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Abstract—This two-part paper develops novel methodologies
for using fractional programming (FP) techniques to designand
optimize communication systems. Part I of this paper proposes
a new quadratic transform for FP and treats its application
for continuous optimization problems. In this Part II of the
paper, we study discrete problems, such as those involving user
scheduling, which are considerably more difficult to solve.Unlike
the continuous problems, discrete or mixed discrete-continuous
problems normally cannot be recast as convex problems. In
contrast to the common heuristic of relaxing the discrete vari-
ables, this work reformulates the original problem in an FP
form amenable to distributed combinatorial optimization. The
paper illustrates this methodology by tackling the important
and challenging problem of uplink coordinated multi-cell user
scheduling in wireless cellular systems. Uplink scheduling is
far more challenging than the downlink case, because user
scheduling decisions significantly affect the interference pattern
in nearby cells. Further, the discrete scheduling variableneeds to
be optimized jointly with continuous variables such as transmit
power levels and beamformers. The main idea of the proposed
FP approach is to decouple the interaction among the interfering
links, thereby permitting a distributed and joint optimiza tion of
the discrete and continuous variables with provable convergence.
The paper shows that the well-known weighted minimum mean-
square-error (WMMSE) algorithm can also be derived from
a particular use of FP; but our proposed FP-based method
significantly outperforms WMMSE when discrete user scheduling
variables are involved, both in term of run-time efficiency and
optimizing results.

Index Terms—Fractional programming (FP), Lagrangian dual
transform, user scheduling, discrete power control, discrete
beamforming

I. OVERVIEW

FRACTIONAL programming (FP) is a valuable tool for
the design and optimization of communication systems,

because of the prominent role fractional terms—in particular
the signal-to-interference-plus-noise (SINR) ratio—plays in
the performance analysis of communication links. Part I of
this paper [3] proposes a novelquadratic transformtechnique
to tackle FP problems involving multiple ratios, which are
frequently encountered in communication system design, but
are typically beyond the capabilities of classic FP techniques,
such as Schaible’s transform [4] and Dinkelbach’s method
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(a) Uplink multicell network (b) Downlink multicell network

Fig. 1. Interference pattern depends on the user schedulingin the neighboring
cells in the uplink, but not so in the downlink. Here, the solid lines represent
the desired signal; the dashed lines represent the interfering signal; the
scheduled user terminal in each cell is circled.

[5]. It is shown in Part I that the quadratic transform can
greatly facilitate the power control, beamforming, and energy
efficiency maximizations.

The Part II of this paper explores the use of FP for
optimization problems that involve discrete variables within
the log(1+SINR) rate expressions—in particular the problem
of coordinated multi-cell uplink user scheduling in wireless
cellular networks, where the optimization parameters are the
selection of which users to schedule in each cell, along with
their power and beamforming vectors. The scheduling problem
in the uplink is much more challenging than in the downlink,
because the uplink interference pattern depends strongly on
the scheduling decisions of the neighboring cells, whereas
in the downlink, the interference pattern does not depend on
scheduling decisions, as illustrated in Fig. 1.

There is a fundamental difference between the uplink
scheduling problem and the various continuous FP problems
treated in Part I. Due to the discrete variables involved in
scheduling, the quadratic transform, which is used extensively
in Part I to transform the problem into a sequence of convex
problems, is no longer sufficient by itself.

Discrete optimization problems are traditionally tackled
using the common heuristic of relaxing the discrete constraints
into continuous ones, then quantizing the solution after solving
the relaxed problem. The difficulty with this traditional ap-
proach is that the resulting relaxed problem is not necessarily
always easy to solve, and the final quantization step may not be
easy to design (naive rounding scheme is usually suboptimal).

A key observation of this paper is that instead of relaxing the
discrete scheduling variables and trying to convexify the prob-
lem, we can take advantage of the fact that specific class of
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discrete optimization problems, namelythe weighted bipartite
matching problem, can be efficiently solved in polynomial-
time using established methods such as the Hungarian al-
gorithm [6] and the auction algorithm [7]. By recasting the
uplink scheduling problem in a weighted bipartite matching
form, via a proposed new technique namedLagrangian dual
transform, which can “move” the fractional SINR term to the
outside of the logarithm, and subsequently allow the quadratic
transform and bipartite matching method to be applied, an
overall efficient uplink scheduling algorithm can be designed.

The proposed scheme is markedly different from the ex-
isting approaches to the uplink scheduling problem studied
extensively in the literature. The uplink scheduling schemes
implemented in practice [8], [9] are often based on channel
quality alone or assume worst-case interference. Because of
the difficulty in quantifying the cross-cell interference,most
existing uplink scheduling algorithms are heuristic in nature.
For example, [10]–[12] propose various heuristics to approx-
imate the uplink SINR. The game theoretical approaches are
considered [13], [14], but not in a rigorous way. Other common
heuristics include opportunistic method [10], [15], greedy
method [16]–[19], relaxation method [20], and clustering
method [21].

While the use of these heuristics is justified by the prac-
tical consideration in the cost for obtaining channel state
information (CSI), this paper aims to show how much better
the performance of uplink scheduling algorithm can be if
CSI is available. In this realm, [22] shows that the uplink
scheduling and power control problem can be solved globally
by a monotonic optimization, but in exponential time. The
optimality of uplink scheduling is also considered in [23]
under some very specific channel conditions. Moreover, it-
erative scheduling and power control schemes are proposed
in [12], [24], which do not perform as well as the scheme
proposed in this paper for the uplink. We remark here that
although the scheduling problem can be thought of as a power
control problem, the approach of relying of power control
for scheduling (thereby sidestepping the difficulty of discrete
optimization) typically do not perform well, because it can
result inpremature turning-off, as discussed in Section IV-B.

The main goal of this paper is to show that the FP techniques
can be applied to the uplink scheduling problem, and that
cooperation across the multiple cells in a wireless cellular
network has the potential to significantly improve the overall
performance of the network. Toward this end, we make the
following contributions:

• Joint Uplink Scheduling and Power Control:The objec-
tive is to optimally schedule uplink users and to set their
transmit power levels jointly across multiple cells so as
to maximize the network utility in a single-input single-
output (SISO) network. The problem involves mixed con-
tinuous variables (power) and discrete variables (uplink
scheduling); it is quite challenging, because scheduling
and power decisions in each cell significantly affect the
interference patterns in neighboring cells. This paper
proposes an FP-based reformulation that allows power
control and uplink scheduling to be determined jointly
and in a distributed fashion with the assistance of some

auxiliary variables.
• Joint User Scheduling and Beamforming:The objective

is to schedule uplink users and to set their transmit
beamformers jointly across multiple cells so as to max-
imize the network utility in a multiple-input multiple-
output (MIMO) network. The key step is to incorporate
a further FP reformulation involving vector variables.
The resulting reformulation allows the optimization of
discrete and continuous variables in a joint and distributed
fashion using bipartite matching algorithms. Moreover,
when the beamforming variable is also discrete (i.e.,
the beamforming vector must be selected from a given
codebook), we propose a nearest point projection scheme
which is more efficient than the direct searching; this
scheme works for discrete power control as well.

