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Abstract—Fractional programming (FP) refers to a family of
optimization problems that involve ratio term(s). This two-part
paper explores the use of FP in the design and optimization
of communication systems. Part I of this paper focuses on FP
theory and on solving continuous problems. The main theoretical
contribution is a novel quadratic transform technique for tackling
the multiple-ratio concave-convex FP problem—in contrastto
conventional FP techniques that mostly can only deal with
the single-ratio or the max-min-ratio cases. Multiple-ratio FP
problems are important for the optimization of communication
networks, because system-level design often involves multiple
signal-to-interference-plus-noise ratio terms. This paper consid-
ers the applications of FP to solving continuous problems in
communication system design, particularly for power control,
beamforming, and energy efficiency maximization. These appli-
cation cases illustrate that the proposed quadratic transform can
greatly facilitate the optimization involving ratios by recasting the
original nonconvex problem as a sequence of convex problems.
This FP-based problem reformulation gives rise to an efficient
iterative optimization algorithm with provable convergence to a
stationary point. The paper further demonstrates close connec-
tions between the proposed FP approach and other well-known
algorithms in the literature, such as the fixed-point iteration and
the weighted minimum mean-square-error beamforming. The
optimization of discrete problems is discussed in Part II ofthis
paper.

Index Terms—Fractional programming (FP), quadratic trans-
form, power control, beamforming, energy efficiency

I. OVERVIEW

OPTIMIZATION is a key aspect of communication sys-
tem design [3], [4]. This two-part work explores the

application of fractional programming (FP) in the design and
optimization of communication systems. FP refers to a family
of optimization problems containing ratio term(s). Its history
can be traced back to an early paper on economic expansion
[5] by von Neumann in 1937; it has since been studied
extensively in broad areas in economics, management science,
information theory, optics, graph theory, and computer science
[6]–[8]. For example, FP has recently been applied in [9]–
[12] to solve the energy efficiency maximization problem for
wireless communication systems.
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The aim of this two-part paper is to extend the use of
FP to address a broader range of optimization problems in
communication system design, in particular on power control,
beamforming, and user scheduling, which often cannot be
directly expressed in ratio forms. We focus on communication
systems in which the data rate is computed aslog(1+SINR),
where SINR is the signal-to-interference-plus-noise ratio. The
prominent role played by “SINR” in communication systems
makes FP an invaluable tool for network design and optimiza-
tion. The discussion throughout the paper focuses on wireless
cellular networks, but it can be readily adapted to many other
networks (e.g., the optical network or the digital subscriber
lines).

Although an extensive literature already exists for FP, most
of them specialize insingle-ratioproblems. For example, prior
works on communication system design [9]–[12] that rely on
classical FP techniques have had to limit the system model
to the scenario involving only one single ratio. Although
multiple-ratio problems are dealt with in [13], they are limited
to specific forms (e.g., the max-min problem). System-level
communication network design, however, often has to deal
with multiple ratios, because the overall system performance
is typically a function of multiple fractional parameters (e.g.,
SINRs) from multiple interfering links. Solvingmultiple-ratio
FP is, however, NP-hard [14]. The state-of-the-art methods
for finding globally optimal solution all require exponential
running time (e.g., using branch-and-bound search [15]–[17]).
In fact, as pointed out in [16], [18], the solution to a general
FP problem consisting of more than 20 ratio terms is already
beyond the reach of known approaches within reasonable time.
As to finding stationary-point solution of the multiple-ratio
problem, only general-purpose techniques such as successive
convex approximation are known.

This paper addresses the multiple-ratio FP problem from a
new perspective. Our main theoretic contribution is a novel
technique calledquadratic transformthat introduces some
suitable auxiliary variables, then recasts the original problem
to a form amenable to iterative optimization. Specifically,this
new technique decouples the numerator and the denominator
of each ratio term, similar to the classicDinkelbach’s transfor-
m (but works with multiple ratio as opposed to mostly single
ratio for the classic method). This decoupling feature of the
proposed quadratic transform is particularly suited for the co-
ordinated resource optimization problem across multiple cells
in a wireless cellular network. For instance, the intercellpower
spectrum optimization problem is a challenging nonconvex
problem, because the transmit power levels of the different
links strongly impact each other through the interference terms
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in SINR. Our proposed FP approach decouples the signal and
the interference terms of the multiple links, thereby converting
the original nonconvex problem into a sequence of convex
problems, through a set of auxiliary variables.

Part I of this paper applies the proposed technique to solve
continuous problems in communication system design. The
discrete case is more challenging and is dealt with in Part II
of this paper [19]. The main contributions of Part I are as
follows:

• FP Theory:A novel technique called quadratic transform
is proposed to tackle the multiple-ratio FP problems. It
decouples the numerator and the denominator of each
ratio term, thereby converting a concave-convex multiple-
ratio FP problems into a sequence of convex optimization
problems.

• Power Control: The proposed approach is applied to
the optimization of transmit power levels that maximize
the weighted sum rate of a single-input single-output
(SISO) wireless cellular network, which is a challenging
nonconvex problem. We propose two methods: A direct
approach that applies the quadratic transform directly
to SINR, then subsequently updates the power variables
iteratively via a sequence of convex optimizations; and
a second method that results in closed-form update in
optimization process. We show the connection of the
latter approach to fixed-point iteration in optimization.

• Beamforming:The quadratic transform is generalized to
the vector case and applied to the transmit beamforming
optimization problem that seeks to maximize the weight-
ed sum rate of a multiple-input multiple-out (MIMO)
wireless cellular network.

• Energy Efficiency:The proposed approach is applied to
the maximization of the overall energy efficiency of a
communication network (i.e., the ratio of the sum data
rate to the total power consumption). The application of
FP is ideally suited for this problem scenario, because
the objective function is already in a ratio form. Prior
works [9]–[12] use Dinkelbach’s transform to decouple
the single-ratio objective. This paper proposes a novel
idea of treating the numerator itself as an inner multiple-
ratio problem nested in the outer single-ratio energy
efficiency problem. The resulting algorithm involves a
nested use of FP.

Throughout this paper, the bold lower-case letter denotes
a vector; the bold upper-case letter denotes a matrix; the
calligraphy upper-case letter denotes a set. For a vectora,
‖a‖ refers to its Euclidean norm;a† refers to its conjugate
transpose. For a matrixA, A−1 refers to its inverse,A† refers
to its conjugate transpose. Denote0 as the null vector, andI
as the identity matrix. DenoteN as the set of strictly positive
integers. DefineR as the set of real numbers, andR+ or R++

as the set of nonnegative or strictly positive real numbers.
DenoteC as the set of complex numbers, and Re{·} as the
real part. DenoteS++ as the set of symmetric positive definite
matrices.

II. FRACTIONAL PROGRAMMING

FP is a class of optimization problems involving fractional
terms (or ratios). This section reviews classic techniquesfor
FP that deals with single-ratio problems, then introduces a
novel quadratic transform technique capable of dealing with
multiple-ratio problems.

A. Classic Techniques

We begin by considering the single-ratio FP problem. Given
a nonempty constraint setX ⊆ Rd, and a nonnegative function
A(x): Rd → R+ and a positive functionB(x): Rd → R++,
where d ∈ N, a single-ratio (maximizing) FP problem is
defined to be

maximize
x

A(x)

B(x)
(1a)

subject to x ∈ X . (1b)

The above single-ratio FP problem is in general not convex.
The conventional approach for dealing with FP is to re-

formulate the problem in a form with its numerator and
denominator decoupled, whereby the joint optimization of
A(x) andB(x) becomes easier, especially for the case where
A(x) is a concave function,B(x) is a convex function, and
X is a convex set expressed in standard form—known as
the concave-convexFP problem. The two classic techniques
presented below belong to this type of approach.

