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Abstract—Fractional programming (FP) refers to a family of The aim of this two-part paper is to extend the use of
optimization problems that involve ratio term(s). This two-part FP to address a broader range of optimization problems in
paper explores the use of FP in the design and optimization ., mmunication system design, in particular on power contro

of communication systems. Part | of this paper focuses on FP b f . d heduli hich oft t b
theory and on solving continuous problems. The main theorétal €amiorming, and user scheduling, which often cannot be

contribution is a novel quadratic transform technique for tackling ~ directly expressed in ratio forms. We focus on communicatio
the multiple-ratio concave-convex FP problem—in contrastto  systems in which the data rate is computedoa$l + SINR),
conventional FP techniques that mostly can only deal with where SINR is the signal-to-interference-plus-noiseorafhe
the single-ratio or the max-min-ratio cases. Multiple-raio FP prominent role played by “SINR” in communication systems

problems are important for the optimization of communication . . L
networks, because system-level design often involves miple makes FP an invaluable tool for network design and optimiza-

signal-to-interference-plus-noise ratio terms. This papr consid- tion. The discussion throughout the paper focuses on gisele
ers the applications of FP to solving continuous problems in cellular networks, but it can be readily adapted to manyothe

communication system design, particularly for power contol, networks (e.g., the optical network or the digital subserib
beamforming, and energy efficiency maximization. These app lines).

cation cases illustrate that the proposed quadratic transirm can . . .

greatly facilitate the optimizatioﬁ inE)/oIvingqratios by re casting the Although a_n gxte_n_swe Ilter_ature already exists for FP’WOS
original nonconvex problem as a sequence of convex problems Of them specialize isingle-ratioproblems. For example, prior
This FP-based problem reformulation gives rise to an efficiet works on communication system design [9]-[12] that rely on
iterative optimization algorithm with provable convergence to a classical FP techniques have had to limit the system model
stationary point. The paper further demonstrates close conec- to the scenario involving only one single ratio. Although

tions between the proposed FP approach and other well-known . - L .
algorithms in the literature, such as the fixed-point iteraion and multiple-ratio problems are dealt with in [13], they are ilieal

the weighted minimum mean-square-error beamforming. The 0 specific forms (e.g., the max-min problem). System-level
optimization of discrete problems is discussed in Part Il ofthis communication network design, however, often has to deal

paper. with multiple ratios, because the overall system perforrean
Index Terms—Fractional programming (FP), quadratic trans- IS typically a function of multiple fractional parametees.,
form, power control, beamforming, energy efficiency SINRs) from multiple interfering links. Solvingultiple-ratio

FP is, however, NP-hard [14]. The state-of-the-art methods
for finding globally optimal solution all require exponeati
|. OVERVIEW running time (e.g., using branch-and-bound search [15}{1

PTIMIZATION is a key aspect of communication Sys_In fact, as pointed out in [16], [18], the solution to a gemera

tem design [3], [4]. This two-part work explores thd P problem consisting of more than 20 ratio terms is already

application of fractional programming (FP) in the designl an?€Y0nd the reach of known approaches within reasonable time
optimization of communication systems. FP refers to a famif*S (© finding stationary-point solution of the multipleiat
of optimization problems containing ratio term(s). ltstbiy problem, only general-purpose techniques such as sueeessi

can be traced back to an early paper on economic expans(fBHV?X approximation are known_. _
[5] by von Neumann in 1937; it has since been studied This paper addresses the multiple-ratio FP problem from a

extensively in broad areas in economics, management sx;ierﬂ?w perspective. Our main theoretic contribution is a novel

information theory, optics, graph theory, and computeersce teghnique cg_lledqua(_jratic transformthat introdyges some

[6]-[8]. For example, FP has recently been applied in [9]S_U|table auxiliary varlat_)les, Fhen rgca_\sts. the ongmgbtﬁm

[12] to solve the energy efficiency maximization problem fol? & form a}menable to iterative optimization. Speuﬂcaﬂy;

wireless communication systems. new techm_que decc_)uples the numera_tor and the denominator
of each ratio term, similar to the clasddnkelbach’s transfor-
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in SINR. Our proposed FP approach decouples the signal and Il. FRACTIONAL PROGRAMMING
the interference terms of the multiple links, thereby coting FP is a class of optimization problems involving fractional

the original nonconvex problerp Info a sequence Of CONVEXms (or ratios). This section reviews classic technidoes

problems, through a set of auxiliary variables. FP that deals with single-ratio problems, then introduces a
Part | of this paper applies the proposed technique to solvevel quadratic transform technique capable of dealindp wit

continuous problems in communication system design. Thaultiple-ratio problems.

discrete case is more challenging and is dealt with in Part Il

of this paper [19]. The main contributions of Part | are

) @R Classic Techniques
follows:

We begin by considering the single-ratio FP problem. Given

« FP Theory:A novel technique called quadratic transfornf NOnempty constraint st C R¢, and a nonnegative function
is proposed to tackle the multiple-ratio FP problems. #(x): R? — R, and a positive functioB(x): R? — R 1,
decouples the numerator and the denominator of ea¢Rere d € N, a single-ratio (maximizing) FP problem is
ratio term, thereby converting a concave-convex multipléefined to be
ratio FP problems into a sequence of convex optimization A(x)

problems. maxmize B(x) (1a)

« Power Control: The proposed approach is applied to subjectto  x € X. (1b)

:Ez wet'imrﬁsgogu?; t:::lesrglft ZogﬁrI':\{slsu:h;;n}gxérszihe above single-ratio FP problem is in general not convex.

g gie-inp 9 PUl The conventional approach for dealing with FP is to re-
(SISO) wireless cellular network, which is aCha"engmg?rmulate the problem in a form with its numerator and
nonconvex problem. We propose two methods: A dire enominator decoupled, whereby the joint optimization of

approach that applies the quadratic transform direct . .
to SINR, then subsequently updates the power variab x) and B(x) becomes easier, especially for the case where
. L L x) is a concave functionB(x) is a convex function, and
iteratively via a sequence of convex optimizations; ang,". .

is a convex set expressed in standard form—known as

a second method that results in closed-form update w : .
R : the concave-convekP problem. The two classic techniques
optimization process. We show the connection of the

e L o presented below belong to this type of approach.
latter approach to fixed-point iteration in optimization. 1) Charmes-Cooper TransforniThis classic technique for

« Beamforming.The quadratic transform is generalized tgp js proposed by the early works [20], [21]. It introduces tw
the vector case and applied to the transmit beamforming, variables

optimization problem that seeks to maximize the weight- L= 1 @)
ed sum rate of a multiple-input multiple-out (MIMO) B(x)
wireless cellular network. and

« Energy EfficiencyThe proposed approach is applied to q= X 3)
the maximization of the overall energy efficiency of a B(x)’

communication network (i.e., the ratio of the S-Um- dat@]en reformulates the sing'e_ratio prob'em (1) as
rate to the total power consumption). The application of