• FP versus WMMSE:The proposed FP framework is com-
pared with the well-known WMMSE algorithm for beam-
forming. Although originally motivated from a minimum-
mean-square-error perspective [25], [26], the WMMSE
algorithm can be shown to be closely related to FP. This
paper shows however that our proposed way of applying
FP to scheduling is more advantageous than WMMSE
when dealing with discrete scheduling variables.

The notation follows that in Part I. In particular, denoteR
as the set of real numbers,R+ the set of nonnegative real
numbers, andR++ the set of strictly positive real numbers.
DenoteC as the set of complex numbers. DenoteS++ as the
set of symmetric positive definite matrices.

II. QUADRATIC TRANSFORM

We briefly review the quadratic transform in this section;
more details can be found in the Part I of this paper [3].

Theorem 1 (Quadratic Transform[3]). Given a nonempty
constraint setX ⊆ Rd, a nonnegative functionA(x): Rd →
R+, and a positive functionB(x): Rd → R++, whered ∈ N,
a (single-ratio) FP problem is

maximize
x

A(x)

B(x)
(1a)

subject to x ∈ X . (1b)

This problem is equivalent to

maximize
x,y

2y
√
A(x)− y2B(x) (2a)

subject to x ∈ X , y ∈ R. (2b)

Corollary 1 (Sum-of-Ratios Problem[3]). GivenM pairs of
nonnegative functionAm(x) : Rd → R+ and positive function
Am(x) : Rd → R++ for m = 1, . . . ,M , the sum-of-ratios
problem

maximize
x

M∑

m=1

Am(x)

Bm(x)
(3a)

subject to x ∈ X (3b)
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is equivalent to

maximize
x,ym

M∑

m=1

(
2ym

√
Am(x) − y2mBm(x)

)
(4a)

subject to x ∈ X . (4b)

Theorem 2 (Multidimensional and Complex FP[3]). Given
function α(x): Cd1 → Cd2 , function B(x): Cd1 → S

d2×d2

++

and constraint setX ⊆ Cd1 , whered1, d2 ∈ N, a multidimen-
sional and complexFP problem of

maximize
x

α†(x)(B(x))−1α(x) (5a)

subject to x ∈ X . (5b)

is equivalent to

maximize
x,y

2Re
{
y†α(x)

}
− y†B(x)y (6a)

subject to x ∈ X , y ∈ C
d2 . (6b)

This multidimensional and complex quadratic transform can
also be extended to the multiple-ratio case [3].

III. L AGRANGIAN DUAL TRANSFORM

The quadratic transform as stated above is the core FP
technique used in Part I for treating the continuous problems.
When it comes to the discrete problems of user scheduling,
we need to introduce a new FP technique namedLagrangian
dual transform.

A. Target Problem

Optimization problem for communication system design
often involves data rates expressed as logarithmic functions
of SINR, i.e.,log(1+SINR). Part I of this paper [3] proposes
two different approaches for applying FP to such problems. In
the direct FP, the quadratic transform is immediately applied
to the log-function of the ratio to decouple the numerator and
denominator, while in the closed-form FP, a Lagrangian dual
transform is first applied to take the ratio out of the logarithm.
For continuous optimization problems, the two approaches
give comparable performance. However, for discrete schedul-
ing problems involvinglog(1 + SINR), the second approach
of using Lagrangian dual transform becomes indispensable.

This paper develops the Lagrangian dual transform tech-
nique that accomplishes the task “moving” SINR to the outside
of logarithm. This technique plays a crucial role in addressing
the discrete scheduling problems, because it allows a subse-
quent quadratic transform to express all optimization variables
in linear terms. This section gives a detailed derivation ofthe
Lagrangian dual transform technique with a constructive proof
of the main result.

The target problem is a weighted sum-of-logarithms maxi-
mization1:

maximize
x

M∑

m=1

wm log

(
1 +

Am(x)

Bm(x)

)
(7a)

subject to x ∈ X , (7b)

1For ease of notation, we use the natural logarithm throughout the paper.

wherewm’s are nonnegative weights,Am(x)’s are nonneg-
ative functions andBm’s are positive functions for allm,
andX is a nonempty constraint set. The above formulation
is often used to model the weighted sum rate maximization
problem of a communication network. The ratioAm/Bm can
be physically interpreted as the SINR term. The problem (7)
has no known convex reformulation. Further, the constraint
represented byX is not necessarily compact, i.e., the variable
x may be discrete or mixed discrete-continuous.

B. Transform

The main result is the following Lagrangian dual transform
capable of converting (7) to a sum-of-ratios form.

Theorem 3(Lagrangian Dual Transform). The weighted sum-
of-logarithms problem (7) is equivalent to

maximize
x,γ

fr(x,γ) (8a)

subject to x ∈ X (8b)

whereγm is introduced as an auxiliary variable introduced for
each ratio termAm(x)/Bm(x); the new objective functionfr
is defined by

fr(x,γ) =

M∑

m=1

wm log(1 + γm)−

M∑

m=1

wmγm

+

M∑

m=1

wm(1 + γm)Am(x)

Am(x) +Bm(x)
︸ ︷︷ ︸

sum-of-ratio term

. (9)

The two problems are equivalent in the sense thatx is the
solution to (7) if and only if it is the solution to (8), and the
optimal objective values of these two problems are also equal.

Proof. Observe thatfr is a concave differentiable function
overγ whenx is held fixed, soγ can be optimally determined
by setting each∂fr/∂γm to zero, i.e.,γ⋆ = Am(x)/Bm(x).
Substituting thisγ⋆ back infr recovers the weighted sum-of-
logarithms objective function in (7a) exactly. The equivalence
is therefore established.

Theorem 3 can be extended to the multidimensional and
complex case as follows.

Theorem 4 (Lagrangian Dual Transform in Multidimensional
and Complex Case). Given a sequence of multidimensional
and complex functionsα(x) : Cd1 → Cd2 for m = 1, . . . ,M ,
a multidimensional functionB(x) : C

d1 → S
d2×d2

++ and a
nonempty constraint setX ⊆ Cd1 , where d1, d2 ∈ N, a
multidimensional and complex logarithmic FP problem

maximize
x

M∑

m=1

wm log
(
1 +α†

m(x)B−1
m (x)αm(x)

)
(10a)

subject to x ∈ X (10b)

can be also recast to the form of (8) where the new objective
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function fr is defined to be

fr(x,γ) =
M∑

m=1

wm log(1 + γm)−
M∑

m=1

wmγm+

M∑

m=1

wm(1 + γm)α†
m(x)(αm(x)α†

m(x) +Bm(x))−1αm(x).

(11)

Proof. Sincefr is analytic in the complex plane and alsofr
is concave overγ for fixed x, we take its complex derivative
and solve each∂fr/∂γm = 0. The optimal γ⋆ is easily
seen asα†

m(x)B−1
m (x)αm(x). Substituting thisγ⋆ back infr

recovers the weighted sum-of-logarithms objective function in
(10a) exactly, thereby establishing the equivalence.

C. Constructive Derivation

To provide insight on how the above transform is obtained,
we revisit the weighted sum-of-logarithms problem (7) from
a Lagrangian dual perspective, and provide an alternative
constructive proof of Theorem 3.