1) Charnes-Cooper Transform:This classic technique for
FP is proposed by the early works [20], [21]. It introduces two
new variables

z =
1

B(x)
(2)

and
q =

x

B(x)
, (3)

then reformulates the single-ratio problem (1) as

maximize
z,q

zA
(q
z

)
(4a)

subject to zB
(q
z

)
≤ 1 (4b)

z ∈ Z (4c)

q ∈ Q (4d)

whereZ andQ are the range ofz andq according to (2) and
(3), respectively, asx ∈ X . After solving the above problem,
the primal solutionx can be recovered by either (2) or (3). This
transform is first proposed by Charnes and Cooper [20] for
the affine case then extended by Schaible [21] to the general
concave-convex case.

Observe that this technique decouples the denominator and
the numerator by moving theB(x) to the constraint (4b) while
leaving A(x) in the objective. If the problem is a concave-
convex FP, then the reformulation (4) is a convex problem
which can be efficiently solved. Note that in the Charnes-
Cooper transform: (i) additional constraints are introduced;
(ii) Z and Q need to be characterized, which may not be
easy to do. We also remark that although the technique works
very well for the single-ratio case (in fact converges to a
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global optimum solution of the concave-convex single-ratio
FP problem), it cannot be easily extended to the multiple-ratio
case, e.g., sum-of-ratios problem.

2) Dinkelbach’s Transform:This classic technique, first
proposed in [22], reformulates the single-ratio problem (1) as

maximize
x

A(x) − yB(x) (5a)

subject to x ∈ X (5b)

with a new auxiliary variabley, which is iteratively updated
by

yt+1 =
A(xt)

B(xt)
(6)

where subscriptt is the iteration index. It can be proved that
convergence is guaranteed by alternatively updatingy accord-
ing to (6) and solving forx in (5), becausey is nondecreasing
after each iteration. Specially, when the single-ratio problem
(1) is a concave-convex FP, optimizingx in (5) for fixed y
is a convex problem; the overall iterative algorithm in fact
converges to the global optimum solution of (1). Dinkelbach’s
transform has an advantage as compared to Charnes-Cooper
transform in the sense that no extra constraints are introduced.

B. Proposed Quadratic Transform

Classic transforms for FP work well for single-ratio prob-
lems, but they cannot be easily generalized to multiple-ratio
FP. This is because although these classic transforms have the
property that the original FP and the transformed problem have
the same optimal solution, the optimal value of the objective
function of the transformed problem is not necessarily the
same as the original FP objective function value. Thus, when
multiple ratios are involved, one cannot apply the transform
to each ratio individually.

This paper proposes a new transform, which is motivated by
Dinkelbach’s transform, but with an added constraint that the
value of the objective function must stay the same. It is named
quadratic transformbecause it involves quadratic terms.

First, we formally state the properties that the desired
transformed objective function must have, when reformulating
the original FP objective function in (1):

C1: (Decoupling)The new objective has the formg(x, y) =
f(A(x))q1(y) + h(B(x))q2(y), wherey is an auxiliary
variable.

C2: (Equivalent Solution)Variablex⋆ maximizesA(x)/B(x)
if and only if x⋆ together with somey⋆ maximizes
g(x, y).

C3: (Equivalent Objective)Let y⋆ = argmaxy g(x, y) for
somex, theng(x, y⋆) = A(x)/B(x) for this x.

C4: (Concavity)Functiong(x, y) is concave overy for fixed
x, i.e., ∂2g/∂y2 ≤ 0.

The above four conditions are all naturally motivated. C1
and C2 follow from the idea of the classic FP transforms
in order to decouple the optimization ofA(x) and B(x)
throughy; C3 makes a stronger equivalence with the original
problem as motivated by the desired application for multiple-
ratio problems; C4 allows for convex optimization overy for

fixed x. Note that C3 implies C2 but not vice versa. In fact,
Dinkelbach’s transform satisfies C1, C2 and C4, but does
not satisfy C3. (Specifically, at the optimum, Dinkelbach’s
transform hasy⋆ = A(x)/B(x) according to (6), therefore
its g(x, y⋆) = 0.)

This paper proposes a novelquadratic transformfor FP
problem that meets all these conditions C1-C4, as stated in
the following theorem.

Theorem 1 (Quadratic Transform). The quadratic transform

g(x, y) = 2y
√
A(x)− y2B(x) (7)

satisfies conditions C1-C4. Further, if C4 is strengthened to
require that∂2g/∂y2 is independent ofy, then anyg(x, y)
that satisfies C1-C4 must be of the form

g(x, y) = 2(t1y + t2)
√

A(x)− (t1y + t2)
2B(x) (8)

for some t1 6= 0 and somet2 ∈ R. Thus, the proposed
quadratic transform is without loss of generality up to an affine
transformation iny.

Proof. See Appendix A.

C. Quadratic Transform for Multiple-Ratio FP

We now apply the quadratic transform to general multiple-
ratio FP problems. IntroduceM pairs of numerator functions
Am(x): Rd → R+ and denominator functionsBm(x): Rd →
R++ for m = 1, · · · ,M , the sum-of-ratioproblem is defined
to be of the form:

maximize
x

M∑

m=1

Am(x)

Bm(x)
(9a)

subject to x ∈ X . (9b)

Condition C3 is critical for extending the idea of decoupled
optimization of numerators and denominators to the sum-of-
ratio problem. As mentioned before, Dinkelbach’s transform
does not satisfy C3. Without the equivalence in the optimal
objective function value, it is normally difficult to extend
Dinkelbach’s transform to the multiple-ratio case (exceptin
special cases such as the max-min problem [13]). A straight-
forward extension of Dinkelbach’s transform such as

maximize
x

M∑

m=1

(Am(x)− ymBm(x)) (10a)

subject to x ∈ X (10b)

(whereym is iteratively updated toAm/Bm) does not guar-
antee the equivalence to (9).

In contrast, the quadratic transform in Theorem 1 can be
readily extended for the sum-of-ratio problem due to C3 as
shown below.

Corollary 1 (Sum-of-Ratios). The sum-of-ratio problem (9) is
equivalent to

maximize
x,y

M∑

m=1

(
2ym

√
Am(x)− y2mBm(x)

)
(11a)

subject to x ∈ X , ym ∈ R (11b)
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wherey refers to a collection of variables{y1, · · · , yM}.

In fact, the quadratic transform can be further extended to a
more general sum-of-functions-of-ratio problem, as specified
in the following.

Corollary 2 (Sum-of-Functions-of-Ratio). Given a sequence
of nondecreasing functionsfm(·) and a sequence of ratios
Am/Bm for m = 1, . . . ,M , the sum-of-functions-of-ratio
problem

maximize
x

M∑

m=1

fm

(
Am(x)

Bm(x)

)
(12a)

subject to x ∈ X (12b)

is equivalent to

maximize
x,y

M∑

m=1

fm

(
2ym

√
Am(x)− y2mBm(x)

)
(13a)

subject to x ∈ X , ym ∈ R, m = 1, . . . ,M. (13b)

To verify the corollary, we first simply rewrite prob-
lem (12) as maxx, r

∑M

m=1 fm(rm) subject to x ∈ X
and rm = Am(x)/Bm(x); then, because of condition C3,
variable rm can be replaced withmaxy(2ym

√
Am(x) −

y2mBm(x)); further, sincefm is a nondecreasing function,
maxx

∑M

m=1 fm(maxym
(2ym

√
Am(x)− y2mBm(x))) can be

rewritten as in (13a) by combiningmaxx andmaxy.