FP is ideally suited for this problem scenario, because maximize  zA (9) (4a)
the objective function is already in a ratio form. Prior -4 fl

works [9]-[12] use Dinkelbach’s transform to decouple subjectto 2B (;) <1 (4b)
the single-ratio objective. This paper proposes a novel s e Z (4c)
idea of treating the numerator itself as an inner multiple- qeo (4d)

ratio problem nested in the outer single-ratio energy
efficiency problem. The resulting algorithm involves avhereZ and Q are the range of andq according to (2) and
nested use of FP. (3), respectively, ax € X'. After solving the above problem,
the primal solutiorkx can be recovered by either (2) or (3). This
Throughout this paper, the bold lower-case letter denotwansform is first proposed by Charnes and Cooper [20] for
a vector; the bold upper-case letter denotes a matrix; tthe affine case then extended by Schaible [21] to the general
calligraphy upper-case letter denotes a set. For a vegtorconcave-convex case.
||la|| refers to its Euclidean norma’ refers to its conjugate  Observe that this technique decouples the denominator and
transpose. For a matrix, A~—! refers to its inverseA refers the numerator by moving thB(x) to the constraint (4b) while
to its conjugate transpose. Dendteas the null vector, an@l leaving A(x) in the objective. If the problem is a concave-
as the identity matrix. Denotl as the set of strictly positive convex FP, then the reformulation (4) is a convex problem
integers. DefindR as the set of real numbers, aRd or R, which can be efficiently solved. Note that in the Charnes-
as the set of nonnegative or strictly positive real numbeiGooper transform: (i) additional constraints are introshlic
DenoteC as the set of complex numbers, and{Reas the (i) Z and Q need to be characterized, which may not be
real part. Denot&, | as the set of symmetric positive definiteeasy to do. We also remark that although the technique works
matrices. very well for the single-ratio case (in fact converges to a



global optimum solution of the concave-convex singleeratifixed x. Note that C3 implies C2 but not vice versa. In fact,
FP problem), it cannot be easily extended to the multipterra Dinkelbach’s transform satisfies C1, C2 and C4, but does
case, e.g., sum-of-ratios problem. not satisfy C3. (Specifically, at the optimum, Dinkelbach’s
2) Dinkelbach’'s Transform:This classic technique, firsttransform hag* = A(x)/B(x) according to (6), therefore
proposed in [22], reformulates the single-ratio problemad its g(x,y*) =0.)
This paper proposes a novguadratic transformfor FP
problem that meets all these conditions C1-C4, as stated in

maximize Alx) —yB(x) (52)  the following theorem.

subjectto  x €& (5b) Theorem 1 (Quadratic Transforlq The quadratic transform
with a new auxiliary variable;, which is iteratively updated
by Y ¥ yup 9(x,y) = 2/ A(x) — y* B(x) @)

Yer1 = Alxt) (6) satisfies conditions C1-C4. Further, if C4 is strengtherted t
B(x:) require thatd?g/0y? is independent ofy, then anyg(x,y)

where subscript is the iteration index. It can be proved thathat satisfies C1-C4 must be of the form
convergence is guaranteed by alternatively updagiagcord- 9(%,y) = 2(t1y + tz)\/m ~(hy+12)?B(x)  (8)

ing to (6) and solving fok in (5), because is nondecreasing
after each iteration. Specially, when the single-ratiobgm for somet; # 0 and somet, € R. Thus, the proposed
(1) is a concave-convex FP, optimizingin (5) for fixed y quadratic transform is without loss of generality up to dimaf
is a convex problem; the overall iterative algorithm in fadransformation iny.
converges to the global optimum solution of (1). Dmkelbachproofl See Appendix A, O
transform has an advantage as compared to Charnes-Cooper
transform in the sense that no extra constraints are intextiu

C. Quadratic Transform for Multiple-Ratio FP

B. Proposed Quadratic Transform We now apply the quadratic transform to general multiple-
Classic transforms for FP work well for single-ratio prob[atio FP problems. Introduck/ pairs of numerator functions

. d H H . d
lems, but they cannot be easily generalized to multipliprat’=(X): R — R and denominator functions,,, (x): R® —
FP. This is because although these classic transforms havelt++ form =1, » M, the sum-of-ratioproblem is defined
property that the original FP and the transformed probleve ha© be of the form:

the same optimal solution, the optimal value of the objectiv o M A (x)

function of the transformed problem is not necessarily the maximize Z B () (9a)
same as the original FP objective function value. Thus, when ) m=1""""

multiple ratios are involved, one cannot apply the tramsfor subjectto  x € X. (9b)

to each ratio individually. Condition C3 is critical for extending the idea of decoupled

This paper proposes a new transform, which is motivated B)timization of numerators and denominators to the sum-of-
Dinkelbach’s transform, but with an added constraint that tratio problem. As mentioned before, Dinkelbach’s transfor
value of the objective function must stay the same. It is im@oes not satisfy C3. Without the equivalence in the optimal
quadratic transformbecause it involves quadratic terms.  objective function value, it is normally difficult to extend

First, we formally state the properties that the desiredinkelbach’s transform to the multiple-ratio case (excipt
transformed objective function must have, when refornmgat special cases such as the max-min problem [13]). A straight-

the original FP objective function in (1): forward extension of Dinkelbach’s transform such as

C1: (Decoupling)The new objective has the forg(x,y) = M
fA(X))q1 (y) + h(B(x))g2(y), wherey is an auxiliary maximize Z (A (X) — YymBm (X)) (10a)
variable. * m=1

C2: (Equivalent SolutionYariablex* maximizesA(x)/B(x) subjectto xe X (10b)
if and only if x* together with somey* maximizes

(wherey,, is iteratively updated to4,,,/B,,) does not guar-
antee the equivalence to (9).

In contrast, the quadratic transform in Theorem 1 can be
readily extended for the sum-of-ratio problem due to C3 as
shown below.

9(%,y).

C3: (Equivalent Objective) et y* = argmax, g(x,y) for
somex, theng(x,y*) = A(x)/B(x) for this x.

C4: (Concavity)Functiong(x, y) is concave ovey for fixed
x, i.e.,0%g/0y? < 0.

The above four conditions are all naturally motivated. C&orollary 1 (Sum-of-Ratigs The sum-of-ratio problem (9) is

and C2 follow from the idea of the classic FP transform@quivalent to

in order to decouple the optimization of(x) and B(x) M
throughy; C3 makes a stronger equivalence with the original maximize Z (Qym1 [ A (x) — yanm(x)) (11a)
problem as motivated by the desired application for muétipl s m=1

ratio problems; C4 allows for convex optimization oyefor subjectto xe€ X, y, €R (11b)



wherey refers to a collection of variableg, -,y }- multidimensional single-ratié-P problem is defined to be

In fact, the quadratic transform can be further extended to a
more general sum-of-functions-of-ratio problem, as djeti

M
maximize Z al (x)B!(x)a,(x) (16a)
in the following. m=1

subjectto xe X. (16b)

Corollary 2 (Sum-of-Functions-of-Rafio Given a sequence

of nondecreasing function,.(-) and a sequence of ratiosThe corresponding quadratic transform for this multidimen

sional case is stated in the theorem below.