First, by introducing a new variableγm to replace each ratio
term inside the logarithm, (7) can be rewritten as

maximize
x,γ

M∑

m=1

wm log (1 + γm) (12a)

subject to x ∈ X (12b)

γm ≤
Am(x)

Bm(x)
, ∀m = 1, . . . ,M, (12c)

where γ refers to a collection of auxiliary variables
{γ1, . . . , γM}. The above optimization can be thought of as
an outer optimization overx and an inner optimization over
γm with fixed x. The inner optimization is as follows:

maximize
γ

M∑

m=1

wm log(1 + γm) (13a)

subject to γm ≤
Am(x)

Bm(x)
, ∀m = 1, . . . ,M. (13b)

The solution to this inner optimization is obviously thatγm
should satisfy (13b) with equality. But, let’s express the prob-
lem in a different way. Note that (13) is a convex optimization
in γ, so the strong duality [27] holds. Introduce the dual
variableλm for each inequality constraint in (13b) and form
the Lagrangian function

L(γ,λ) =

M∑

i=1

wm log(1 + γm)−

M∑

m=1

λm

(
γm −

Am(x)

Bm(x)

)
.

(14)
Due to strong duality, the optimization (13) is equivalent to
the dual problem

minimize
λ�0

maximize
γ

L(γ,λ). (15)

Let (γ⋆,λ⋆) be the saddle point of the above. It must satisfy
the first-order condition∂L/∂γm = 0:

λ⋆
m =

wm

1 + γ⋆
m

, ∀m = 1, . . . ,M. (16)

But from the trivial solution to the optimization problem (13),
we already know thatγ⋆

m = Am(x)/Bm(x), so

λ⋆
m =

wmBm(x)

Am(x) +Bm(x)
, ∀m = 1, . . . ,M. (17)

Note thatλ⋆
m ≥ 0 is automatically satisfied here. Using (17)

in (15), problem (13) can then be reformulated as

maximize
γ

L(γ,λ⋆). (18)

Furthermore, combining with the outer maximization overx ∈
X and after some algebra, we find (18) to be exactly the same
as the maximization of (9) in Theorem 3.

We remark that a similar Lagrangian dual procedure based
on the multidimensional complex differentiation can be de-
rived for Theorem 4; the details are omitted.

IV. JOINT UPLINK SCHEDULING AND POWER CONTROL

We now consider the coordinated uplink scheduling and
power control problem as an application of FP to discrete
optimization.

A. Problem Formulation

Consider the uplink of a wireless cellular network. LetB
be the set of base-stations (BSs) deployed in the network, and
let Ki be the set of users who are associated with BSi. Each
BS i together with its associated users inKi forms a cell. In
every time-slot, users are scheduled for uplink transmission on
a cell basis. In this section, the BSs and the users are assumed
to be equipped with a single antenna each; extension to the
multiple-antenna case involving beamforming optimization is
considered in the next section. For the user scheduling and
power control purpose, introduce variablesi ∈ Ki to denote
the user to be scheduled at BSi, and introduce variablepk to
denote the transmit power level of userk if it gets scheduled
for uplink transmission. Lethi,k ∈ C be the uplink channel
coefficient from userk to BS i; let σ2 be the additive white
Gaussian background noise (AWGN) power. Given a set of
weightswk that reflect the user priorities in each time-slot, we
have the following weighted sum rate maximization objective:

fo(s,p) =
∑

i∈B

wsi log

(
1 +

|hi,si |
2psi∑

j 6=i |hi,sj |
2psj + σ2

)
. (19)

The joint scheduling and power control problem in an uplink
SISO network can be written as

maximize
s,p

fo(s,p) (20a)

subject to 0 ≤ pk ≤ Pmax (20b)

si ∈ Ki ∪ {∅} (20c)

wheres denotes the collection of scheduling variables{si}i∈B,
p denotes the collection of power variables{pk}k∈⋃

i∈B
Ki

,
Pmax is the maximum transmit power level of the user,∅

refers to the decision of not scheduling any user. Because of
the SISO setting, at most one user can be scheduled in each
cell i; we setsi = k if some userk is scheduled in the cell,
and setsi = ∅ otherwise.
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The above problem is difficult to tackle directly due to
the fact that the uplink scheduling decisions have significant
impact on the interference pattern. A particular scheduling de-
cisionsi in cell i strongly influences the scheduling decisions
sj in its neighboring cells. In addition, even when the discrete
variables is held fixed, solving for the power variablep in (20)
is still nontrivial, because the objective function is nonconvex.

B. Implicit Scheduling by Power Control

Before proceeding to the proposed FP approach, we discuss
an alternative perspective of treating the uplink scheduling
problem as a power control problem, and explain why the
corresponding optimization method would not produce good
results numerically.

As opposed to formulating the joint uplink scheduling and
power control as a mixed discrete-continuous problem as in
(20), we could replace the scheduling variables with the power
variablep, based on the observation that a userk is scheduled
if and only if its power levelpk is positive. Then, the problem
can be converted to a continuous power optimization over all
users. To formalize this idea, we rewrite the objective function
as follows:

fo(p) =
∑

i∈B

∑

k∈Ki

wk log

(
1 +

|hi,k|
2pk∑

k′ 6=k |hi,k′ |2pk′ + σ2

)

(21)
wherek′ refers to any other user in the network, including
those who are in the same cell as userk, i.e., k′ ∈

⋃
i∈B Ki.

The uplink scheduling problem can then be rewritten as a
power optimization problem involving only the power variable
p:

maximize
p

fo(p) (22a)

subject to 0 ≤ pk ≤ Pmax. (22b)

Clearly, the two problems (22) and (20) are equivalent, i.e.,
the optimal solution(s⋆,p⋆) of (20) can recover the optimal
solutionp⋆ of (22), and vice versa.

Problem (22) is nonconvex, but it can be solved by using
the gradient method to attain a local optimum, or by using the
FP method advocated in Part I of this paper [3]. After solving
(22), we simply schedule those users with positivepk.

However, as a subtle point we wish to highlight, using a
power control algorithm to solve the scheduling problem has
a serious deficiency. The main problem is that due to the highly
nonconvex nature of the objective function, the stationarypoint
of a power control algorithm is highly sensitive to the initial
condition. As a result, this class of methods suffers from a
seriouspremature turning-offissue. If some link is deactivated
in the early stage of the iterative optimization, it can never be
reactivated in the later iterations, because its local gradient
would strongly discourage it from doing so. Past efforts to

convexify this power control problem, e.g, by approximating
the problem as a geometric program [28], essentially smooths
out the local optima; but it works only at high SINR. For the
scheduling problem, most of the links have low SINRs—in
fact, due to intra-cell interference, at most one link in each
cell can have its SINR higher than 1.

The main contribution of this paper is to show that a
novel use of the Lagrangian dual transform, coupled with
the quadratic transform from Part I, can avoid the premature
turning-off issue through weighted bipartite matching.

C. FP Approach

The scheduling decision and the transmit power level of
the scheduled user in each cell interact with its neighboring
cells through the interference term in the denominator of rate
expression in the objective function. A naive way for tackling
the problem would be to make scheduling and power allocation
decisions on an individual per-cell basis, assuming that the
interference is fixed, then update the interference terms, and
iterate between the cells. But such an approach does not work
well, because the interference pattern can drastically change
when a different user is scheduled; there is no guarantee that
the iteration would even converge.