Corollary 3 (Max-Min-Ratio). Given a sequence of ratios
Am/Bm for m = 1, . . . ,M , the max-min-ratioproblem

maximize
x

min
m

{
Am(x)

Bm(x)

}
(14a)

subject to x ∈ X (14b)

is equivalent to

maximize
x,y,z

z (15a)

subject to x ∈ X , ym ∈ R, z ∈ R (15b)

2ym
√
Am(x) − y2mBm(x) ≥ z, ∀m. (15c)

To verify this, we first rewrite problem (14) asmaxx, z z
subject to x ∈ X and z ≤ Am(x)/Bm(x); because
of C3, the latter constraint can be rewritten asz ≤
maxym

(2ym
√
Am(x)− y2mBm(x)); since this new constraint

is a less-than-max inequality,maxym
can be integrated into

maxx, y, as in (15).
Note that theequivalent objectivecondition C3 plays a key

role in deriving the above corollaries.

D. Multidimensional and Complex FP

We further consider FP in a multidimensional complex case
where the numerators are vectors and the denominators are
matrices. This class of FP arises in dealing with multi-antenna
communication systems. Given a sequence of functionam(x):
C

d1 → C
d2 and functionBm(x): C

d1 → S
d2×d2

++ , for m =
1, . . . ,M , and constraint setX ⊆ Cd1 , whered1, d2 ∈ N, a

multidimensional single-ratioFP problem is defined to be

maximize
x

M∑

m=1

a†m(x)B−1
m (x)am(x) (16a)

subject to x ∈ X . (16b)

The corresponding quadratic transform for this multidimen-
sional case is stated in the theorem below.

Theorem 2 (Multidimensional and Complex Quadratic Trans-
form). Problem (16) is equivalent to

maximize
x,y

M∑

m=1

(
2Re

{
y†
mam(x)

}
− y†

mBm(x)ym

)
(17a)

subject to x ∈ X , ym ∈ C
d2 (17b)

where y refers to a collection of auxiliary variables
{y1, · · · , yM}.

Proof. Recognize each term in the summation of (17a) as
y†
mam + a†mym − y†

mBmym and then further rewrite it as
a†mB−1

m am−(ym−B−1
m a†m)Bm(ym−B−1

m am) by completing
the square. It is easy to see that the optimal solution of (17)
is y⋆

m = B−1
m (x)am(x) and the optimal value of (17a) equals

to a†mB−1
m am exactly. The equivalence to (16) is therefore

established.

This multidimensional and complex quadratic transform can
be readily extended for more general sum-of-functions-of-ratio
and max-min-ratio as in Corollaries 2 and 3.

E. Iterative Optimization for Concave-Convex FP

The discussion on FP so far assumes arbitrary ratio
functions (with the numerator being non-negative and the
denominator being positive). We now focus on the special
type of concave-convex FP problems, which is of particular
importance in communication system design.

An FP problem is calledconcave-convexif it satisfies the
following three conditions:

• The numeratorsAm(x) are all concave functions;
• The denominatorsBm(x) are all convex functions;
• The constraint setX is a nonempty convex set in standard

form as expressed by a finite number of inequality
constraints.

Note that a concave-convex FP problem is not necessarily a
convex problem, so solving it directly can be difficult. But in
some particular cases, e.g., when the problem contains only
one ratio, the concave-convex FP has the desirable convexity
structure that allows it to be solved globally. In fact, the afore-
mentioned classic techniques, i.e., Charnes-Cooper transform
and Dinkelbach’s transform, are both initially proposed to
solve thesingle-ratio concave-convexFP problem.

The main goal here is to tackle themultiple-ratio concave-
convexFP problem using the quadratic transform. For ease
of notation, we only consider the scalar case ofAm andBm

in what follows, but the multidimensional extension can be
readily obtained according to Theorem 2.

Consider the sum-of-ratios problem (9), the sum-of-
functions-of-ratio problem (12), and the max-min-ratio prob-
lem (14), but additionally assume that eachAm(x) is concave
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and eachBm(x) is convex and also thatX is convex in
standard form. Further, for the case of functions-of-ratio, we
assume that the functionsfm(·) are not only nondecreasing,
but also concave. We propose to apply the quadratic transform
and optimize the primal variablex and the auxiliary variable
ym iteratively.

Whenx is held fixed, the optimalym can be found in closed
form as

y⋆m =

√
Am(x)

Bm(x)
, ∀m = 1, . . . ,M. (18)

When ym is fixed, due to the concavity of eachAm(x), the
convexity of eachBm(x), and that the square-root function is
concave and increasing, the quadratic transform

g(x, ym) = 2ym
√
Am(x)− y2mBm(x) (19)

is concave inx for fixed ym. Further, if fm(·) is assumed
to be concave and nondecreasing, then we also have that
fm(g(x, ym)) is concave inx. Therefore, the quadratic trans-
formed problems (11), (13) and (15) are all concave maximiza-
tion problems overx. The optimalx can thus be efficiently
obtained through numerical convex optimization. The entire
approach is summarized in Algorithm 1.

Algorithm 1 Iterative approach for concave-convex FP prob-
lems (9), (12), and (14)

Initialization: Initialize x.
Reformulate the problem by the quadratic transform, i.e.,
replace every ratio termAm/Bm with 2ym

√
Am − y2mBm.

repeat
1) Updatey by (18);
2) Updatex by solving the reformulated convex opti-
mization problem (11), (13), or (15), respectively, overx

under fixedy;
until Convergence

We show in the following that Algorithm 1 is guaranteed
to achieve a stationary point of concave-convex FP problems.

Theorem 3. For the concave-convex sum-of-functions-of-ratio
problem (12), i.e., everyAm(x) is concave and everyBm(x) is
convex, andX is a convex set in standard form, and assuming
further thatfm is nondecreasing and concave, then Algorithm
1 consists of a sequence of convex optimization problems that
converge to a stationary point of (12) with nondecreasing sum-
of-functions-of-ratio value after every iteration.

Proof. The algorithm is essentially a block coordinate ascent
algorithm for the reformulated problem (13), which is a convex
optimization problem due to the concave-convex form of (12),
so it converges to a stationary point(x⋆,y⋆) of (13). Due to
the equivalence in the solution (i.e., Condition C2) and the
equivalence in the objective value (i.e., Condition C3), the
first-order condition onx for (13) under the optimaly⋆ is the
same as for the original problem (12), hence the algorithm also
converges to a stationary point of (12). Condition C3 guaran-
tees that the sum-of-functions-of-ratio value is nondecreasing
after every update ofy.

Note that as the sum-of-ratios is a special case of the sum-
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Fig. 1: Maximizing f(x1, x2) = x1/((x1 − 1)2 + (x2 − 2)2 + 1)
overx1 ≥ 0 andx2 ≥ 0 is a single-ratio concave-convex FP problem.
Although f(x1, x2) is not concave, its stationary point is also the
global optimum.

of-functions-of-ratio, Algorithm 1 also converges to a local
optimum when applied to the sum-of-ratio problem (9). For
the single-ratio or max-min-ratio case, a much stronger result
is possible.

Theorem 4. For the single-ratio problem (1) and the max-
min-ratio (14) concave-convex FP problem with differentiable
A(x) andB(x), Algorithm 1 converges to the globally optimal
solution of the respective problems.

Proof. The key is to verify that any stationary point must
be the global optimum in the special cases of single-ratio or
max-min problems. This can be established by showing that
the concave-convex single-ratio FP problem ispseudo-convex.
This fact has been proved in [23] for the case whereA(x)
andB(x) are differentiable andA(x) is concave andB(x) is
convex. Thus for single-ratio FP, Algorithm 1 converges to a
global optimum. Furthermore, by the result in [24] that any
local optimum solution is also the global optimum solution for
the problemminmaxm{fm} given that eachfm is a pseudo-
convex function, the global convergence of Algorithm 1 in the
max-min problem case can also be established.