Ap/Bm for m = 1,..., M, the sum-of-functions-of-ratio
problem Theorem 2 (Multidimensional and Complex Quadratic Trans-
M form). Problem (16) is equivalent to
- A (x)
maximize > fm ( ) (12a) M
* m=1 Bin (%) maximize Z (2Re{yl,am(x)} — ¥}, Bm(X)ym) (173)
subjectto xe€ X (12b) e m=1
subjectto x € X, y,, € C*® (17b)

is equivalent to
M where y refers to a collection of auxiliary variables
maximize Z fm (2ym\/Am(x) - yanm(x))(Ba) {yi, -y}
7 m=1 Proof. Recognize each term in the summation of (17a) as
vy a, +al,ym — yi Bnym and then further rewrite it as
To verify the corollary, we first simply rewrite prob-2mBy'am—(ym—B.'al ) B (ym—B;,'anm) by completing
lem (12) as maxy. rznf\le fm(rm) subject tox € X Fhe square. It is easy to see that .the optimal solution of (17)
and r, = A, (x)/Bm(x); then, because of condition C3,i ¥, = By, (x)an (x) and the optimal value of (17a) equals
variable r,, can be replaced withnax, (2, \/An(x) — © aInB;@lam exactly. The equivalence to (16) is therefore
y2 B,.(x)); further, sincef,, is a nondecreasing function,established. [
maxy Yy frn(Maxy,, (2ym+/Am(X) —y2,Bm(x))) can be  This multidimensional and complex quadratic transform can
rewritten as in (13a) by combiningiaxx andmax,. be readily extended for more general sum-of-functionsatif
and max-min-ratio as in Corollaries 2 and 3.

subjectto xe X, yn€R, m=1,..., M. (13b)

Corollary 3 (Max-Min-Ratig. Given a sequence of ratios

A /By form =1,..., M, themax-min-ratioproblem E. Iterative Optimization for Concave-Convex FP
- Am i i ' i
maximize  min (x) (14a) Th_e dlscu_ssmn on FP so far_ assumes ar_b|trary ratio
x m | By (x) functions (with the numerator being non-negative and the
subjectto xe X (14b) denominator being positive). We now focus on the special

type of concave-convex FP problems, which is of particular

is equivalent to importance in communication system design.

maximize =z (15a)  An FP problem is callec¢toncave-convex it satisfies the
Xy following three conditions:
subjectto x € X, y €ER,z€R (15b) . The numeratorsi,, (x) are all concave functions;

2Wm /A (X) — 12, Bm(x) > z, Ym.  (15¢) « The denominator®,,(x) are all convex functions;
« The constraint set’ is a nonempty convex set in standard

To verify this, we first rewrite problem (14) asaxy . z form as expressed by a finite number of inequality
subject tox € X and z < A,,(x)/Bn(x); because constraints.
of C3, the latter constraint_ can be rewritten as < Note that a concave-convex FP problem is not necessarily a
maxy,, (2ym\/ Am(x) = y5, Bm(x)); since this new constraint convex problem, so solving it directly can be difficult. Bat i
is a less-than-max inequalitypax,,, can be integrated into some particular cases, e.g., when the problem contains only

maxy, y, as in (15). one ratio, the concave-convex FP has the desirable cogvexit
Note that theequivalent objectiveondition C3 plays a key structure that allows it to be solved globally. In fact, ttiera-
role in deriving the above corollaries. mentioned classic techniques, i.e., Charnes-Cooperforans

and Dinkelbach’s transform, are both initially proposed to
solve thesingle-ratio concave-convex® problem.
D. Multidimensional and Complex FP The main goal here is to tackle timaultiple-ratio concave-
convexFP problem using the quadratic transform. For ease
We further consider FP in a multidimensional complex cag# notation, we only consider the scalar casedgf and B,
where the numerators are vectors and the denominators iarevhat follows, but the multidimensional extension can be
matrices. This class of FP arises in dealing with multi-ange readily obtained according to Theorem 2.
communication systems. Given a sequence of functipfx): Consider the sum-of-ratios problem (9), the sum-of-
C% — €% and functionB,,(x): C* — S§%X% for m = functions-of-ratio problem (12), and the max-min-ratioipr
1,...,M, and constraint set’ C C%, whered;, d, € N, a lem (14), but additionally assume that eath (x) is concave



and eachB,,(x) is convex and also that’ is convex in
standard form. Further, for the case of functions-of-ratie

assume that the functions,(-) are not only nondecreasin
1.4

but also concave. We propose to apply the quadratic trams
and optimize the primal variabte and the auxiliary variabl 124
ym iteratively. . ‘ ,
Whenx is held fixed, the optima},,, can be found in close i , m
form as 0.8
VAmX) =
* m
=+ Vm=1,...,M. 18 0.6+
0.4 4
Wheny,, is fixed, due to the concavity of each,,(x), the nilliltes
convexity of eachB,,(x), and that the square-root function 021 RS
_ ), . 0SS
concave and increasing, the quadratic transform 0 ,,,:éi%iﬁ%,’{'lgz"%tziz??“‘.
T NS v
g(x, ym) = 2Ym Am (X) - ymBm (X) (19) 8 2 ""lldzz?;g;?" 1 2 3
is concave inx for fixed y,,. Further, if f,,(-) is assumel T2 00 T1

to be concave and nondecreasing, then we also have uiu

: : : Fig. 1. Maximizing f(x1,22) = x1/((x1 — 1)® + (2 — 2)® + 1)
fm(9(x,ym)) is concave inx. Therefore, the quadratic trans overz; > 0 andz2 > 0 is a single-ratio concave-convex FP problem.

formed problems (11), (13) and (15) are all concave maximizgithough f (1, z») is not concave, its stationary point is also the
tion problems ovet. The optimalx can thus be efficiently global optimum.

obtained through numerical convex optimization. The entir

approach is summarized in Algorithm 1.
of-functions-of-ratio, Algorithm 1 also converges to a dbc

Algorithm 1 Iterative approach for concave-convex FP prolpptimum when applied to the sum-of-ratio problem (9). For
lems (9), (12), and (14) the single-ratio or max-min-ratio case, a much strongerlres
Initialization: Initialize x. is possible.
Reformulate the problem by the quadratic transform,
replace every ratio term,,, / B, with 2y,,+/A., — 42, B.

i'elrheorem 4. For the single-ratio problem (1) and the max-
min-ratio (14) concave-convex FP problem with differebléa
repeat A(x) andB(x), Algorithm 1 converges to the globally optimal

1) Updatey by (18); uti fth ti bl
2) Updatex by solving the reformulated convex opti—SO ttion ot the respective probiems.

mization problem (11), (13), or (15), respectively, oxer Proof. The key is to verify that any stationary point must

under fixedy; be the global optimum in the special cases of single-ratio or
until Convergence max-min problems. This can be established by showing that
the concave-convex single-ratio FP problenpseudo-convex

We show in the following that Algorithm 1 is guaranteed his fact has been proved in [23] for the case whelex)

to achieve a stationary point of concave-convex FP prohlendd B(x) are differentiable andi(x) is concave and(x) is
convex. Thus for single-ratio FP, Algorithm 1 converges to a

Theorem 3. quthe concave-convex sum-of-functions-of_—rati@|oba| optimum. Furthermore, by the result in [24] that any
problem (12), i.e., even,, (x) is concave and ever,,,(x) IS |ocal optimum solution is also the global optimum solution f
convex, andY is a convex set in standard form, and assuminge problemmin max,, { f,»} given that eacly,,, is a pseudo-
further thatf,, is nondecreasing and concave, then Algorithig,qvex function, the global convergence of Algorithm 1 ie th

1 consists of a sequence of convex op'Fimization probl_ents thaax-min problem case can also be established. 0
converge to a stationary point of (12) with nondecreasimg-su . .
of-functions-of-ratio value after every iteration. Fig. 1 shows an example of a single-ratio concave-convex