The main idea of this paper is to devise a way of using FP
to enable the individual update of scheduling and power on a
per-cell basis, while ensuring convergence. Toward this end,
the quadratic transform and the Lagrangian dual transform are
used together to recast the problem in a sequence of equivalent
forms. We remark that applying the quadratic transform alone
cannot achieve this desired decoupling.

First, apply the Lagrangian dual transform to reformulate
the original objective functionfo(s,p) as

fr(s,p,γ) =
∑

i∈B

wsi log (1 + γi)−
∑

i∈B

wsiγi

+
∑

i∈B

wsi (γi + 1)|hi,si |
2psi∑

j |hi,sj |
2psj + σ2

(23)

whereγ refers to a collection of auxiliary variables{γi}i∈B.
The original problem (20) is now equivalent to

maximize
s,p,γ

fr(s,p,γ) (24a)

subject to (20b), (20c). (24b)

We propose to optimize all the variables iteratively. When
(s,p) are held fixed, the optimalγ can be explicitly deter-
mined by setting∂fr/∂γi to zero, i.e.,

γ⋆
i =

|hi,si |
2psi∑

j 6=i |hi,sj |
2psj + σ2

. (25)

Next, we apply the quadratic transform on the fraction
term in (23) in order to to optimize(s,p) in fr for fixed

fq(s,p,γ,y) =
∑

i∈B

wsi log(1 + γi)−
∑

i∈B

wsiγi +
∑

i∈B


2yi

√
wsi (γi + 1) |hi,si |

2 psi − y2i



∑

j∈B

∣∣hi,sj

∣∣2 psj + σ2




 (26)
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γ. Introduce an auxiliary variableyi for each ratio in the last
term offr(s,p,γ). We use Corollary 1 to further reformulate
fr(s,p,γ) as fq(s,p,γ,y) in (26) shown at the bottom of
the page. After some algebra, thisfq can be rewritten in the
following form:

fq(s,p,γ,y) =
∑

i∈B

(
wsi log(1 + γi)− wsiγi − y2i σ

2

+ 2yi

√
wsi(γi + 1) |hi,si |

2 psi −
∑

j∈B

y2j |hj,si |
2 psi

)
(27)

wherey denotes a collection of auxiliary variables{yi}i∈B.
Thus, in order to solve problem (24) over(s,p), we can
equivalently consider the following problem over(s,p,y):

maximize
s,p,y

fq(s,p,γ,y) (28a)

subject to (20b), (20c). (28b)

The overall strategy is then to iteratively optimizeγ according
to (25) and optimize(s,p,y) as in (28).

The newly introduced objective functionfq groups the terms
related to the samesi together. The key observation is that
the scheduling and power variables(s,p) are nowdecoupled
in this new formulation (28). Specifically, the scheduling and
power optimization in each cell, i.e.,(si, pi), can be done
independently in each cell, as long asγ andy are fixed. This
motivates an iterative approach for solving (28).

We propose to maximizefq over variablesγ, y, s andp

in an iterative manner as follows. The update ofγ is already
shown as in (25). When all the other variables are fixed, the
optimaly can be obtained by setting∂fq/∂yi to zero, i.e.,

y⋆i =

√
wsi(1 + γi)|hi,si |

2psi∑
j∈B |hi,sj |

2psj + σ2
. (29)

Fixing y andγ, if userk is to be scheduled by its associated
BS j, we can derive its optimal transmit power levelpk
by setting∂fq/∂pk to zero. Subject to a maximum power
constraints, the optimalpk can be explicitly determined by

pk = min




Pmax,

wk(1 + γi) |hi,k|
2
y2i(∑

j∈B |hj,k|
2 y2j

)2





, ∀k ∈ Ki. (30)

The most important part of the algorithm is the optimizationof
the scheduling variables. As stated previously, the objective
functionfq has the desirable property that the optimization of
s is decoupled on a per-cell basis, i.e., the optimization ofsi
does not depend on the othersj variables forj 6= i, whenγ
andy are fixed. Now, since the optimal transmit power level
pk is already determined by (30) if users is scheduled, we can
substitute the optimized powerpk into fq and make optimal
scheduling decision through a simple search to find the user
that maximizesfq in each cell. Moreover, we can rewritefq
in the form of difference between two positive functions, and

formally state the scheduling decision as follows:

s⋆i =






∅, if max
k∈Ki




Gi(k)−
∑

j 6=i

Dj(k)




 ≤ 0

argmax
k∈Ki



Gi(k)−

∑

j 6=i

Dj(k)



 , otherwise

(31)

where the functionsGi(k) andDj(k) are defined as

Gi(k) = wk log (1 + γi)− wkγi − pky
2
i |hj,k|

2

+ 2yi

√
wk(1 + γi) |hi,k|

2
pk, ∀k ∈ Ki (32)

and
Dj(k) = y2j |hj,k|

2
pk, ∀k /∈ Kj . (33)

In the above equation (31), we interpretGi(k) and Dj(k)
as the utility and penalty functions, respectively, so thatthe
scheduling decision has an intuitive utility-minus-pricestruc-
ture. More precisely,Gi(k) is the utility gain of scheduling
user k at BS i and Dj(k) is the penalty for interfering a
neighboring cellj by scheduling userk. The best user to
schedule is the one that balances these two effects. Note that
the scheduling and power control are done on a per-cell basis.
This enables distributed implementation.

Furthermore, when the max value ofGi(k)−
∑

j 6=i Dj(k)
at BS i is less than zero, it implies that no user should be
scheduled at this BSi in the time slot in order to reduce
the intercell interference suffered by the neighboring BSs.
This case possibly happens in an ultra-dense uplink network
scenario.

We summarize the proposed joint scheduling and power
control strategy in Algorithm 1. Note that the algorithm is
not a conventional block coordinate ascent method, because
the optimizing objective function is not fixed, i.e.,s, p and
y are optimally updated forfq while γ is optimally updated
for fr. Nevertheless, its convergence can be established, as
specified in Proposition 1.

Algorithm 1 Joint Uplink Scheduling and Power Control
Initialization: Initialize s, p andγ.
repeat

1) Updatey by (29);
2) Updateγ by (25);
3) Update(s,p) jointly by (31) and (30);

until the function valuefq converges.

Proposition 1. Algorithm 1 is guaranteed to converge, with
the weighted sum ratefo monotonically nondecreasing after
each iteration. The converged solution is a stationary point of
fo with respect top if s is assumed to be fixed.

Proof. See Appendix A.

We note that due to the nonconvex nature of the problem
with respect top, finding a stationary point inp is likely to
be the best that one can do. Moreover, sinces is a discrete
variable, it is difficult to assert any optimality with respect to
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TABLE I
SUM LOG-UTILITIES OF FP-BASED COORDINATED UPLINK SCHEDULING

AND POWER CONTROL AS COMPARED TO THEBASELINES

Algorithm Total log-utility
Power Control by WMMSE 27.17
Fixed Interference 52.16
Proposed FP Method 60.15

s. In fact, we can show that even withp fixed, finding the
optimal s is NP-hard.