Fig. 1 shows an example of a single-ratio concave-convex
FP problem whose unique stationary point is the global
optimum. We note that this property of converging to the
globally optimal solution holds also for the Charnes-Cooper
Transform and the Dinkelbach’s transform. This is true despite
that the original problem is not necessarily convex.

Algorithm 1 can be readily extended to the multidimen-
sional and complex problem (16), i.e., by optimizingy andx
alternatively in the multidimensional quadratic transform (17).
The optimalym for fixed x is

y⋆
m = (Bm(x))−1am(x), (20)

and then solvingx for fixed y is a convex optimization
problem under the concave-convex condition, and for the
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functions-of-ratio case iffm(·) is concave and nondecreasing.

F. Convergence Rate

We analyze the convergence rate of Algorithm 1 as com-
pared to the classic transforms. Note that if the single-ratio
problem is concave-convex, solving the problem by Dinkel-
bach’s transform amounts to a sequence of convex optimiza-
tions (5) over x with the auxiliary variabley iteratively
updated by (6). It is shown in [23] that the iteration by
Dinkelbach’s transform converges at a superlinear rate, i.e.,

lim
t→∞

|y⋆ − yt+1|
|y⋆ − yt|

= 0 (21)

where subscriptt is the index of iteration, andy⋆ is the auxil-
iary variable value at the convergence. For ease of comparison,
we evaluate the convergence of Algorithm 1 for the single-ratio
problem as well. As compared to Dinkelbach’s transform, the
quadratic transform (i.e., Algorithm 1) can be considerably
slower. The following example shows that the convergence
rate of Algorithm 1 can be strictly slower than superlinear.

Consider an example of single-ratio concave-convex FP

maximize
x

x

x2 + 1
(22a)

subject to x ≥ 0. (22b)

The quadratic transform reformulates its objective as

g(x, y) = 2y
√
x− y2(x2 + 1). (23)

Introduce subscriptt to denote the iteration number. Whenx
is fixed atxt, the optimaly is updated by (18)

yt+1 =

√
xt

x2
t + 1

. (24)

After y is updated toyt+1, the optimalx is found to be (by
solving the convex problem analytically)

xt+1 = (2yt+1)
− 2

3 . (25)

These two updates amount to

yt+1 =
(2yt)

− 1

3

(2yt)−
4

3 + 1
. (26)

With y initialized to 0.1 (i.e.,y0 = 0.1), it can be shown that
yt+1 in (26) converges to12 in a nondecreasing fashion. We
then have

lim
t→∞

|y⋆ − yt+1|
|y⋆ − yt|

= lim
t→∞

y⋆ − yt+1

y⋆ − yt
(27a)

= lim
y→ 1

2

1
1
2 − y

(
1

2
− (2y)−

1

3

(2y)−
4

3 + 1

)
(27b)

=
1

3
. (27c)

Thus, Algorithm 1 in this example converges more slowly than
the iterative optimization based on Dinkelbach’s transform.
The convergence of these two methods is illustrated in Fig. 2.

We emphasize that although the conventional Dinkelbach’s
transform can result in a faster convergence rate than the
proposed quadratic transform, the use of the former technique
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Fig. 2: When applied to the single-ratio problem (22), Dinkelbach’s
transform converges faster than the quadratic transform.

is restricted to the single-ratio problem whereas the latter is
capable of dealing with multiple ratios. Further, for multiple-
ratio FP problems where global convergence is not guaranteed,
slower convergence can sometime be advantageous as it allows
the algorithm to more fully explore the solution space.

III. POWER CONTROL

A. Problem Statement

We now consider the application of FP to communication
system design. The first example is the classic power control
problem for a downlink SISO cellular network with a set of
single-antenna base stations (BSs)B, each serving a single-
antenna user. Lethi,j ∈ C be the downlink channel from
BS j to useri; let σ2 be the additive white Gaussian noise
(AWGN) power level. Introduce variablepi for each BSi as
its transmit power level, constrained by a power budget of
Pmax. The downlink data rate of useri is computed as1

Ri = log

(
1 +

|hi,i|2pi∑
j 6=i |hi,j |2pj + σ2

)
. (28)

We consider the maximization of a weighted sum rate objec-
tive of

fo(p) =
∑

i∈B

wiRi (29)

wherewi accounts for the priority of theith BS-user downlink
and p refers to the collection{pi}i∈B. The power control
problem is formulated as

maximize
p

fo(p) (30a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B. (30b)

This problem is difficult to solve because it is nonconvex.
Indeed, the problem can be solved globally by using a poly-
block approximation approach [25], but not in polynomial

1For ease of notation, we use the natural logarithm inlog(1 + SINR).
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time. Moreover, for the case where all the SINRs are suffi-
ciently high so thatlog(1 + SINR) can be approximated as
log(SINR), the problem can be globally solved viageometric
programming[4]. This paper aims to find at least a stationary
point in an efficient manner. We remark that the power control
problem has been studied extensively in the literature, e.g., the
structure of the interference functions is investigated in[26],
[27].

B. Direct FP Approach

Although the power control problem is not in a direct
ratio form, the main components of its objective function, the
SINR terms, are in fractional form. Because each SINR term
resides inside the logarithm function, which is nondecreasing
and concave, the condition of Theorem 3 is satisfied in this
problem.

Specifically, after applying the quadratic transform to each
SINR term, we arrive at the following reformulation

maximize
p,y

fDIR
q (p,y) (31a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B (31b)

yi ∈ R, ∀i ∈ B (31c)

wherey refers to the collection{yi}i∈B. The new objective
fDIR
q is

fDIR
q (x,y) =

∑

i∈B

wi log



 1 + 2yi

√
|hi,i|2pi

− y2i




∑

j 6=i

|hi,j |2pj + σ2







 (32)

where yi is introduced by the quadratic transform for each
downlink i.

Following Algorithm 1, we optimizeyi andpi in an iterative
fashion. The optimalyi for fixed pi is

y⋆i =

√
|hi,i|2pi∑

j 6=i |hi,j |2pj + σ2
. (33)

Then, finding the optimalpi for fixed yi is a convex problem.
This power control method is summarized in Algorithm 2
below. By Theorem 3, Algorithm 2 guarantees a convergence

Algorithm 2 Direct FP for Power Control

Initialization: Initialize p.
repeat

1) Updatey by (33);
2) Updatep by solving the convex problem (31) overp
for fixed y;

until Convergence

to a stationary point of problem (30).
We remark that Algorithm 2 can be easily extended to the

multiple-band system, where the frequency band is partitioned

into T sub-bands, and the user rate is computed as

Ri =

T∑

t=1

1

T
log

(
1 +

|ht
i,i|2pti∑

j 6=i |ht
i,j |2ptj + σ2

)
. (34)

Here,ht
i,j andptj represent the channel and the transmit power

level in the tth sub-band, respectively. The power constraint
(30b) now becomes

T∑

t=1

pti ≤ Pmax and pti ≥ 0. (35)

To modify Algorithm 2 to work in this multiple-band scenario:
Step 1 remains the same; Step 2 updatesp by solving a convex
problem.

As a final remark in this subsection, the direct FP approach
for power control can be adapted to the maximization of a
general rate utility function in wireless networks, as stated in
the proposition below.

