parameters
of the overall (n, k)-code must satisfy:

k

n
≤ 1−H(ε). (3)

Now, in the matching process, in order to match np(1 −
ε) locations among np stuck-at positions using an l-
dimensional code C0, from Shannon’s rate-distortion the-
ory [10], we know that the code parameters for each coset
of C0 must satisfy

l

np
≥ 1−H(ε). (4)

Therefore, the overall transmission rate is

k − l
n
≤ (1− p)(1−H(ε)) bits/cell. (5)

As this is also the maximum rate if the stuck-at positions
were also available at the receiver, (1−p)(1−H(ε)) is the
capacity of the channel with stuck-at defects.

4. Quantization Code Embedded In

Error-Correcting Code

For the above coding scheme to work well, the overall
(n, k) code C must be a good error-correcting code. In
addition, as C0 (or a coset of C0) is used to match as
many defects as possible in the encoding process, C0 (or
its cosets) must be a good vector quantization code. Since
C0 ⊂ C, in order to achieve the channel capacity, we need
to have a good quantization code embedded in a good
error-correcting code.

The design of good vector-quantization codes is a much
harder problem as compared to the design of good error-
correcting codes. To approach the rate-distortion limit,
the best decoding algorithms known to date are complete
decoders such as the classic Viterbi decoder. However,
Viterbi algorithm is feasible only when the trellis com-
plexity of the code is relatively low. Thus, one way to
design good coding schemes for channels with stuck-at
defects is to start with a good error-correcting code C
and then to find a good quantization subcode C0 within
C with manageable trellis complexity.

In general, when partitioning the generator matrix G
into G0 and G1, the trellis complexity of G0 increases ex-
ponentially with the number of rows of G0. The trellis
complexity of a linear block code may be characterized
using the methods of [11]. First, the generator matrix
of a given code is reduced into a trellis-oriented form via
elementary row operations; i.e., no two rows start or end
at the same position. Once the generator matrix is in
trellis-oriented form, a trellis for this linear block code
can then be constructed by taking the product of all the
elementary trellises corresponding to every row of the gen-
erator matrix [11]. The complexity of the overall trellis is
therefore roughly exponential in the number of overlap-
ping elementary trellises. As will be explained in more
detail in the next section, this means of measuring trellis
complexity gives us a way to intelligently select a low-
complexity embedded subcode for an LDPC code when
the LDPC code has a certain cyclic structure.



5. FG-LDPC Codes for Channels

with Stuck-at Defects

FG-LDPC codes are a special family of LDPC codes con-
structed from the lines and points of finite Euclidean or
projective geometries over finite fields. An m-dimensional
Euclidean geometry over GF (2s) consists of 2ms m-tuples
whose components are elements defined on GF (2s). The
construction of a projective geometry from the elements
of a Galois field is detailed in [12]. A finite (Euclidean
or projective) geometry with n points and r lines satisfies
some structural properties [9]. For the sake of complete-
ness, we briefly quote them from [9] as follows: 1) every
line consists of ρ points; 2) any two points are connected
by one and only one line; 3) every point is intersected by
γ lines; 4) any two lines either are parallel or intersect at
one and only one point.

Such a finite geometry can be represented by a r × n
binary matrix H = [hi,j ] with every row corresponding to
a line, and every column to a point. If the j-th point is
contained in the i-th line, then hi,j = 1; otherwise, hi,j =
0 [9]. A linear block code can be generated whose parity
check matrix is H. When ρ and γ are relatively small
compared to r and n, the codes produced by such H’s
are a subclass of LDPC codes, named FG-LDPC codes.

FG-LDPC codes possess many attractive properties
that other LDPC codes generally do not have [9, 12].
First, these codes are either cyclic or quasi-cyclic, which
means that linear-time encoding can be implemented by
using shift registers based on their generator polynomials.
Second, the minimum distances of FG-LDPC codes are
relatively large. Third, the Tanner graphs of FG-LDPC
codes do not contain cycles of length 4. The second and
third properties imply good error-correcting capability;
however, the cyclic or quasi-cyclic structural property is
of particular interest to us.

When the code is cyclic or quasi-cyclic, there exists
a generator polynomial g(x) such that every row in the
generator matrix is a shifted version of g(x). It then fol-
lows [11] that the generator matrix is already in a trellis-
oriented form because no two rows start or end at the
same position. Furthermore, being cyclic or quasi-cyclic,
the trellis-oriented generator matrix has a regular struc-
ture, making the selection of rows to form a G0 with low
trellis complexity particularly easy. For example, we may
choose the first and the last rows in G, and the remaining
l − 2 rows which are evenly spaced between the first and
the last rows. (This can be easily done if k−1 is a multiple
of l−1, otherwise we adjust to make them as much evenly
spaced as possible). Since the trellis complexity is deter-
mined by the overlapping part of the elementary trellises
of all the rows, a generator matrix G0 constructed this
way has minimal overlaps among all the rows, forming a
quantization code with low trellis complexity. For FG-
LDPC codes, the span (the length between the starting
and ending position) of each row is exactly n− k. In the
generator matrix G0 constructed as above, every row is
obtained by shifting the previous row by b(k−1)/(l−1)c
positions (neglecting the adjustment when (k − 1) is not
a multiple of (l − 1)). If

(j − 1)

⌊
k − 1

l − 1

⌋
< n− k ≤ j

⌊
k − 1

l − 1

⌋
,

for some integer j, then the maximum number of rows
that overlap is j; therefore, the maximum number of
states in the trellis is 2j .