To see the NP-hardness, we can use an argument inspired by
[29] in which the NP-hardness of the power control problem is
established. Construct a simplified example, in which each BS
receives interference from a subset of neighboring users only,
and the interference level is large so whenever interference is
present the rate is effectively zero, and otherwise the rateis
one. Selecting one user in each cell to maximize the overall
sum rate now amounts to solving a maximum independent set
problem on a graph, which is NP-hard. Further, unless P= NP,
it is impossible even to solve the problem within a constant
approximation ratio in polynomial time [30].

Observe here that Algorithm 1 avoids premature turning-off.
Even if a userk is not activated in thetth iterate, the related
auxiliary variableyi is still non-zero according to (29), so long
as at least some other user is scheduled in its cell. Thus, user
k still stands a chance to be reactivated in future iterations
when the interference pattern becomes favorable, as indicated
by (30).

As a final remark, throughout this paper we have assumed
the availability of CSI for uplink scheduling. In practical
implementations, the cost of obtaining CSI for all users canbe
prohibitive. Further, including all users in the scheduling step
can incur large computational complexity. The complexity in
implementing Algorithm 1 can be lowered in practice using
a two-stage scheduling strategy. We first roughly choose a
subset of potential users according to their weights, then apply
Algorithm 1 to refine the scheduling decision. This can greatly
reduce the run-time complexity and the cost of obtaining CSI.

D. Simulation Results

To evaluate the performance of the proposed joint uplink
scheduling and power control algorithm, numerical simulation
is performed in a 7-cell wrapped-around topology with a
total of 84 users uniformly placed in the network. The BS-
to-BS distance is 800m. Each user is associated with the
strongest BS. The maximum transmit power spectrum density
(PSD) of the users is−47dBm/Hz; the background noise
PSD is set to be−169dBm/Hz over 10MHz bandwidth. The
wireless channel model includes a distance-dependent pathloss
component at128.1 + 37.6 log10(d)dB (where the distanced
is in km) and a log-normal shadowing component with 8dB
standard deviation.

In the simulation, the joint user scheduling and power con-
trol problem is solved across the multiple cells in each time-
slot with the user priority weights updated as the reciprocals of
long-term average user rates over the time, in order to ensure
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Fig. 2. Comparison of the proposed FP-based coordinated uplink user
scheduling and power control method with two baseline methods in term
of cumulative distribution function of user rates.

proportional fairness across the users. Over time, this setting
of the weights maximizes the log-utility,

∑
k log(R̄k), over all

users in the network, wherēRk is the long-term average rate
of userk, expressed in Mbps in the numerical results below.

The following two baseline uplink scheduling strategies are
also simulated for comparison purpose:

• Power Control: The uplink scheduling and power control
problem can also be thought of as a global power control
problem, in which users not being scheduled are assigned
zero power. Thus, we can run power control for all the
users in the network at the same time. Most users will
be assigned zero power; users assigned positive transmit
power levels (typically at most one per cell) are the
ones scheduled. This global power control problem is
highly nonconvex. In the simulation, we use the WMMSE
algorithm [25], [26] for power control to arrive at a local
optimum.

• Fixed Interference Method: In this method, uplink
scheduling and power control are performed iteratively.
Each user is initialized with some power level. In the
scheduling stage, the user that maximizes the weighted
rate in each cell is chosen, assuming fixed interference
pattern from the previous iteration. In the power control
stage, the powers of the scheduled users are updated by
solving a weighted sum rate maximization problem. We
iterate between the two steps until convergence or a fixed
number of iterations is reached.

Fig. 2 shows the cumulative distribution of the user data
rates in the network and Table I lists the log-utility2 achieved
by the different methods for uplink user scheduling and power
control. We see that the baseline of power control provides
poor performance, mainly because the power control algorithm
tends to stuck in a locally optimal solution of the nonconvex
problem. The fixed-interference method is also not capable

2The utility is computed for data rate in Mbps throughout the paper.
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of arriving at a desirable solution. In contrast, the proposed
algorithm performs much better in terms of utility, as shown
in Table I. Fig. 2 shows that the 10th-percentile user rate ofthe
proposed algorithm is at least 50% more than that of the fixed-
interference method. Since these low-rate users are typically
located at the cell-edge where cross-cell interference is the
strongest, this shows that the proposed FP-based algorithm
is effective in alleviating interference by coordinating uplink
scheduling and power control. We remark that this gain is
achieved despite the low overall complexity of the FP method.
A detailed complexity analysis is included in the next section.

V. JOINT UPLINK SCHEDULING AND BEAMFORMING

We now consider a more general problem for the uplink of
a MIMO multicell network, where the transmit beamformers
are optimized in addition to user schedule and power.

A. Problem Formulation

Following the notations as in Section IV, defineB as the set
of BSs in the network,Ki as the set of users who are associated
with BS i, σ2 as the background noise level,wk as the weight
of user k, andPmax as the maximum transmit power level
at the user side. Assume that each user is equipped withN
antennas and each BS is equipped withM antennas. Spatial
multiplexing can therefore support up toM data streams per
cell (but some data streams may have zero throughput). Let
sim be the index of the user who is scheduled in themth
stream at BSi. Let vk ∈ CN be the transmit beamformer
of user k if it gets scheduled. LetHi,k ∈ CM×N be the
uplink channel from userk to BS i. The joint uplink user
scheduling and beamforming problem with a weighted sum-
rate maximizing objective can be formulated as

maximize
s,V

fo(s,V) (32a)

subject to ‖vim‖2 ≤ Pmax (32b)

sim ∈ Ki ∪ {∅} (32c)

with the objective functionfo defined in (33) at the bottom of
the page, wheres denotes{sim}i∈B,m∈{1,...,M} andV denotes
{Vim}i∈B,m∈{1,...,M}. Note that under this MIMO setting we
allow scheduling up toM users per cell.

The above problem is more challenging than the uplink
user scheduling and power control problem (20) of the SISO
case. In addition to the crosscell interference, we also need to
take into account the interference coming from the same cell
because multiple users can be scheduled at each BS.

B. FP Reformulation and Weighted Bipartite Matching

Recall that in Section IV-C we make use of the quadratic
transform and the Lagrangian dual transform to derive a re-
formulation for the joint uplink scheduling and power control
problem, whereby the power and scheduling variables can be
grouped on a per-cell basis. This reformulating procedure can
be adapted to the multidimensional case for problem (32).
First, apply the multidimensional Lagrangian dual transform
in Theorem 4 to reformulate the original objective function
fo(s,V) as fr(s,V,γ) in (34) shown at the bottom of this
page, with an auxiliary variableγim introduced for each data
stream(i,m), and the collection{γim} denoted byγ . Thus,
the original problem (32) is equivalent to

maximize
s,V,γ

fr(s,V,γ) (35a)

subject to (32b), (32c). (35b)

Following Algorithm 1, we propose to optimize the vari-
ables in (35) in an iterative fashion. When the primal variables
s andv are both held fixed, maximizingfr overγ is a convex
problem which can be efficiently solved by setting∂fr/∂γim
to zero, that is

γ⋆
im = v†

sim
H

†
i,sim

·


σ2I+
∑

(j,n) 6=(i,m)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn




−1

Hi,simvsim .

(36)

Note that the optimalγim is equal to the resulting uplink SINR
in data stream(i,m) exactly.