FP problem whose unique stationary point is the global

Proof. The algorithm is essentially a block coordinate asceBbtimum. We note that this property of converging to the
algorithm for the reformulated problem (13), which is a v g10ha1y optimal solution holds also for the Charnes-Caope

optimization problem due to the concave-convex form of (12}, 4nsf0rm and the Dinkelbach'’s transform. This is true desp
so it converges to a stationary poipt™, y*) of (13). Du€ 10t the original problem is not necessarily convex.

the .equwaler?ce in the_ so_lutlon (|.e.,.C0nd|t|0n. .CZ) and the Algorithm 1 can be readily extended to the multidimen-
equivalence in the objective value (i.e., Condition C3g tr‘gional and complex problem (16), i.e., by optimizipgandx

first-order condition onx for (13) under the optimay™ is the  ternatively in the multidimensional quadratic transicL7).
same as for the original problem (12), hence the algoritlsm alr, o optimaly,, for fixed x is

converges to a stationary point of (12). Condition C3 guaran
tees that the sum-of-functions-of-ratio value is nondasirey Y = (Bm(x)) tan(x), (20)

after every update of. = and then solvingx for fixed y is a convex optimization

Note that as the sum-of-ratios is a special case of the supneblem under the concave-convex condition, and for the



functions-of-ratio case if,,,(-) is concave and nondecreasil

F. Convergence Rate 102 |

We analyze the convergence rate of Algorithm 1 as ¢ S|
pared to the classic transforms. Note that if the single-
problem is concave-convex, solving the problem by Din
bach’s transform amounts to a sequence of convex optir
tions (5) overx with the auxiliary variabley iteratively
updated by (6). It is shown in [23] that the iteration
Dinkelbach’s transform converges at a superlinear rage, i.

Quadratic q
— — — Dinkelbach

Distance from optimum
=
o

*— 10
Al 25 (21)
t=oo |y* — yi
where subscript is the index of iteration, ang* is the auxil-
iary variable value at the convergence. For ease of congyrg 10 : : : : : : : :
. . . 0 2 4 6 8 10 12 14 16 18
we evaluate the convergence of Algorithm 1 for the singtet Iteration number

problem as well. As compared to Dinkelbach’s transform, UKy 2: When applied to the single-ratio problem (22), Dibleh’s

quadratic transform (i.e., Algorithm 1) can be consideyablransform converges faster than the quadratic transform.
slower. The following example shows that the convergence

rate of Algorithm 1 can be strictly slower than superlinear.
Consider an example of single-ratio concave-convex FP is restricted to the single-ratio problem whereas the fdtte
- x capable of dealing with multiple ratios. Further, for mpi-
maximize 2+ 1 (228) \atio FP problems where global convergence is not guardntee
subjectto = > 0. (22b) slower convergence can sometime be advantageous as isallow
the algorithm to more fully explore the solution space.

The quadratic transform reformulates its objective as

g(z,y) = 2yvx — y*(z® + 1). (23) [1l. POWER CONTROL

Introduce subscript to denote the iteration number. When A. Problem Statement

is fixed atz,, the optimaly is updated by (18) We now consider the application of FP to communication

system design. The first example is the classic power control
problem for a downlink SISO cellular network with a set of
single-antenna base stations (B%5)each serving a single-
antenna user. Lek; ; € C be the downlink channel from

, BS j to useri; let 02 be the additive white Gaussian noise
i1 = (2ye41)” 3 . (25) (AWGN) power level. Introduce variablg; for each BSi as

its transmit power level, constrained by a power budget of
P.ax. The downlink data rate of uséris computed ds

Tt
2+ 1
After y is updated toy; 11, the optimalz is found to be (by
solving the convex problem analytically)

Yer1 = (24)

These two updates amount to

(2%)7% 2
Y41 = 1 . (26) R 1 |hi7i| Di
-3 P = 1 . 28
(2y))75 +1 et 2z 1P + 0 9

With y initialized to 0.1 (i.e.;yo = 0.1), it can be shown that der th L ¢ iahted bi
yi+1 in (26) converges td in a nondecreasing fashion. WeWe consider the maximization of a weighted sum rate objec-

tive of
then have
W — o] . fop) =D _wiR; (29)
lim WYl g, Y T Y (27a) ieB
t—00 |y* — yt| t—00 y* — Yt

wherew; accounts for the priority of th&gth BS-user downlink
TS (1 (29 ) (27b) @ndp refers to the collection{p;}ic5. The power control

ol

y—1 % —y\2 (2y)—% +1 problem is formulated as
— % 27¢) maximize  f,(p) (30a)
subjectto 0 < p; < Ppax, Vi € B. (30b)

Thus, Algorithm 1 in this example converges more slowly than
the iterative optimization based on Dinkelbach's transfor This problem is difficult to solve because it is nonconvex.
The convergence of these two methods is illustrated in Fig. |adeed' the prob|em can be solved g|0ba||y by using a po|y-

We emphasize that although the conventional Dinkelbachsfock approximation approach [25], but not in polynomial
transform can result in a faster convergence rate than the

proposed quadratic transform, the use of the former tecteniq 1For ease of notation, we use the natural logarithnoig(1 + SINR).



time. Moreover, for the case where all the SINRs are suffiito 7' sub-bands, and the user rate is computed as
ciently high so thatog(1 + SINR) can be approximated as T Bt 2

log(SINR), the problem can be globally solved \g@ometric R; = Z 1 log [ 1+ |hi | °pi . (34)
programming[4]. This paper aims to find at least a stationary =1 T Zj;éi |h§,j 2173- + o2

point in an efficient manner. We remark that the power contr
problem has been studied extensively in the literature, the
structure of the interference functions is investigatedisy,
[27].

lc-)llere,h;?,j andpfj represent the channel and the transmit power
level in thetth sub-band, respectively. The power constraint
(30b) now becomes

T
D Pl < Puax and pf >0. (35)
t=1
To modify Algorithm 2 to work in this multiple-band scenario
Although the power control problem is not in a direcStep 1 remains the same; Step 2 updptey solving a convex
ratio form, the main components of its objective functidrg t problem.
SINR terms, are in fractional form. Because each SINR termAs a final remark in this subsection, the direct FP approach
resides inside the logarithm function, which is nondedrens for power control can be adapted to the maximization of a

and concave, the condition of Theorem 3 is satisfied in thgeneral rate utility function in wireless networks, as extiain
problem. the proposition below.

Specifically, after applying the quadratic transform tofeagroposition 1 (General Utility Maximizatiop Given a non-
SINR term, we arrive at the following reformulation decreasing concave utility functidi, of rate R; for each user
quIR(p’y) (31a) the sum utility maximizing problem

B. Direct FP Approach

maximize
Py o
subjectto 0 < p; < Pax, Vi€ B (31b) maximize " Ui(R;) (36a)

P
_ ies
yieR, VieB (31c) subjectto 0 < p; < Puax, Vi € B (36b)

wherey refers to the collectioqy;};c5. The new objective is equivalent to

fOR i
maximize > Ui(Qs) (37a)
Py icB
fPR(x,y) = Zwi log | 1+ 2yiy/|hiil?pi subjectto 0 < p; < Puax, y €R (37b)
ieB
where
2 2 2
—yi [ Do lhiylPpi+ o (32)
por Qi =log | 1+ 2yilhiily/Di — v} > |hijI*p; — yio®

where y; is introduced by the quadratic transform for each 7 (38)

downlink i.