Proposition 1 (General Utility Maximization). Given a non-
decreasing concave utility functionUi of rateRi for each user
i, the sum utility maximizing problem

maximize
p

∑

i∈B

Ui(Ri) (36a)

subject to 0 ≤ pi ≤ Pmax, ∀i ∈ B (36b)

is equivalent to

maximize
p,y

∑

i∈B

Ui(Qi) (37a)

subject to 0 ≤ pi ≤ Pmax, y ∈ R (37b)

where

Qi = log



1 + 2yi|hi,i|
√
pi − y2i

∑

j 6=i

|hi,j |2pj − y2i σ
2



 .

(38)

The above reformulated problem can be solved (to a station-
ary point) as follows. Whenp is fixed, variabley is optimally
determined by (33); wheny is fixed, optimizingp in (37) is
a convex problem.

Furthermore, we remark that the direct FP approach also
applies to the problem of optimizing power for maximizing
the minimum rate across the users, according to Corollary 3.

C. Closed-Form FP Approach

This section presents a different use of FP for solving the
power control problem. This new approach is based on a
Lagrangian dual reformulation of the power control problem
as stated below. This leads to an algorithm in which each
iteration is performed in closed form, rather than having to
solve a convex optimization problem, which is often more
desirable than the direct FP approach of the previous section.

Proposition 2. The original power control problem (30a) is
equivalent to

maximize
x,γ

fCF
r (x,γ) (39a)

subject to x ∈ X (39b)
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whereγ refers to a set of auxiliary variables{γi}i∈B, and the
new objective is

fCF
r (p,γ) =

∑

i∈B

wi log (1 + γi)−
∑

i∈B

wiγi

+
∑

i∈B

wi(1 + γi)|hi,i|2pi∑
j∈B |hi,j |2pj + σ2

. (40)

Proof. We defer a detailed constructive proof to Part II of the
paper [19].

We propose an iterative algorithm based on the above
reformulation. Whenpi is held fixed, the optimalγi is obtained
by setting∂fCF

r /∂γi to zero, i.e.,

γ⋆
i =

|hi,i|2pi∑
j 6=i |hi,j |2pj + σ2

, ∀i ∈ B. (41)

Note that the optimalγi is equal to the downlink SINR of BS
i. Whenγi is held fixed, only the last term offCF

r , which has
a sum-of-ratio form, is involved in the optimization ofpi. By
the quadratic transform, we further recastfCF

r to

fCF
q (p,γ,y) =

∑

i∈B

2yi

√
wi(1 + γi)|hi,i|2pi

−
∑

i∈B

y2i




∑

j∈B

|hi,j |2pj + σ2



+ const(γ) (42)

wherey refers to the set{yi}i∈B and const(γ) refers to a
constant term whenγ is fixed. For maximizingfCF

q iteratively
over pi andyi, we find closed-form update equations as

p⋆i = min




Pmax,

y2iwi(1 + γi)|hi,i|2(∑
j∈B y2j |hj,i|2

)2





, ∀i ∈ B (43)

and

y⋆i =

√
wi(1 + γi)|hi,i|2pi∑
j∈B |hi,j |2pj + σ2

, ∀i ∈ B. (44)

These updating steps amount to an iterative optimization as
stated in Algorithm 3.

Algorithm 3 Closed-Form FP for Power Control

Initialization: Initialize p andγ.
repeat

1) Updatey by (44);
2) Updateγ by (41);
3) Updatep by (43);

until the function valuefCF
q converges.

Unlike the direct FP approach, the above algorithm is not a
conventional block coordinate ascent, because the optimizing
objective is not fixed, i.e.,γi is optimally updated forfCF

r

while yi and pi are optimally updated forfCF
q . Nonetheless,

its convergence to the stationary point can still be established.
We defer the proof to Part II [19, Appendix A].

As a remark, Algorithms 2 and 3 can be initialized with
simple but reasonable heuristic. For example, the initial power
level p may be set to the half of the max power. In the

simulation results in this paper, in order to guarantee fair
comparisons, we use random starting points then average out
the results. Moreover, we set some small constantδ > 0 and
use the convergence criterion|f (t)

q − f
(t−1)
q | < δ wheret is

the iteration index.

D. Connection with Fixed-Point Iteration

This subsection illustrates that Algorithm 3 can be inter-
preted as a fixed-point iteration on the first-order condition of
the power optimization problem. Attaining a stationary-point
solution of the power control problem is equivalent to finding
a solution to the first-order condition for (30), i.e.,

∂fo(p)

∂pi
= 0, ∀i ∈ B (45)

which can be written as

1

pi
· wiγi(p)

1 + γi(p)︸ ︷︷ ︸
T1i(p)

−
∑

j 6=i

wjγ
2
i (p)|hj,i|2

(1 + γi(p))|hj,j |2pj︸ ︷︷ ︸
T2i(p)

= 0 (46)

whereγi(p) denotes the SINR function ofp in cell i as defined
in (41). To find a set of powers that satisfy the above condition,
one strategy [28]–[30] is to isolatepi at one side of the
equation—this automatically results in an update equationfor
power, which, if converges, would achieve at least a stationary
point of the power control problem.

However, it is in general not easy to decide which part of
the left-hand side of (45) should be fixed in order to ensure
the convergence of fixed-point iteration. For instance, [29]
proposes to fixT1i and T2i as shown in (46) and arrives at
the following fixed-point method for power control

pi[t+ 1] = min

{
Pmax,

T1i(p[t])

T2i(p[t])

}
, ∀i ∈ B (47)

where the indext indicates the iteration number. However, this
fixed-point iteration does not necessarily converge. (In fact,
[29] proves that this iteration is guaranteed to converge when
the resulting SINR values are all sufficiently high.)

With γ
⋆ andy⋆ substituted in (43), the update equation (43)

can also be thought of as a fixed-point iteration of the first-
order condition for power control, exactly like (46) exceptthat
different components̃T1i and T̃2i, shown below, are fixed

1√
pi

· wiγi(p)√
pi︸ ︷︷ ︸

T̃1i(p)

−
∑

j

wjγ
2
i (p)|hj,i|2

(1 + γi(p))|hj,j |2pj︸ ︷︷ ︸
T̃2i(p)

= 0. (48)

In this case, the transmit power variablepi update becomes

pi[t+ 1] = min



Pmax,

(
T̃1i(p[t])

T̃2i(p[t])

)2


 , ∀i ∈ B, (49)

which, along with an additional projection step onto the
constraint set, can be seen to be (43) after some algebra.
Thus, the power control part of Algorithm 3 is just a fixed-
point iteration, but with a crucial advantage that convergence
is guaranteed, in contrast to the updates proposed in [28]–[30].
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Fig. 3: Power control in flat-fading channels
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Fig. 4: Power control in frequency-selective fading channel

E. Numerical Example

We now evaluate the performance of FP for power control
on a downlink cellular network consisting of seven wrapped-
around hexagonal cells. Within each cell, the BS is located at
the center and the downlink users are randomly placed. The
BS-to-BS distance is set to be 0.8km. The maximum transmit
power level at the BS side is set to be 43dBm, and the AWGN
power level is set to be−100dBm. A 10MHz frequency band
is fully reused across all the cells. The downlink distance-
dependent path-loss is simulated by128.1+37.6 log10(d)+ τ
(in dB), whered represents the BS-to-user distance in km,
and τ is a zero-mean Gaussian random variable with 8dB
standard deviation for the shadowing effect. We consider sum
rate maximization by setting all the weights to 1.

The proposed FP approaches are compared to several
benchmarks: first, direct optimization based on a modified
Newton’s method [31], which deals with the power constraints
via the nearest-point projection (the full Newton’s method
is too computationally complex), and second, an approach
based on a modified version of geometric programming (GP)

called SCALE [32]. The version of SCALE implemented here
involves solving a GP in every iteration.