We then consider optimizings and V for fixed γ.
This subproblem only involves the last term offq which
has a multidimensional sum-of-ratio form. By treating√
wsim(1 + γim)Hi,simvsim as the numerator vectorα and(
σ2I+

∑
(j,n) Hi,sjnvsjnv

†
sjn

H
†
i,sjn

)
as the denominator

matrix B in Theorem 2, we arrive at a new objective

fq(s,V,γ,Y) =
∑

(i,m)

wsim log(1 + γim)−
∑

(i,m)

wsimγim

+
∑

(i,m)


 2

√
wsim(1 + γim) · Re

{
v†
sim

H
†
i,sim

yim

}

− y
†
im


σ2I+

∑

(j,n)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn


yim


 (37)

fo(s,V) =
∑

(i,m)

wsim log


1 + v†

sim
H

†
i,sim



σ2I+
∑

(j,n) 6=(i,m)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn




−1

Hi,simvsim


 (33)

fr(s,V,γ) =
∑

(i,m)

wsim


log(1 + γim)− γim + (1 + γim)v†

sim
H

†
i,sim



σ2I+
∑

(j,n)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn




−1

Hi,simvsim




(34)
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where an auxiliary variableyim ∈ CM is introduced with re-
spect to each data stream(i,m), and the collection of auxiliary
variable{yim} is denoted byY. Thus, the optimization offr
in (35) is further recast to

maximize
s,V,γ,Y

fq(s,V,γ,Y) (38a)

subject to (32b), (32c). (38b)

With the update ofγ already shown in (36), we now
consider the optimization ofs, V andY in fq. First, when all
the other variables are fixed, the optimaly can be explicitly
determined by setting∂fr/∂yim to zero, that is

y⋆
im =


σ2I+

∑

(j,n)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn




−1

·
√
wsim(1 + γim)Hi,simvsim . (39)

Observe that the optimalyim is exactly a minimum
mean-square-error (MMSE) receiver scaled by a factor of√
wsim(1 + γim), with respect to each data stream(i,m).

It remains to optimize the variabless andV in fq. We gain
incorporate the idea ofweighted bipartite matchingfor the
joint optimization of these two variables. The key observation
is that the scheduling of usersim and its transmit beamformer
vim in a particular data stream(i,m) contribute to the
objective function (37) in a way that isindependentof the
scheduling and beamformer choices in other streams. More
specifically, if some userk is scheduled in the data stream
(i,m), i.e., sim = k, then the optimal transmit beamformer
of user k with respect to(i,m), denoted asτk,im, can be
determined by solving∂fq/∂vsim = 0, i.e.,

τk,im =



∑

(j,n)

H
†
j,kyjny

†
jnHj,k + η⋆k,imI




−1

·
√
wk(1 + γim)H†

i,kyim. (40)

where the dual variableη⋆k,im accounts for power constraint
(32b) and is optimally determined by the complementary
slackness condition

η⋆k,im = min{ηk,im ≥ 0 : ‖τk,im(ηk,im)‖2 ≤ Pmax}. (41)

This η⋆k,im can be efficiently evaluated via bisection search.

Therefore, the utility value (in terms offq) of scheduling
userk in one particular data stream(i,m) can be determined
analytically. This allows solvings andV jointly by weighted
bipartite matching. To formalize the idea, we define the utility
value of assigning userk to data stream(i,m) as

ξk,im = wk log(1 + γim)− wkγim

+ 2
√
wk(1 + γim) · Re

{
τ
†
k,imH

†
i,kyim

}
− σ2‖yim‖2

−
∑

(j,n)

y
†
jnHj,kτk,imτ

†
k,imH

†
j,kyjn. (42)

Then, thefq maximizing problem (38) reduces to the follow-

Fig. 3. The scheduling variables is decoupled on a per-cell basis after the
FP-based reformulation. Optimizing the scheduling variable s in (38) can be
characterized as a weighted bipartite matching between theusers and the data
streams in each cell, with the matching weights defined by (42).

ing weighted bipartite matching problem:

maximize
x

∑

k∈Ki

N∑

m=1

ξk,imxk,im (43a)

subject to
∑

k∈Ki

xk,im ≤ 1, ∀m (43b)

N∑

m=1

xk,im ≤ 1, ∀k (43c)

xk,im ∈ {0, 1} , (43d)

where the binary variablexk,im indicates whether or not user
k is scheduled in themth data stream at its associated BSi.
We remark that the above matching problem is considered at
each BSi individually, as illustrated in Fig. 3.

Weighted bipartite matching is a well-studied problem in
the field of combinatorics [31]. It can be efficiently solved by
the existing algorithms with polynomial-time computational
complexity using, e.g., the Hungarian algorithm [6] and the
auction algorithm [7], with a computational complexity of
O((K + M)3). Further, because in practice the matching
weights ξk,im are always evaluated with finite precision, in
this finite-precise case, the complexity of matching can be
reduced toO((K +M)2) using the algorithm in [32].

After solving forx in problem (43), we recover the optimal
scheduling variables⋆ by

s⋆im =

{
k, if x⋆

k,im = 1 for somek ∈ Ki

∅, otherwise
(44)

where the decision∅ is made in data stream(i,m) if any
user scheduled in the stream would have contributed tofq
negatively. Note thatx⋆

k,im must be zero ifξk,im < 0.
In practice, we can further facilitate weighted matching by
removing the edges corresponding to negativeξk,im from the
bipartite graph. The transmit beamformers of the scheduled
users are then set to the optimal values in (40) accordingly:

v⋆
k = τk,im, if x⋆

k,im = 1 for some(i,m). (45)

We summarize the proposed iterative distributed optimiza-
tion in Algorithm 2.

Like Algorithm 1, this algorithm guarantees convergence
although it is not a block coordinate ascent method, as stated
in the following proposition.
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Algorithm 2 Joint Scheduling and Beamforming Algorithm
Initialization: Initialize s, V andγ.
repeat

1) UpdateY by (39);
2) Updateγ by (36);
3) Updates andV jointly by (40), (44) and (45);

until the function valuefq converges.

Proposition 2. Algorithm 2 is guaranteed to converge, with
the weighted sum ratefo monotonically nondecreasing after
each iteration. The converged solution is a stationary point of
fo with respect toV if s is assumed to be fixed.

Proof. See Appendix A.

We note that the SISO algorithm in Section IV is a special
case of the weighted bipartite matching approach for the
MIMO problem. Further, we can use the same agument to
show that computing the optimals for fixedV is already NP-
hard, so the above convergence result is likely the best one
can hope for.

As a final remark, Algorithms 1 and 2 can be initialized
with simple but reasonable heuristic. For example, in a2× 2
MIMO network, the two users with the highest weights in each
cell can be scheduled at the beginning, and their beamformers
can be set to maximize the signal strength. Moreover, we set
some small constantδ > 0 and use the convergence criterion
|f

(t)
q − f

(t−1)
q | < δ wheret is the iteration index.

C. Discrete Beamforming

So far it is assumed that each beamformervim can be
set to an arbitrary vector as long as the power constraint
‖vim‖2 ≤ Pmax is satisfied. We now consider a discrete sce-
nario for beamforming where the choice forvim is restricted
to a codebook

V =
{
φ1,φ2, · · · ,φ|V|

}
. (46)

In the above, eachφn ∈ CN (for n = 1, . . . , |V|) represents
a possible beamforming vector.