The above reformulated problem can be solved (to a station-
ary point) as follows. Whep is fixed, variabley is optimally
determined by (33); whew is fixed, optimizingp in (37) is

. Vhiil?pi (33) a convex problem.
Yi Z#i |hij|?p; + 02 Furthermore, we remark that the direct FP approach also

- . ' _ applies to the problem of optimizing power for maximizing
Then, finding the optimgp; for fixed y; is a convex problem.

. . , , , the minimum rate across the users, according to Corollary 3.
This power control method is summarized in Algorithm 2

below. By Theorem 3, Algorithm 2 guarantees a convergenge cjosed-Form FP Approach

Following Algorithm 1, we optimizey; andp; in an iterative
fashion. The optimalj; for fixed p; is

This section presents a different use of FP for solving the
power control problem. This new approach is based on a

Algorithm 2 Direct FP for Power Control

Initialization: Initialize p. Lagrangian dual reformulation of the power control problem
repeat as stated below. This leads to an algorithm in which each
1) Updatey by (33); iteration is performed in closed form, rather than having to
2) Updatep by solving the convex problem (31) ovpr solve a convex optimization problem, which is often more
for fixed y; desirable than the direct FP approach of the previous sectio

until Convergence . .- .
g Proposition 2. The original power control problem (30a) is

equivalent to

to a stationary point of problem (30).

We remark that Algorithm 2 can be easily extended to the
multiple-band system, where the frequency band is pangtio subjectto xe X (39b)

maximize  f°F(x,7) (39a)
X,y



where~ refers to a set of auxiliary variablgs; };c, and the simulation results in this paper, in order to guarantee fair

new objective is comparisons, we use random starting points then average out
the results. Moreover, we set some small consfant0 and
SR,y = wilog(1+) — Y wiv use the convergence criteridii,” — £'"Y| < § wheret is
i€B i€B the iteration index.

w; (1 + ;)| his|*ps

Yjes hijlPpj + 0% o . :

) ) D. Connection with Fixed-Point Iteration

Proof. We defer a detailed constructive proof to Part Il of the

paper [19]. I This subsection illustrates that Algorithm 3 can be inter-

eted as a fixed-point iteration on the first-order conditid

. . . r
f\Ne plropose ﬁn |t¢rar:|v|(3 fglggrltrf:m b:?\sed on bth? a:oﬁge power optimization problem. Attaining a stationaryrpo
reformulation. Wherp; is held fixed, the optimay; is obtaine solution of the power control problem is equivalent to firglin

e A .
by settingdf,"/0v; to zero, i.e., a solution to the first-order condition for (30), i.e.,

(40)

icB

x |hii|*pi : 9f.(p)
Vi = ’ , VieB. (41) olP) _ .

2 i lhigPpj + o op; 0, VieB (45)
Note that the optimal; is equal to the downlink SINR of BS which can be written as
: i 1 CF i
i. When-y; is. held flx_ed,_ only the_ last term_ qf_r ,_Whlch has 1 wi(p) wiv2(p)|hy.i|? B
a sum-of-ratio form, is involved in the optimization pf. By — T+ () Z,# DT 0 (46)
the quadratic transform, we further recg$t to bi sz_p/ ’ 1iP)) IR\ B

T1i(p) T2i(P)
I y) =D 20 \/wz‘(l + i) lhii[pi wherey;(p) denotes the SINR function gfin cell i as defined
i€l in (41). To find a set of powers that satisfy the above congljtio

) ) ) one strategy [28]-[30] is to isolatp; at one side of the
= v | D Ihij’ps +0* | +consty) (42) equation—this automatically results in an update equdtion
icB jeB power, which, if converges, would achieve at least a statipn

wherey refers to the sefy;}ics and consty) refers to a POINt of the power control problem. _ _
constant term wher is fixed. For maximizing/C* iteratively ~ However, itis in general not easy to decide which part of

the convergence of fixed-point iteration. For instance,] [29

proposes to fixI;; and T; as shown in (46) and arrives at

2w; (1 4 ;)| i i|? . T )
yiwill + %)l , Vie B (43) the following fixed-point method for power control

* .
p; = min Pmaxa

2
(ZjeB 972-|hj.i|2) Thi(
i1 . i p[t])} :
it + 1] = min< Prax, ———=2 v Vi€ B 47
and 2 pilt+2) = min { P 2B “n
= Vi + %2)|hi7i| p;, Vi € B. (44) where the index indicates the iteration number. However, this
ZjGB |hi j[’pj + 0 fixed-point iteration does not necessarily converge. (let,fa
These updating steps amount to an iterative optimization [#§] proves that this iteration is guaranteed to convergerwh
stated in Algorithm 3. the resulting SINR values are all sufficiently high.)

_ With v* andy* substituted in (43), the update equation (43)
Algorithm 3 Closed-Form FP for Power Control can also be thought of as a fixed-point iteration of the first-
Initialization: Initialize p and~. order condition for power control, exactly like (46) excéfht

repeat different componentd}; andT»;, shown below, are fixed
1) Updatey by (44); 1 wi(p) wiv;(P)|hyal> 48
2) Updatey by (41); 7 um T
3) Updatep by (43); NI A

until the function valuef$™ converges. T1i(p) Ta:(p)

In this case, the transmit power variableupdate becomes
Unlike the direct FP approach, the above algorithm is not a

~ 2
conventional block coordinate ascent, because the optigiz . Ty (plt]) ,
objective is not fixed, i.e.p; is optimally updated forfCF pilt +1] = min ¢ Proax, (Tzi(p[t]) , Vi€B, (49)

while y; and p; are optimally updated fofF. Nonetheless,
its convergence to the stationary point can still be esthbli. which, along with an additional projection step onto the
We defer the proof to Part 1l [19, Appendix A]. constraint set, can be seen to be (43) after some algebra.
As a remark, Algorithms 2 and 3 can be initialized witlThus, the power control part of Algorithm 3 is just a fixed-
simple but reasonable heuristic. For example, the initalgr point iteration, but with a crucial advantage that convaoge
level p may be set to the half of the max power. In thé guaranteed, in contrast to the updates proposed in [28]-[



called SCALE [32]. The version of SCALE implemented here
involves solving a GP in every iteration.

Fig. 3 shows the performance of various power control al-
gorithms in flat-fading channels. The closed-form FP takes t
largest number of iterations to converge, but its compaorati
per iteration is the lowest because of the closed-form wgsdat

250

240+

230+

s in every iteration. In contrast, SCALE and direct FP both

e 2 require solving a convex problem in each iteration. Theades

% form FP also has lower complexity than Newton’s method on

= 210 : per-iteration basis. In our simulation experience, thesetb

E —+— Newton’s method .

@ b SCALE form FP is the fastest.

200 1 1 . . . . . .