Fig. 3 shows the performance of various power control al-
gorithms in flat-fading channels. The closed-form FP takes the
largest number of iterations to converge, but its computation
per iteration is the lowest because of the closed-form updates
in every iteration. In contrast, SCALE and direct FP both
require solving a convex problem in each iteration. The closed-
form FP also has lower complexity than Newton’s method on
per-iteration basis. In our simulation experience, the closed-
form FP is the fastest.

Fig. 4 simulates a frequency selective fading scenario, in
which the bandwidth is divided into 4 subbands; one downlink
user is scheduled per tone. The resulting power control differs
from the flat-fading case because of the sum power constraint
across the subbands, i.e.,

∑
n p

n
i ≤ Pmax wherepni denotes the

power level in tonen at BS i. In this case, Newton’s method
has to apply a heuristic nearest-point projection in order to
satisfy the sum power constraint, but this no longer guarantees
a stationary-point solution. As can be seen in the simulation,
Newton’s method now has much worse performance.

To conclude, the FP based approaches are competitive
with the state-of-the-art algorithms in power control, with the
closed-form FP having lower overall complexity due to its
lower per-iteration cost. Note that the converged values of
different algorithms may differ depending on the starting point,
as only stationary-point convergence is guaranteed in all cases.

IV. B EAMFORMING

A. Problem Statement

The second example is an application of multidimensional
FP to the beamforming optimization problem. Consider a
downlink MIMO cellular network with a set of BSsB. Assume
that each BS hasM antennas and each user terminal hasN
antennas; then at mostM downlink data streams are supported
per cell via spatial multiplexing. LetHim,j ∈ CN×M be the
downlink channel from BSj to the user who is scheduled in
the mth data stream at BSi. Let σ2 be the AWGN power
level. Introduce variablevim ∈ CM as the downlink transmit
beamformer at BSi for its m-th data stream. The data rate of
stream(i,m), Rim, is computed by (50) shown at the bottom
of the next page.

Let weightwim be the priority of user scheduled in them-
th data stream at BSi. We seek to maximize the weighted
sum rate over the beamforming vectors:

maximize
V

∑

i,m

wimRim(V) (51a)

subject to
M∑

m=1

‖vim‖2 ≤ Pmax, ∀i ∈ B (51b)

whereV refers to the collection{vim}, Pmax refers to the
transmit power budget at the BS side. This is a challenging
nonconvex problem with vector variables.

B. Multidimensional Direct FP Approach

Similar to the power control case, the direct FP approach
applies the multidimensional quadratic transform (Theorem 2)
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to each SINR term. This leads to a new objectivefDIR
q as in

(52) at the bottom of the page, whereY refers to a collection
of auxiliary variables{yim} with yim ∈ CN introduced for
each data stream(i,m). The optimization problem (51) can
now be recast to

maximize
V,Y

fDIR
q (V,Y) (53a)

subject to
M∑

m=1

‖vim‖2 ≤ Pmax, ∀i ∈ B (53b)

yim ∈ C
N . (53c)

Decoupled by the multidimensional quadratic transform, the
SINR term is converted to a concave function ofvim. Since
the outer logarithmic function is nondecreasing and concave,
the optimization problem (53) is a convex problem ofvim

when the auxiliary variableyim is held fixed.
We follow Algorithm 1 to maximizefDIR

q overvim andyim

iteratively. The optimalyim for fixed vim is

y⋆
im =



σ2I+
∑

(j,n) 6=(i,m)

Him,jvjnv
†
jnH

†
im,j




−1

Him,ivim.

(54)
For fixed yim, the optimalvim can be obtained by convex
optimization. The resulting algorithm, stated as Algorithm
4, has a provable convergence to a stationary point due to
Theorem 3.

Algorithm 4 Direct FP for Beamforming

Initialization: Initialize V.
repeat

1) UpdateY by (54);
2) UpdateV by solving the convex problem (53) overV
for fixed Y;

until the function valuefDIR
q converges.

This algorithm requires solving a convex problem numer-
ically in every iteration. In the next section, we illustrate

another use of FP that yields a closed-form optimization in
every iteration.

C. Multidimensional Closed-Form FP Approach

As for power control, a closed-form FP approach can also
be developed for the beamforming problem. The main idea
is the same as in power control, but in a multidimensional
vector space. The sum logarithm problem is first reformulated
in a sum-of-ratio form using a Lagrangian dual transform; the
quadratic transform is subsequently applied to the ratios.After
applying a multidimensional extension of Proposition 2 to
(51), we arrive at a sum-of-ratio reformulation withfCF

r (V,γ)
as in (55) at the bottom of the page, whereγ refers to the
collection{γim}. Again, we defer the proof of the Lagrangian
dual transform to Part II of the paper [19].

Whenvim is fixed, the optimalγim can be found by setting
∂fCF

r /∂γim to zero with respect to each(i,m) tuple, i.e.,

γ⋆
im = v

†
imH

†
im,i·

σ2I+
∑

(j,n) 6=(i,m)

Him,jvjnv
†
jnH

†
im,j




−1

Him,ivim.

(56)

The multidimensional quadratic transform in Theorem 2 can
then be readily applied to further recastfCF

r to fCF
q in (57) as

displayed at the bottom of the page, whereY is the collection
{yim} and const(γ) is a constant term whenγ is fixed.

The above fCF
q reformulation is obtained by treating√

wim(1 + γim)Him,ivim as the numerator vector and also
σ2I +

∑
(j,n)Him,jvjnv

†
jnH

†
im,j as the denominator matrix

in Theorem 2. Problem (51) is then reformulated as

maximize
V,Y

fCF
q (V,γ,Y) (58a)

subject to
M∑

m=1

‖vim‖2 ≤ Pmax, ∀i ∈ B (58b)

γim ∈ R, yim ∈ C
N . (58c)

Rim(V) = log


1 + v

†
imH

†
im,i


σ2I+

∑

(j,n) 6=(i,m)

Him,jvjnv
†
jnH

†
im,j




−1

Him,ivim


 (50)

fDIR
q (V,Y) =

∑

(i,m)

wim log


1 + 2Re

{
y
†
imHim,ivim

}
− y

†
im


σ2I+

∑

(j,n) 6=(i,m)

Him,jvjnv
†
jnH

†
im,j


yim


 (52)

fCF
r (V,γ) =

∑

(i,m)

wim


log(1 + γim)− γim + (1 + γim)v†

imH
†
im,i


σ2I+

∑

(j,n)

Him,jvjnv
†
jnH

†
im,j




−1

Him,ivim


 (55)

fCF
q (V,γ,Y) =

∑

(i,m)



2
√
wim(1 + γim) · Re{v†

imH
†
im,iyim} − y

†
im



σ2I+
∑

(j,n)

Him,jvjnv
†
jnH

†
im,j



yim



+ const(γ)

(57)
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The merit of reformulatingfCF
r asfCF

q is to facilitate iterative
optimization overvim. With the other variables fixed, the
optimalyim can be found by solving∂fCF

q /∂yim = 0, i.e.,

y⋆
im =


σ2I+

∑

(j,n)

Him,jvjnv
†
jnH

†
im,j




−1

·

√
wim(1 + γim)Him,ivim. (59)

Likewise, the optimalV is

v⋆
im =


ηiI+

∑

(j,n)

H
†
jn,iyjny

†
jnHjn,i




−1

·

√
wim(1 + γim)H†

im,iyim (60)

whereηi is a dual variable introduced for the power constraint,
optimally determined by (due to complementary slackness)

η⋆i = min

{
ηi ≥ 0 :

M∑

m=1

‖vim(ηi)‖2 ≤ Pmax

}
. (61)

Note that the optimalηi in (61) can be determined efficiently
by bisection search. Algorithm 5 summarizes the above steps.