In this case, if some userk is scheduled in the data stream
(i,m), then its optimal transmit beamformerτk,im in terms of
fq can be obtained by searching through the codebook, i.e.,

τk,im = argmax
v∈V

{
2
√
wk(1 + γim) · Re

{
v†H

†
i,kyim

}

−
∑

(j,n)

y
†
jnHj,kvv

†H
†
j,kyjn

}
. (47)

The bipartite matching process (43) can then be performed
with ξk,im set according to (42) but using the aboveτk,im.
After matching, the optimalV is recovered by (45).

To find the optimalvim in the discrete search (47) requires
at most a computational complexity ofO(|V|). This complexi-
ty can be further reduced toO(log |V|) by taking advantage of
the functional structure of (47). The idea is to first maximize
fq over V without considering the discrete constraint (46)

and then find the discrete solutionφ ∈ V that is closest to the
relaxed solutioñvim, for every(i,m) pair, i.e.,

τk,im = argmin
φ∈V

‖φ− ṽim‖2 (48)

where the relaxed solutioñvim is theτk,im in (40) without the
discrete codebook constraint. Observe that the right-handside
of (47) is a concave quadratic function of variablev, and then
after completing the square, it can be shown that updating
τk,im by (48) yields exactly the same solution as in (47).
Therefore, although the above relax-and-then-round approach
in (48) is a common heuristic for discrete beamforming, our
FP framework gives a theoretical justification by showing that
this approach actually maximizes the reformulated objective
fq, which acts as a lower bound of the original objectivefo
according to Lemmas 1 and 2 in Appendix A.

An efficient way to perform the optimization (47) can
now be devised based on (48), as stated in the following
proposition.

Proposition 3 (Nearest Point Projection for Beamforming).
The optimal update (47) for discrete beamforming can be
realized by the nearest point projection as in (48) with a
computational complexity ofO(log |V|).

Proof. Construct ak-d tree [33] for all the elements ofV
in advance. The following three steps produce the nearest-
point projection (48): Insert̃vim in the k-d tree; then search
for the nearest neighbor of̃vim in the tree and output it as
the projection result; finally deletẽvim from the tree. The
insertion, search, and deletion operations all have an average
complexityO(log |V|).

We remark that a similar result can be derived for discrete
power control in the SISO case, in which case the search
through thek-d tree reduces to a one-dimensional bisection
search.

D. Simulation Results

We validate the proposed FP-based approach by simulating
a network consisting of 7 cells in a wrapped around topology.
A total of 84 users randomly distributed in the network are
associated with the BS to which the channel is the strongest.
Each user is equipped with 2 antennas and each BS is equipped
with 4 antennas. The uplink MIMO channels consist of two
components: a large-scale fading component (i.e., pathloss and
shadowing), which follows the model discussed in Section
IV-D, and a Rayleigh fading component. The user weights
in every time-slot are updated as the reciprocal of the long-
term average rates in order to maximize a proportional fairness
utility. All other parameters, i.e., the channel pathloss model,
background noise level, maximum transmit power level, and
bandwidth, follow the settings in Section IV-D.

The following methods are introduced as benchmarks:

• WMMSE: The WMMSE algorithm is introduced in [25],
[26]. To use WMMSE for user scheduling, we initialize
all the users in the network with some random beam-
formers, then run the WMMSE algorithm to optimize
weighted sum rate. At convergence, most users would
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Fig. 4. Comparison of the proposed FP-based coordinated uplink user
scheduling and beamforming method with two baseline methods in terms
of cumulative distribution function of user rates.

be assigned zero beamformer; those assigned nonzero
beamformers are scheduled. User scheduling is therefore
determinedimplicitly by beamforming. In the SISO case,
the beamforming step reduces to power control.

• Fixed interference method: This heuristic method extends
the fixed interference method in Section IV-D. Iteratively,
apply a beamforming method (e.g., WMMSE) for fixed
user scheduling variables, and then optimizes for fixed
beamformers. This works well in the downlink because
the optimal scheduling can be explicitly determined [12].
For the uplink, the heuristic is to emulate the downlink by
assuming fixed interference from the neighboring cells.

The proposed algorithm is compared with the aforemen-
tioned two baselines. As shown in Fig. 4, the proposed FP-
based method has a significant advantage over the baselines
particularly for low-rate users. For example, the rates of the
10th-percentile users is improved by at least 50% the proposed
algorithm. These low-rate users are mostly located close to
the cell edges, highlighting the important role of coordinated
uplink scheduling and beamforming in interference mitigation.
Table II shows that the proposed FP method substantially
improves the sum log-utility in the network as compared to
the benchmarks, verifying that interference management by
coordinating user schedules and beamformers is crucial to the
network performance.

TABLE II
SUM LOG-UTILITIES OF THE PROPOSED COORDINATED UPLINK
SCHEDULING AND BEAMFORMING METHOD AS COMPARED TO

THE TWO BASELINE SCHEMES

Algorithm Total log-utility
WMMSE 175.87
Fixed Interference 183.45
Proposed FP Method 193.79

VI. CONNECTION WITH WMMSE

As already mentioned, the well-known WMMSE algorithm
[25], [26] can already be used for the uplink coordinated
joint scheduling, power control, and beamforming problem.
Assume that all the users in the network are scheduled at the
beginning; run the WMMSE algorithm to design beamformers
for all the users; then only schedule the users with positive
transmit power levels at the end. Interestingly, there is infact
a connection between WMMSE and our FP approach.

A. Interpretation of WMMSE from FP

The WMMSE algorithm is originally derived based on a
signal minimum mean-square-error analysis [25], [26]. In what
follows, we give another derivation for WMMSE based on
the proposed quadratic transform. Recall that after the use
of Lagrangian dual transform, the original objective function
fo(s,V) is recast tofr(s,V,γ), in which the primal variables
s andV only appear in the last sum-of-ratio term. Specifically,
each ratio contained in the sum-of-ratio term offr can be
written as

dimv†
sim

H
†
i,sim

B−1
imHi,simvsim (53)

where two new notationsdim and Bim are introduced to
simplify notation:

dim = wsim (1 + γsim) (54)

and
Bim = σ2I+

∑

(j,n)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn

. (55)

Recall that in deriving the further reformulation offq,
we propose in Section V-B to apply the multidimensional
quadratic transform in Theorem 2 by identifying the ratio
pattern of (53) as

(√
dimHi,simvsim

)†
B−1

im

(√
dimHi,simvsim

)

︸ ︷︷ ︸
Numerator vectorα

(56)

whereα represents the numerator vector in the multidimen-
sional FP problem.

f̌q(s,V,γ,Y) =

∑

(i,m)

wsim


log(1 + γim)− γim + (1 + γim)


2Re

{
v†
sim

H
†
i,sim

yim

}
− y

†
im


σ2I+

∑

(j,n)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn


yim






(58)
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However, this is not the only way to implement the FP
technique. In fact, we could have applied the multidimensional
quadratic transform to the ratios in a different way:

dim

(
(Hi,simvsim)

†
B−1

im (Hi,simvsim)︸ ︷︷ ︸
Numerator vectorα

)
. (57)

In this case, we would have arrived at a different reformulation
f̌q as shown in (58) at the bottom of the page.