—©— Closed-form FP Fig. 4 simulates a frequency selective fading scenario, in

—*— Direct FP
190 ]

which the bandwidth is divided into 4 subbands; one downlink
user is scheduled per tone. The resulting power contradiiff

1ot ‘ ‘ ‘ ‘ from the flat-fading case because of the sum power constraint
0 10 20 30 40 50 across the subbands, i.8., p? < P.x Wherep!” denotes the
Iteration number . et . v ,
power level in tonen at BS:. In this case, Newton’s method
Fig. 3: Power control in flat-fading channels has to apply a heuristic nearest-point projection in order t

satisfy the sum power constraint, but this no longer guaest
200 . .+ & . . . | astationary-point solution. As can be seen in the simuiatio
2501 W Newton’s method now has much worse performance.
e To conclude, the FP based approaches are competitive
240t . with the state-of-the-art algorithms in power control,iwihe

0 closed-form FP having lower overall complexity due to its
S 207 1 lower per-iteration cost. Note that the converged values of
g Jo0l | different algorithms may differ depending on the startiogp,
g as only stationary-point convergence is guaranteed ireaks.
'Z 10l —+— Newton's method ]
3 ~ 7 SCALE IV. BEAMFORMING
—=&— Closed-form FP
200 —%— Direct FP 1 A. Problem Statement
190 i The second example is an application of multidimensional
& FP to the beamforming optimization problem. Consider a
180 " > = o ” downlink MIMO cellular network with a set of BS8. Assume
Iteration number that each BS had/ antennas and each user terminal s

antennas; then at moaf downlink data streams are supported

per cell via spatial multiplexing. LeH;,,, ; € CVN* pe the

downlink channel from BS to the user who is scheduled in

E. Numerical Example the mth data stream at BS. Let o2 be the AWGN power

level. Introduce variabler;,,, € CM as the downlink transmit

We now evaluate the performance of FP for power contrgbamformer at BS for its m-th data stream. The data rate of

on a downlink cellular network consisting of seven wrappe@tream(i, m), R;,., is computed by (50) shown at the bottom

around hexagonal cells. Within each cell, the BS is located g the next page.

the center and the downlink users are randomly placed. The et weightw;,, be the priority of user scheduled in the-

BS-to-BS distance is set to be 0.8km. The maximum transrgit data stream at B$. We seek to maximize the weighted

power level at the BS side is set to be 43dBm, and the AWG&im rate over the beamforming vectors:

power level is set to be-100dBm. A 10MHz frequency band o

is fully reused across all the cells. The downlink distance- maximize ZwimRim(V) (51a)

dependent path-loss is simulated 138.1 + 37.6 log;,(d) + 7 m

Fig. 4: Power control in frequency-selective fading chdnne

(in dB), whered represents the BS-to-user distance in km, _ M ) _

and 7 is a zero-mean Gaussian random variable with 8dB subject to Z [Vim " < Pmax, Vi€ B (51b)
standard deviation for the shadowing effect. We consider su m=1

rate maximization by setting all the weights to 1. whereV refers to the collectioqv;,,}, Pmax refers to the

The proposed FP approaches are compared to sevéiansmit power budget at the BS side. This is a challenging
benchmarks: first, direct optimization based on a modifigtPnconvex problem with vector variables.
Newton’s method [31], which deals with the power constisint
via the nearest-point projection (the full Newton's methoB- Multidimensional Direct FP Approach
is too computationally complex), and second, an approachSimilar to the power control case, the direct FP approach
based on a modified version of geometric programming (GBpplies the multidimensional quadratic transform (Theo)
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to each SINR term. This leads to a new object'f\g%R as in another use of FP that yields a closed-form optimization in
(52) at the bottom of the page, whe¥erefers to a collection every iteration.
of auxiliary variables{y;,,} with y;,, € C" introduced for

each data strear(i,m). The optimization problem (51) can- Mmultidimensional Closed-Form EP Approach

now be recast to
As for power control, a closed-form FP approach can also

maximize fRV,Y) (53a) be developed for the beamforming problem. The main idea
' " is the same as in power cqntrol, but in a multidimensional
subject to Z [Vira | < Pos, ¥i € B (53b) yector space. The sum quanthm problgm is first reformd!ate
— in a sum-of-ratio form using a Lagrangian dual transforne; th
B N guadratic transform is subsequently applied to the rafifter
Yim € C7 (53¢) applying a multidimensional extension of Proposition 2 to
Decoupled by the multidimensional quadratic transforne, t{51), we arrive at a sum-of-ratio reformulation withF(V, )
SINR term is converted to a concave functiomqf,. Since as in (55) at the bottom of the page, wheyerefers to the
the outer logarithmic function is nondecreasing and coecagollection{~;,, }. Again, we defer the proof of the Lagrangian
the optimization problem (53) is a convex problemaf, dual transform to Part Il of the paper [19].

when the auxiliary variablg;,,, is held fixed. Whenv,,, is fixed, the optimaty;,,, can be found by setting

We follow Algorithm 1 to maximizefP'R overv;,, andy;,, 9f"/0vin to zero with respect to eadh, m) tuple, i.e.,
iteratively. The optimaly;,, for fixed v;,, is - VImHIm 1

71 k)
—1

*x 2 T . N

Yim = | "1+ Z Him, JVJ"VWlH”” J Him,iVim. o1+ Z Hin, ijnvjnHIm J Him iVim.
(4,m)#(i,m)
(54) (4,m)#(i,m)

For fixed y;,,, the optimalv;,, can be obtained by convex (56)
optimization. The resulting algorithm, stated as Algarith The multidimensional quadratic transform in Theorem 2 can

4, has a provable convergence to a stationary point duethen be readily applied to further reca&i™ to f5F in (57) as

Theorem 3. displayed at the bottom of the page, whéfds the collection
_ _ _ {yim} and condty) is a constant term whef is fixed.
Algo.r?th_m 4 Dlrect[ _FI? for Beamforming The above quF reformulation is obtained by treating
Initialization: Initialize V. V Wirn (1 4 Yim ) Him, lvzm as the numerator vector and also
repeat oI + Z ijvjnvj H m.; as the denominator matrix
1) UpdateY by (54); in Theorem 2 Problem (51) is then reformulated as
2) UpdateV by solving the convex problem (53) ovaf o
for fixed Y; maximize [T (V,7,Y) (58a)
until the function valuef?'® converges. ’ o
subject to D [|[Vim > < Puax, Vi€ B (58D)
This algorithm requires solving a convex problem numer- m=1
ically in every iteration. In the next section, we illuseat Yim € R, yim € CN. (58¢)
—1
Rin(V)=log | 1+v HI . (o’ T+ Y Himviuv, HL | Hipnivim (50)
(g,m)#(é,m)
PPROVLY) = 3 i log 1+2Re{yImHim7ivim} vy T Y Hiwvievh H L | vim (52)
(4,m) (4,m)#(i,m)

-1

f?E:F(Vv 7) = Z Wim 1Og(1 + Vlm) — Vim + (1 + VZm)V Hjm i 21 + Z Hzm ijnvjnHjm g Himyivim (55)

(i,m) (4,m)

quF(Va s Y) = Z 2 wzm(l + ’Yzm) : Re{VZmHImzyzm} - }’Im 21 + Z Hzm ]anVJnHjm 7 Yim | + ConS(’Y)

(i:m) (3.m)
(57)
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The merit of reformulating’ as fF is to facilitate iterative
optimization overv,,,. With the other variables fixed, tt
optimal y;,, can be found by solving f$¥/dyi., = 0, i.e.,

-1

g
(4,m) =
V Wirn (1 4 Yim ) Him,iVim.  (59) %
Likewise, the optimalV is E
—1 @
- Closed—fi FP
V:m = nZI + Z H;n,iyjny;nHjn,i ) 250 (OI?\S/\?MMOSrE; 4
D) —— Direct FP
V Wi (1 + %m)Hjm,iYim (60) 200t ‘ ’ ‘ ‘
0 10 20 ) 30 40 50
wheren); is a dual variable introduced for the power constre lteration number
optimally determined by (due to complementary slackness) Fig. 5: Beamforming for sum data rate maximization