Algorithm 5 Closed-Form FP for Beamforming

Initialization: Initialize V andγ.
repeat

1) UpdateY by (59);
2) Updateγ by (56);
3) UpdateV by (60);

until the function valuefCF
q converges.

We remark that the proposed FP framework in this particular
beamforming case, i.e., Algorithm 5, is equivalent to the well-
known WMMSE algorithm [33], [34]. (This can be verified
by substitutingγ andY in the updating formula ofV). We
explore this connection further in Part II of the paper [19].Like
Algorithm 3, Algorithm 5 is not a block coordinate ascent but
its convergence can be established. The proof is deferred to
Part II [19, Appendix A].

D. Numerical Example

The simulation model assumes the same setting as in Sec-
tion IV-D for network topology, AWGN, distance-dependent
pathloss, max transmit power, except that two users are ran-
domly located within each cell and that the BSs and the users
are now equipped with 2 antennas each. Consider Rayleigh
fading for the channel coefficients. We pursue a maximization
of sum rate in the network by setting all the weightswim = 1.

Fig. 5 compares the different FP approaches. It shows that
direct FP converges in fewer iterations than the closed-form
FP, e.g., the former achieves a sum rate of 470Mbps within 10
iterations but the latter needs 25 iterations. However, counting
just the number of iterations is misleading. The closed-form FP
is in fact much more efficient than direct FP on a per-iteration
basis, because closed-form FP updates all variables in closed
form, while direct FP requires solving a convex optimization
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Fig. 5: Beamforming for sum data rate maximization

in each iteration. Therefore, the closed-form FP algorithmis
much preferred.

V. ENERGY EFFICIENCY MAXIMIZATION

As a final example, we illustrate the use of FP for solving
energy efficiency maximization problems, both for the single-
link case which has been treated in prior FP literature, and
for the multiple-link case which requires the new techniques
developed in this paper.

A. Single-Link Case

Consider an isolated end-to-end wireless link; the sender
and the receiver are equipped with one antenna each. Let
h ∈ C be the link channel, and letσ2 be the AWGN power
level. The total power consumption consists of two parts: the
transmit powerp which is constrained by a power budget
Pmax, and a constant link ON-powerPon. The objective is to
maximize the ratio of data rate to the total power consumption,
namely the energy efficiency, by optimizingp, i.e.,

maximize
p

log
(
1 + |h|2p/σ2

)

p+ Pon
(62a)

subject to 0 ≤ p ≤ Pmax. (62b)

This problem is nonconvex in general.
For this single-link case, (62) is a single-ratio concave-

convex FP problem and thus its globally optimal solution
can be found using the conventional FP technique (e.g.,
Dinkelbach’s transform), as already shown in the past literature
[9]–[12]. An alternative is to apply our proposed quadratic
transform. The problem is then reformulated as

maximize
p,y

2y

√
log

(
1 +

|h|2p
σ2

)
− y2 (p+ Pon)

subject to 0 ≤ p ≤ Pmax.

(63)

Clearly, the optimaly for fixed p is

y⋆ =

√
log (1 + |h|2p/σ2)

p+ Pon
. (64)



12

Then solvingp for fixed y is a convex problem. This iteration
converges to the global optimum according to Corollary 4.

B. Multiple-Link Case

Energy efficient maximization across multiple interfering
links is a more challenging problem. Consider a spatial
multiplex multiple-antenna broadcast channel model with one
sender equipped withM antennas to send individual data to its
M receivers. Assume that every receiver hasN antennas and
supports one data stream. LetHm ∈ C

N×M be the channel
between the sender and themth receiver; letvm ∈ CM

be the beamformer for the transmission to themth receiver.
The energy efficiency maximization problem in this case is
formulated as

maximize
V

∑M

m=1 Rm(V)
∑M

m=1 ‖vm‖2 + Pon

(65a)

subject to
M∑

m=1

‖vm‖2 ≤ Pmax (65b)

where V refers to the collection{vm}, and the function
Rm(V) denoting the data rate of receiverm is

Rm(V) =

log


1 + v†

mH†
m


σ2I+

∑

n6=m

Hmvnv
†
nH

†
m




−1

Hmvm


 .

(66)

We first describe the approach in [9]–[12]. Dinkelbach’s
transform recasts the objective function to

fd(V, y) =

M∑

m=1

Rm(V) − y

(
M∑

m=1

‖vm‖2 + Pon

)
. (67)

However, unlike the single-link case, the reformulationfd is
no longer a concave function ofV, so optimizingV for fixed
y is numerically difficult. Hence, the iterative algorithm based
on Dinkelbach’s transform cannot be easily extended to the
multiple-link scenario. In fact, [12] considers multiple links
only under the assumption that the resulting SINRs are all
sufficiently high; [11] globally solves thefd maximization
problem using a monotonic optimization approach (which
has an exponential-time complexity), and also proposes a
polynomial-time algorithm to attain a stationary point when
the transmitter has a single antenna (i.e., whenvm reduces to
a scalar). Moreover, [35] proposes a gradient method to max-
imize the nonconcave functionfd in (67), and [36] advocates
successive convex approximation. But none of them can find
in polynomial time the globally optimalV that maximizesfd.
We remark that the optimality ofV in maximizingfd is critical
to the convergence of the Dinkelbach’s algorithm [22], so

these existing polynomial-time algorithms are not guaranteed
to converge in general. By contrast, our approach does not rely
on the Dinkelbach’s transform has provable convergence. Asa
further remark, if the sum rate objective function is changed to
the superposition coding inner bound, the new problem after
the Dinkelbach’s transform would have been convex and can
be optimally solved by a water-filling scheme [37].

The paper advocates a novel use of the quadratic transform
to address the problem. First, apply the single-ratio quadratic
transform (i.e., Theorem 1) to decouple the energy efficiency
as

fq(V, y) = 2y

(
M∑

m=1

Rm(V)

) 1

2

− y2

(
M∑

m=1

‖vm‖2 + Pon

)
.

(68)
The same issue as with the Dinkelbach’s transform approach
now arises: the reformulated objective function is not concave
over vm. It is crucial to observe that the functionx

1

2 is
nondecreasing and concave, and also that the second term in
(68) is concave. Thus, the concavity offq over vm can be
restored if the term inside the square root

∑M

m=1 Rm is recast
as a concave function.

Following this idea, we apply the (multidimensional)
quadratic transform to each SINR term inside theRm expres-
sion (66) infq, and further recastfq to fqq as in (69) at the
bottom of the page. The ultimate reformulation of (65) after
the two uses of the quadratic transform now becomes

maximize
v,y,Z

fqq(V, y,Z) (70a)

subject to
M∑

m=1

‖vm‖2 ≤ Pmax (70b)

zm ∈ C
N (70c)

whereZ refers to the collection{zm}. We remark thaty and
zm are the auxiliary variables introduced by the first and the
second use of FP, respectively.

We propose an iterative optimization. When all the other
variables are held fixed, the optimalzm is

z⋆m =



σ2I+
∑

n6=m

Hmvnv
†
nH

†
m




−1

Hmvm, ∀m. (71)

After the update ofzm, the optimaly is

y⋆ =

√∑M

m=1 Rm(V)
∑M

m=1 ‖vm‖2 + Pon

. (72)

Most importantly, whenz andy are both fixed, (70) is a convex
problem ofvm, and therefore the optimalvm can be efficiently
found using the standard numerical method.