This reformulation gives the following iterative algorithm
for optimizing beamformers. Finding the optimalY by solving
∂f̌q/∂yim = 0 with respect to each(i,m) pair amounts to

y̌im =



σ2I+
∑

(j,n)

Hi,sjnvsjnv
†
sjn

H
†
i,sjn




−1

Hi,simvsim .

(59)
Note that the abověyim solution is exactly an MMSE receiver.
Likewise, the optimal transmit beamformer is

v̌sim =



∑

(j,n)

djnH
†
j,sim

yjny
†
jnHj,sim + η⋆imI




−1

· dimH
†
i,sim

yim (60)

where η⋆im = min{ηim ≥ 0 : ‖v̌(ηim)‖2 ≤ Pmax} is
the optimal dual variable for the power constraint (32b) by
complementary slackness. Finally, the update ofγ remains the
same as in (36). When iteratively applying the above updates
of γ, V andY for the fixed scheduling variables, we arrive at
exactly the WMMSE algorithm for beamforming. Therefore,
WMMSE can be interpreted as a specific way of using FP to
solve the optimal beamforming problem.

However, unlike our proposed reformulationfq in (37), this
f̌q does not allow an explicit distributed solution fors, because
the discrete variablessi’s are not decoupledin the last term
of f̌q as shown in (58). While the FP-based method proposed
in this paper is able to use weighted bipartite matching to
find the optimals, the WMMSE algorithm can only optimize
the scheduling variable implicitly by optimizing beamformers
for all the users in the network. This implicit scheduling of
WMMSE is not only more computationally complex, but also
has inferior performance as shown in the previous section.

B. Complexity Comparison

We now compare the complexities of Algorithm 2 and the
WMMSE method [25], [26] (which is modified to include
scheduling as stated in Section VI). For ease of analysis,
assume that each cell has the same number of users. LetK
be the number of users per cell; letB be the total number
of BSs deployed throughout the network. Following [26], we
evaluate the algorithm complexity with respect to each round
of iteration.

First consider thecommunication complexity. In Algorithm
2, every BS needs to collect(s,V,Y) exceptγ with respect
to each(j, n) pair, so the overall communication complexity
of Algorithm 2 is O(M2B2 + MNB2), which is indepen-
dent of K. In the WMMSE method, each BS needs to

collect (V,γ,Y) with respect to every user in the network,
thus the overall communication complexity of WMMSE is
O(MKB2+NKB2). WMMSE in general has a much higher
communication complexity, because normallyK ≫ M (i.e.,
only a small portion of users in the cell are scheduled in each
time-slot).

We further analyze thecomputational complexity. Assuming
that the classic Hungarian algorithm is used for weight-
ed bipartite matching, the overall computational complex-
ity of Algorithm 2 can be shown to beO(cFP), where
cFP = M4B2 + MN3KB + (M3N + MN2)KB2 + (K +
M)3B. The WMMSE algorithm involves a matrix multi-
plication with respect to every user-BS pair in the net-
work. Consequently, it requires a computational complexity of
O(cWMMSE), wherecWMMSE =

(
M3 +N3

)
KB+M2KB2+(

MN +N2
)
K2B2. We remark thatmatrix chain ordering

needs to be optimized for both of the algorithms to find the
most efficient way of multiplying matrices. For simplicity,we
further assume thatM andN are fixed and also thatK is much
greater than bothM andN . Then, the above computational
complexities become

cFP = KB2 +K3B and cWMMSE = K2B2, (61)

so Algorithm 2 is more complex if the number of usersK is
large. However, as already mentioned in Section V-B, because
the matching weights are in practice expressed with finite
precision, the efficiency of bipartite matching can be improved
from O(K3) to O(K2) by using the algorithm of [32]. Then,
we have

cFP = KB2 +K2B < K2B2 = cWMMSE. (62)

In this case, Algorithm 2 is overall more computationally
efficient than WMMSE.

VII. C ONCLUSION

This paper explores the application of FP for the discrete (or
mixed discrete-continuous) problems for the communication
system design. The central idea is to decouple the complicated
interfering interactions among the different links by a novel
quadratic transform and a Lagrangian dual transform, thereby
allowing efficient and distributed optimization. This paper
illustrates the proposed FP approach by considering the uplink
user scheduling, power control, and beamforming problem for
wireless cellular networks. By incorporating weighted bipartite
matching, this paper devises a novel use of FP whereby the
discrete scheduling variables can be jointly optimized with
the continuous variables such as power and beamformers. As
compared to the existing methods, the proposed FP approach
treats discrete optimization rigorously without relaxation. The
paper further shows that the well-known WMMSE algorithm
is a particular form of FP, but in contrast to the proposed
approach, WMMSE is not well equipped to deal with discrete
user scheduling variables. As a final remark, we mention that
many other discrete optimization problems in communication
system design are closely related to scheduling. Thus, the
proposed FP approach can have wider applications in com-
munication system design.
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APPENDIX A
PROOFS OFPROPOSITIONS1 AND 2

We focuses on proving Proposition 2, as Proposition 1 is just
the scalar case of Proposition 2. Moreover, the convergenceof
the closed-form FP approach presented in Part I can also be
established using Proposition 2 (by assuming fixed discrete
variables). First, we introduce two useful lemmas, which can
be easily verified.

Lemma 1. fo(s,V) ≥ fr(s,V,γ), with equality if and only
if γ satisfies (36).

Lemma 2. fr(s,V,γ) ≥ fq(s,V,γ,Y), with equality if and
only if Y satisfies (39).

Introduce a superscriptt to each variable as the iteration
index in Algorithm 2, e.g.,V(t) refers to the set of transmit
beamformers at the end of thet-th iteration. The auxiliary
variableγ(t) is determined by (36) using(s(t),V(t)); similarly
Y(t) is determined by (39) using(s(t),V(t),γ(t)). But, define
Ỹ(t) to be the result of (39) using(s(t+1),V(t+1),γ(t)). It
can be shown that:

fo

(
s(t+1),V(t+1)

)
(a)
= fr

(
s(t+1),V(t+1),γ(t+1)

)

(b)

≥ fr

(
s(t+1),V(t+1),γ(t)

)

(c)
= fq

(
s(t+1),V(t+1),γ(t), Ỹ(t)

)

(d)

≥ fq

(
s(t+1),V(t+1),γ(t),Y(t)

)

(e)

≥ fq

(
s(t),V(t),γ(t),Y(t)

)

(f)
= fr

(
s(t),V(t),γ(t)

)

(g)
= fo

(
s(t),V(t)

)

where(a) follows by Lemma 1;(b) follows since the update
of γ in (36) maximizesfr when the other variables are fixed;
(c) follows by Lemma 2;(d) follows since the update ofY
in (39) maximizesfq when the other variables are fixed;(e)
follows since the joint updates ofs andV in (44) and (45)
maximizefq when the other variables are fixed;(f) follows
by Lemma 2;(g) follows by Lemma 1.

Therefore, the weighted sum rate objectivefo is mono-
tonically nondecreasing after each iteration. Since the value
of fo is bounded above, the algorithm must converge. At
the convergence, the algorithm arrives at a local optimum of
the reformulated problem offq. Further, for fixed scheduling
variable s, the solution is a stationary point of the original
problem offo in V.
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