M
*x : . . . 212
i = M {’71 =0: Z [V im () |7 < Pmax} - (61) in each iteration. Therefore, the closed-form FP algoritam

m=1 much preferred.
Note that the optimak; in (61) can be determined efficiently

by bisection search. Algorithm 5 summarizes the above steps V. ENERGY EFFICIENCY MAXIMIZATION

As a final example, we illustrate the use of FP for solving

Algorithm 5 Closed-Form FP for Beamforming energy efficiency maximization problems, both for the s#agl

Initialization: Initialize V and+y. link case which has been treated in prior FP literature, and
repeat for the multiple-link case which requires the new technigjue
1) UpdateY by (59); developed in this paper.
2) Updatey by (56);
3) UpdateV by (60); A. Single-Link Case

until the function valuefSF converges. ) i ) i
L 9 Consider an isolated end-to-end wireless link; the sender

o ~and the receiver are equipped with one antenna each. Let
We remark that the proposed FP framework in this particulgrc ¢ pe the link channel, and let? be the AWGN power

beamforming case, i.e., Algorithm 5, is equivalent to théwe jeve|. The total power consumption consists of two parte: th
known WMMSE algorithm [33], [34]. (This can be verifiediransmit powerp which is constrained by a power budget
by substitutingy andY in the updating formula oV). We Poax, and a constant link ON-powe?,.. The objective is to

explore this connection further in Part Il of the paper [19ke  maximize the ratio of data rate to the total power consumptio
Algorithm 3, Algorithm 5 is not a block coordinate ascent bytamely the energy efficiency, by optimizing i.e.,

its convergence can be established. The proof is deferred to
Part 11 [19, Appendix A].

log (1 + |h|*p/c?)
. P+ Pon
D. Numerical Example subjectto 0 <p < Prax. (62b)

The simulation model assumes the same setting as in S€his problem is nonconvex in general.
tion IV-D for network topology, AWGN, distance-dependent For this single-link case, (62) is a single-ratio concave-
pathloss, max transmit power, except that two users are rapnvex FP problem and thus its globally optimal solution
domly located within each cell and that the BSs and the usean be found using the conventional FP technique (e.g.,
are now equipped with 2 antennas each. Consider RayleiDmkelbach’s transform), as already shown in the pastitee
fading for the channel coefficients. We pursue a maximizati¢9]-[12]. An alternative is to apply our proposed quadratic
of sum rate in the network by setting all the weights, = 1. transform. The problem is then reformulated as

Fig. 5 compares the different FP approaches. It shows that
direct FP converges in.fewer iterations than the cIose;njfor maximize 2y, |log (1 +
FP, e.g., the former achieves a sum rate of 470Mbps within 10 Py
iterations but the Igtter r_1eed_s 25 iterations. Howeverntng subject t0 0 < p < Pax.
just the number of iterations is misleading. The closedrf&P
is in fact much more efficient than direct FP on a per-iteratid>'€a;
basis, because closed-form FP updates all variables iecdlos . log (1 +[h[2p/o?)
form, while direct FP requires solving a convex optimizatio y = 7+ Pon

maximize (62a)
p

|h|2p
0-2

) - y2 (p + Pon) (63)

the optimaly for fixed p is

(64)
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Then solvingp for fixed y is a convex problem. This iterationthese existing polynomial-time algorithms are not guaradt
converges to the global optimum according to Corollary 4. to converge in general. By contrast, our approach does hot re

on the Dinkelbach’s transform has provable convergence As
B. Multiple-Link Case further remark, if the sum rate objective function is chahtye

Energy efficient maximization across multiple interferin%le superposition coding inner bound, the new problem after
I

links is a more challenging problem. Consider a spati imall ved b o h 37
multiplex multiple-antenna broadcast channel model witk o e optimally solved by a water-filling scheme [37].

sender equipped with/ antennas to send individual data to its TZ‘Z paperhadvocballtes a novel usle Orf] the quladrayc transform
M receivers. Assume that every receiver hasantennas and ©© address the problem. First, apply the single-ratio qatacr

supports one data stream. LHL, € CN*M be the channel transform (i.e., Theorem 1) to decouple the energy effigienc
between the sender and theth receiver; letv,, € CM as
. . . 1
be the beamformer for the transmission to théh receiver. ( M )5 (
2
)

e Dinkelbach’s transform would have been convex and can

The energy efficiency maximization problem in this case i§,(V,y) =2y Z R, (V)
formulated as m=1

M
Z [vimll* + Pon) :

m=1

(68)
maximize > me1 Lt (V) (65a) The same issue as with the Dinkelbach’s transform approach
M . . . . . .
v > omei Vi lI? + Pon now arises: the reformulated objective function is not @wec
M over v,,. It is crucial to observe that the function> is
subject to Z Vi ||? < Puax (65b) nondecreasing and concave, and also that the second term in
m=1 (68) is concave. Thus, the concavity ¢f over v,,, can be
. . . Vi .
where V refers to the collection{v,,}, and the function "estored if the term inside the square 190f,_, Ru, is recast
R,,(V) denoting the data rate of receiver is as a concave function. o _
Following this idea, we apply the (multidimensional)
Ry (V) = quadratic transform to each SINR term inside fhg expres-
-1 sion (66) in f,, and further recasf, to f,, as in (69) at the
log [ 1+ v HI [ o021+ Z H,,v,viH H,v, |. bottom of the page. The ult_imate reformulation of (65) after
o the two uses of the quadratic transform now becomes
(66) maximzize fag(V,y,Z) (70a)
vy,
We first describe the approach in [9]-[12]. Dinkelbach’s M
transform recasts the objective function to subject to Z [[Vinl|? < Prax (70Db)
M M m=1 N
Ja(V.y) =3 En(V) —y (Z vin +Pon> . (67) Zm € C (70c)
m=1 m=1

whereZ refers to the collectiodz,, }. We remark thay and
However, unlike the single-link case, the reformulationis  are the auxiliary variables introduced by the first and the
no longer a concave function &f, so optimizingV for fixed second use of FP, respectively.
y is numerically difficult. Hence, the iterative algorithmseal  \we propose an iterative optimization. When all the other
on Dinkelbach’s transform cannot be easily extended to thgriables are held fixed, the optima), is
multiple-link scenario. In fact, [12] considers multipleks
only under the assumption that the resulting SINRs are all
sufficiently high; [11] globally solves thef, maximization  zj, = [ oI+ Z H,v,vIH | Hy,vy,, Vm. (71)
problem using a monotonic optimization approach (which n#m

has an exponential-time complexity), and also proposesager the update of,,, the optimaly is
polynomial-time algorithm to attain a stationary point whe

—1

the transmitter has a single antenna (i.e., whgnreduces to Z%:l R (V)
a scalar). Moreover, [35] proposes a gradient method to max- Y= = 5 : (72)
imize the nonconcave functiofy in (67), and [36] advocates 2 m=1 [Vl + Pon

successive convex approximation. But none of them can fiMbst importantly, wher andy are both fixed, (70) is a convex
in polynomial time the globally optimaV’ that maximizesf;. problem ofv,,, and therefore the optimal,, can be efficiently
We remark that the optimality & in maximizingf; is critical found using the standard numerical method.

to the convergence of the Dinkelbach’s algorithm [22], so This iterative optimization is summarized in Algorithm

1
M 2 M
foa(V,y,Z) =2y Z log [ 1+ 2Re{z H,,v,,,} —z! [T+ Z H,,v,viH |z, —y? (Z [V ||* + P0n>
m=1

m=1 n#m

(69)
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Algorithm 6 Nested FP for Energy Efficiency Maximizatic

Initialization: Initialize V to feasible value. 15
repeat

1) UpdateZ by (71);

2) Updatey by (72);

3) Find the optimalV in (70) by convex optimization;
until the function valuef,, converges.