6. Theoretical Performance Limit

In this section, we derive the theoretical performance
limit that an optimal error-correcting code with an em-
bedded optimal quantization code can achieve. The the-
oretical limit is characterized by the (p, ε) pair, i.e., the
stuck-at probability and the cross-over probability of the
channel that a code with parameters (n, k, l) may attain.

Given n, k and l, inequality (5) directly gives an upper
bound for the (p, ε) pair. When p = 0, the largest value
of ε for reliable communication is given by

ε∗ = H−1

(
1− k − l

n

)
. (6)

However, the bound given by (5) becomes very loose as p
increases. In the following, we derive a tighter bound for
the (p, ε) pair.

In the encoder, since we are using an l-dimensional
binary vector generated by G0 to quantize pn defective
positions, the rate of the embedded quantization code is
l/pn. To quantize a Bernoulli-1/2 source at a desired
distortion level D, Shannon’s rate-distortion theory [10]
states that the rate R and the distortion D must satisfy
the following relation:

R ≥ 1−H(D).

Therefore, given p, n and l, the distortion D is lower
bounded by

D ≥ H−1

(
1− l

pn

)
.

Note that the condition pn ≥ l is implied in the above in-
equality. Intuitively, when pn ≤ l, no distortion has to be
introduced if the quantization code is properly designed.

Under the Hamming distortion measure, D is exactly
the bit error rate (BER). Note that here D is the BER
averaged over the pn positions. A more useful parame-
ter here would be the residual quantization error rate, εq,
which is the fraction of unmatched positions after quan-
tization averaged over the entire sequence; i.e.,

εq =
pnD

n
= pD ≥

{
pH−1

(
1− l

pn

)
, p > l

n
,

0, p ≤ l
n
.

(7)

Given the largest possible cross-over probability ε∗ for re-
liable communication over the channel, the actual chan-
nel cross-over probability ε and the residual quantization
error rate εq must satisfy

(1− εq) · (1− ε) ≥ 1− ε∗.

Thus, the channel cross-over probability ε is bounded by

ε ≤ 1− 1− ε∗

1− εq
. (8)

Combining (8) with (6) and (7) yields the following rela-
tion between p and ε:

ε ≤

 1− 1−H−1(1− k−l
n )

1−pH−1
(
1− l

pn

) , p > l
n
,

H−1
(
1− k−l

n

)
, p ≤ l

n
.



7. Simulation Results

We now provide some simulation results using FG-LDPC
codes for channels with stuck-at defects. The code is
provided in [9], which is a (4095, 3367) cyclic code. We
choose l = 15 rows in the generator matrix G to form G0.
Thus, the optimum rate achievable is (k− l)/n = 0.8186.
To keep these rows as equally spaced apart as possible
while every position is covered by at least one codeword,
the row numbers chosen are j = 1+(i−1)×240, where i =
1, 2, · · · , 14, and j = 3367, the last row. The complexity
of the trellis is very low; the maximum number of states
is 23 = 8. A Viterbi decoder is used for the quantization
step at the encoder. An iterative sum-product algorithm
is used for the error-correcting step at the decoder. The
number of iterations is 20.

In Fig. 2, the maximum (p, ε) region for which the
(4095, 3367, 15) cyclic code is able to sucessfully encode
and decode with an overall word error rate (WER) of 10−2

is plotted. The performance is compared with the theo-
retical limit as computed in Section 6. We can see that at
the block length of only 4095 bits, our simulation results
are reasonably close to the theoretical limit. We believe
that the performance loss is mainly due to the relatively
weak error-correcting capability of the (4095, 3367) FG-
LDPC codes. When more powerful LDPC codes with
longer block lengths are used, we expect performance that
is closer to theoretical limits.
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Figure 2: Performance of the FG-LDPC codes on chan-
nels with stuck-at defects. The code parameters are
(n, k, l) = (4095, 3367, 15). The maximum theoretically
attainable (p, ε) and the actual (p, ε) at WER = 10−2 are
plotted.

Our result is not directly comparable to that of Hee-
gard’s or Borden and Vinck’s. In [6], the error-correcting
and defect-matching capability of Heegard’s codes are
measured by the minimum distances of the partitioned
subcodes. In [7], bounds on the probability of error are
derived. Simulation results are not provided in [6] and [7].
On the other hand, FG-LDPC codes do not allow flexibil-
ity in their sizes and dimensions. For a finite geometry,
once the number of points n is given, the number of lines
r = n−k is immediately determined. Therefore, only cer-
tain rates are available among the FG-LDPC codes. The

sizes and dimensions (and hence the rates) of FG-LDPC
codes do not match those of the codes in [6] and [7].

8. Conclusion

In this work, we consider the coding problem for a class of
channels with stuck-at defects as well as channel-induced
noise. The most interesting case is when the defect pat-
tern is revealed only to the encoder but not to the de-
coder; the channel capacity is exactly the same as if the
decoder also knew the defect pattern, reminiscent of the
classic dirty-paper coding problem. The major challenge
of coding for such channels lies in the need of a good
quantization code embedded in a good error-correcting
code. The recently discovered FG-LDPC codes are shown
to be a suitable candidate, because the construction of a
good quantization code with low trellis complexity be-
comes particularly easy due to the cyclic or quasi-cyclic
structure of FG-LDPC codes. Simulation results show
that FG-LDPC codes are promising in approaching the
theoretical performance limit.
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