This iterative optimization is summarized in Algorithm

fqq(V, y,Z) = 2y




M∑

m=1

log



1 + 2Re
{
z†mHmvm

}
− z†m



σ2I+
∑

n6=m

Hmvnv
†
nH

†
m



 zm









1

2

−y2

(
M∑

m=1

‖vm‖2 + Pon

)

(69)
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Algorithm 6 Nested FP for Energy Efficiency Maximization

Initialization: Initialize V to feasible value.
repeat

1) UpdateZ by (71);
2) Updatey by (72);
3) Find the optimalV in (70) by convex optimization;

until the function valuefqq converges.

6. We refer to it as the nested FP approach, because the
reformulating procedure involves an outer FP for the energy
efficiency ratio as well as an inner FP for the nesting SINR
terms. Based on the equivalence of objective function property
C3 in Section II-B, it is easy to verify the convergence of
Algorithm 6 to a stationary point of the original problem
(65) with the energy efficiency value nondecreasing after each
iteration.

C. Numerical Example

The simulation model assumes flat-fading channel(s) over
a 1MHz-wide frequency band. The maximum transmit power
level is set to be21dBm; the on-power level is set to be5dBm;
the background noise level is set to be−100dBm. We test the
proposed algorithm for two network scenarios:

• Single-link case: Consider one pair of sender and receiver,
equipped with one antenna each; the channel coefficient
between them is modeled with−120dB pathloss.

• Multiple-link case: Consider 1 sender and 3 receivers; the
sender has 3 antennas and the receivers have 2 antennas
each. The channel coefficients between the transmit and
receive antennas are modeled with i.i.d. Rayleigh fading
component plus−120dB pathloss.

Fig. 6 compares the Dinkelbach’s transform approach [9]–
[12] and the proposed quadratic transform in maximizing
energy efficient for the single-link case. It can be observedthat
Dinkelbach’s transform gives a faster convergence. To attain
the optimal energy efficiency, Dinkelbach’s transform needs
4 iterations while the quadratic transform needs 8 iterations.
This result agrees with the convergence rate analysis in Section
II-E.

Fig. 7 evaluates the performance of Algorithm 6 in max-
imizing the multiple-link energy efficiency. We reiterate that
Dinkelbach’s transform [9]–[12] is not applicable in this case.
As can be seen from the figure, Algorithm 6 raises the energy
efficiency significantly to more than four-fold after just 8
iterations.

VI. CONCLUSION

The paper introduces a novel FP technique called quadratic
transform, which can tackle a broad range of FP problems
with multiple ratios in contrast to the conventional techniques
which can only handle single ratio or the max-min case. Based
on the quadratic transform, a variety of FP approaches are
devised for solving the continuous problems in communication
systems, i.e., power control, beamforming, and energy effi-
ciency maximization. The proposed FP approaches recast the

0 2 4 6 8 10
9

9.5

10

10.5

11

11.5

Iteration number

 

 

E
ne

rg
y 

ef
fic

ie
nc

y 
(M

b/
J)

Dinkelbach
Quadratic

Fig. 6: Energy efficiency maximization for a single link
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Fig. 7: Energy efficiency maximization for a broadcast network

original nonconvex problem to a sequence of convex problems,
thereby allowing efficient iterative optimization with provable
convergence to a stationary point solution. Part I of this paper
treats continuous optimization problems. Discrete problems
are treated in Part II [19].

APPENDIX A
PROOF OFTHEOREM 1

It is easy to verify thatg(x, y) in (7) satisfies C1-C4.
Below we focus on showing that the form ofg(x, y) in (8)
is necessary and sufficient when C4 is strengthened to require
that∂2g/∂y2 is independent ofy. First, under the strengthened
C4 and by C1, functiong must be of the form:

g(x, y) = f(A(x))(α2y
2 + α1y + α0)

+ h(B(x))(β2y
2 + β1y + β0) (73)
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for some parametersαi andβi such that

∂2g(x, y)

∂y2
= 2α2f(A(x)) + 2β2h(B(x)) ≤ 0. (74)

For ease of notation, we omit the function arguments of
A(x) and B(x) in the rest of the proof. First, note that
∂2g(x, y)/∂y2 cannot be zero, as otherwisemaxy g(x, y) =
∞ and thus C3 cannot be satisfied. Given a particularx, the
maximum value ofg(x, y) over y can now be obtained in
closed form as

max
y

g(x, y) = α0f(A) + β0h(B)− (α1f(A) + β1h(B))2

4(α2f(A) + β2h(B))
.

(75)
As required by C3, we must havemaxy g(x, y) = A/B. One
way to satisfy this relation is to haveα0 = 0, β0 = 0, α1 =
2, β1 = 0, α2 = 0, β2 = 1, f(A) =

√
A, andh(B) = B. This

gives the proposed quadratic transform (7). The remainder
of the proof aims to show that a more general form of this
solution (8) is the unique solution satisfying the above.

The main idea is to determine functionsf andh as well as
parametersαi andβi by substituting different(A,B) pairs in
(75). First, putA = 0 (i.e., A(x) is a zero constant function)
thenmaxy g = A/B = 0 for anyB, i.e.,

(4β0β2 − β2
1)h

2(B) + (4α2β0 +4α0β2 − 2α1β1)f(0)h(B)

+ (4α0α2f
2(0)− α2

1f
2(0)) = 0. (76)

For this to hold for anyB, we must have

4β0β2 − β2
1 = 0. (77)

In this case, the expression (75) reduces to

max
y

g(x, y) =
C

D
(78)

where

C = (4α0α2−α2
1)f

2(A)+(4α0β2+4α2β0−2α1β1)f(A)h(B)
(79)

and
D = 4(α2f(A) + β2h(B)). (80)

Second, consider the case thatB → 0+, thenmaxy g(x, y) =
A/B = ∞ for anyA 6= 0. For this to happen, we needD → 0
for anyA, wheneverB → 0+. This means that the first term
in D, which is a function ofA only, must be zero, or

α2 = 0. (81)

Third, consider the case thatA → 0+, thenmaxy g(x, y) =
A/B = 0 for anyB. For this to happen, we needC → 0 for
anyB, wheneverA → 0+. This means that the second term in
C, which is a function ofB must be zero. Sincef(A) cannot
be a constant zero, we must have

4α0β2 + 4α2β0 − 2α1β1 = 4α0β2 − 2α1β1 = 0. (82)

Themaxy g(x, y) expression now becomes

max
y

g(x, y) =
−α2

1f
2(A)

4β2h(B)
. (83)

It can be readily seen that for it to be equal toA/B, we must

have
f(A) = s1

√
A and h(B) = s2B (84)

for some nonzeros1, s2 such that

−α2
1s

2
1 = 4β2s2. (85)

Summarizing,g(x, y) must have this form:

g(x, y) = s1(α1y + α0)
√
A(x) + s2(β2y

2 + β1y + β0)B(x)
(86)

subject to (77), (82) and (85). Using (77), (82) and (85), i.e.,





β2
1 = 4β0β2

2α0β2 = α1β1

− α2
1s

2
1 = 4β2s2

, (87)

we obtain

β2 = −α2
1s

2
1

4s2
, β1 = −α1α0s

2
1

2s2
, β0 = −α2

0s
2
1

4s2
. (88)

With the above identities substituted in (73) to get rid ofβi’s,
the reformulationg(x, y) becomes

g(x, y) = s1(α1y+α0)
√
A(x)− s21(α1y + α0)

2

4
B(x). (89)

The above form ofg(x, y) can be rewritten as (8) by defining
two new parameters:t1 = s1α1/2 and t2 = s1α0/2. Finally,
we note thatg(x, y) in (8) satisfies the strengthened C1-C4
whent1 6= 0. This form ofg(x, y) is therefore necessary and
sufficient for this set of conditions.
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