11

105

6. We refer to it as the nested FP approach, becaus 1o

reformulating procedure involves an outer FP for the en
efficiency ratio as well as an inner FP for the nesting S
terms. Based on the equivalence of objective function pig;
C3 in Section 1I-B, it is easy to verify the convergence
Algorithm 6 to a stationary point of the original proble 9
(65) with the energy efficiency value nondecreasing afteh:
iteration.

Energy efficiency (Mb/J)

—=o— Dinkelbach
—%— Quadratic

9.5 4

d

i i i i

0 2 4 6 8 10
Iteration number

Fig. 6: Energy efficiency maximization for a single link

C. Numerical Example

The simulation model assumes flat-fading channel(s) 45
a 1MHz-wide frequency band. The maximum transmit po
level is set to b&1dBm; the on-power level is set to BbeBm; 401 T
the background noise level is set to b@00dBm. We test the
proposed algorithm for two network scenarios:

« Single-link case: Consider one pair of sender and rece
equipped with one antenna each; the channel coeffi
between them is modeled with120dB pathloss.

« Multiple-link case: Consider 1 sender and 3 receivers
sender has 3 antennas and the receivers have 2 an
each. The channel coefficients between the transmit
receive antennas are modeled with i.i.d. Rayleigh fa
component plus-120dB pathloss.

Fig. 6 compares the Dinkelbach’s transform approach 10 i i i i
[12] and the proposed quadratic transform in maximiz 0 2 e ration numbe, 8 10
energy efficient for the single-link case. It can be obsethad
Dinkelbach’s transform gives a faster convergence. Tdratta
the optimal energy efficiency, Dinkelbach’s transform reed
4 iterations while the quadratic transform needs 8 iteratio
This result agrees with the convergence rate analysis itidBec °figinal nonconvex problem to a sequence of convex prohlems
II-E. thereby allowing efficient iterative optimization with wable

Fig. 7 evaluates the performance of Algorithm 6 in maxconvergence to a stationary point solution. Part | of thisepa
imizing the multiple-link energy efficiency. We reiterateat {reats continuous optimization problems. Discrete proisie
Dinkelbach’s transform [9]-[12] is not applicable in thiase. are treated in Part Il [19].

As can be seen from the figure, Algorithm 6 raises the energy

efficiency significantly to more than four-fold after just 8

iterations. APPENDIXA
PROOF OFTHEOREM 1

N w w
(4] o [52)
T T T
I I I

Energy efficiency (Mb/J)

N
o
T

I

15| 1

Fig. 7: Energy efficiency maximization for a broadcast netwo

VI. CONCLUSION

The paper introduces a novel FP technique called quadratiélt is easfy to verifyh tha,‘tg(xhy) ir? (1‘7) satisfies C1-C4.
transform, which can tackle a broad range of FP problerft§'oW We focus on showing that the form ofx,y) in (8)
with multiple ratios in contrast to the conventional tecjugs 'S ne(;essarQy_and sufficient when C4 is strengthened to eequir
which can only handle single ratio or the max-min case. BasHHJlta g/gy IS |rf1dep(_andent Oj'bF'rS:c’ l;]nd::r th? strengthened
on the quadratic transform, a variety of FP approaches &r& and by C1, functioy must be of the form:
devised for solving the continuous problems in communacati

F oMY johiame 9(x,y) = f(A())(azy® + a1y + ao)
systems, i.e., power control, beamforming, and energy effi- )
ciency maximization. The proposed FP approaches recast the + h(B(x))(B2y” + fry + Bo)  (73)



for some parameters; and ; such that

d%g(x,y)

o = 202 (AX) +20:0(B(x)) 0. (74)

For ease of notation, we omit the function arguments of
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have
f(A) =s1VA and h(B)=s.B (84)
for some nonzera,, s5 such that
—a2s% = 4955. (85)

A(x) and B(x) in the rest of the proof. First, note that

0%g(x,y)/0y* cannot be zero, as otherwiseax, g(x,y) =

oo and thus C3 cannot be satisfied. Given a particulathe
maximum value ofg(x,y) over y can now be obtained in

closed form as

(a1 f(A) + Bi1h(B))?
A(aaf(A) + Bzh(BZ%é)

m;xg(x, y) = oo f(A) + foh(B) —

As required by C3, we must haveax, g(x,y) = A/B. One

way to satisfy this relation is to hawey, = 0,5) = 0,1 =

2,81 =0,a2=0,8; =1, f(A) =/A, andh(B) = B. This
gives the proposed quadratic transform (7). The remainder By = o8] B = —
of the proof aims to show that a more general form of this ’

solution (8) is the unique solution satisfying the above.

Summarizingg(x, y) must have this form:

9(x,y) = s1(a1y + o) VAX) + s2(B2y” + Bry + Bo) B(x)

(86)
subject to (77), (82) and (85). Using (77), (82) and (85), i.e
87 = 4Bofa
2002 = a1, (87)
— 252 = 4Bs5,
we obtain
2.2 2 2.2
Q100057 _ %5t
482 252 ’ BO 482 ' (88)

With the above identities substituted in (73) to get rid5g§,

The main idea is to determine functiofisand /. as well as  the reformulationy(x, y) becomes

parametersy; andj; by substituting differenfA, B) pairs in

i =0 (i i i st(a1y + ag)®
(75). First, putA = 0 (i.e., A(x) is a zero constant function) g(x,y) = s1(ar1y+ag)V/A(x) - 22 7Y B(x). (89)

thenmax, g = A/B =0 for any B, i.e.,

(4B0B2 — B1)h?*(B) + (4azfo + 4o Be — 2a:1 B1) f(0)h(B)

+ (4agaz f2(0) — a7 f?(0)) = 0. (76)
For this to hold for anyB, we must have
4Bz — B = 0. (77)
In this case, the expression (75) reduces to
méixg(x, y) = D (78)
where
C = (dapaz—a3) f*(A)+(daoBo+4asfo—2a1 B1) f(A)h(B)
(79)
and
D = 4(az f(A) + B2h(B)). (80)

Second, consider the case ttiat— 0., thenmax, g(x,y) =
A/B = oo for any A # 0. For this to happen, we nedd — 0

for any A, wheneverB — 0,.. This means that the first term

in D, which is a function ofA only, must be zero, or
Qo = 0.

(81)

Third, consider the case that — 0, thenmax, g(x,y) =
A/B = 0 for any B. For this to happen, we ne&d — 0 for

4

The above form ofj(x, y) can be rewritten as (8) by defining
two new parameters; = sja1/2 andts = s1ap/2. Finally,
we note thatg(x,y) in (8) satisfies the strengthened C1-C4
whent; # 0. This form of g(x, y) is therefore necessary and
sufficient for this set of conditions.
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