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Abstract—This two-part paper develops novel methodologies

for using fractional programming (FP) techniques to designand
optimize communication systems. Part | of this paper proposs
a new quadratic transform for FP and treats its application
for continuous optimization problems. In this Part Il of the
paper, we study discrete problems, such as those involvingsar
scheduling, which are considerably more difficult to solveUnlike
the continuous problems, discrete or mixed discrete-comuous

problems normally cannot be recast as convex problems. In \

contrast to the common heuristic of relaxing the discrete va-
ables, this work reformulates the original problem in an FP
form amenable to distributed combinatorial optimization. The
paper illustrates this methodology by tackling the important
and challenging problem of uplink coordinated multi-cell user
scheduling in wireless cellular systems. Uplink schedulm is

—_———

~

NN - N
[ B ))\\ N ))\\
NG "‘-./ \\. &)

A2

\
\

~ i ~—— T

//—\\;\ '\/ \\ //"\\ /“. \\
/ WA / ANV
i ((A)) \)( L () \, ( ((A)) \]( () \l
/ / / /
0./ OQp /) 0./ @p ,
_e = _d -

(a) Uplink multicell network  (b) Downlink multicell network

Fig. 1. Interference pattern depends on the user schedulithg neighboring

far more challenging than the downlink case, because user cells in the uplink, but not so in the downlink. Here, the ddihes represent

scheduling decisions significantly affect the interferene pattern
in nearby cells. Further, the discrete scheduling variableneeds to
be optimized jointly with continuous variables such as trarsmit

power levels and beamformers. The main idea of the proposed

FP approach is to decouple the interaction among the interféng
links, thereby permitting a distributed and joint optimiza tion of
the discrete and continuous variables with provable convegence.
The paper shows that the well-known weighted minimum mean-
square-error (WMMSE) algorithm can also be derived from
a particular use of FP; but our proposed FP-based method
significantly outperforms WMMSE when discrete user schedthg
variables are involved, both in term of run-time efficiency and
optimizing results.

Index Terms—Fractional programming (FP), Lagrangian dual
transform, user scheduling, discrete power control, discete
beamforming

I. OVERVIEW

the desired signal; the dashed lines represent the irtegfesignal; the

scheduled user terminal in each cell is circled.

[5]. It is shown in Part | that the quadratic transform can
greatly facilitate the power control, beamforming, andrgge
efficiency maximizations.

The Part Il of this paper explores the use of FP for
optimization problems that involve discrete variableshimit
thelog(1+SINR) rate expressions—in particular the problem
of coordinated multi-cell uplink user scheduling in wirgde
cellular networks, where the optimization parameters hee t
selection of which users to schedule in each cell, along with
their power and beamforming vectors. The scheduling proble
in the uplink is much more challenging than in the downlink,
because the uplink interference pattern depends strongly o
the scheduling decisions of the neighboring cells, whereas

RACTIONAL programming (FP) is a valuable tool forin the downlink, the interference pattern does not depend on
the design and optimization of communication systemsg¢heduling decisions, as illustrated in Fig. 1.

because of the prominent role fractional terms—in pardicul

the signal-to-interference-plus-noise (SINR) ratio—yglan

There is a fundamental difference between the uplink
scheduling problem and the various continuous FP problems

the performance analysis of communication links. Part | afeated in Part I. Due to the discrete variables involved in

this paper [3] proposes a nowgliadratic transformtechnique

scheduling, the quadratic transform, which is used extehsi

to tackle FP problems involving multiple ratios, which arén Part | to transform the problem into a sequence of convex
frequently encountered in communication system desigh, problems, is no longer sufficient by itself.

are typically beyond the capabilities of classic FP teches

Discrete optimization problems are traditionally tackled

such as Schaible’s transform [4] and Dinkelbach’s methqging the common heuristic of relaxing the discrete coirgsa
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into continuous ones, then quantizing the solution aftkisg

the relaxed problem. The difficulty with this traditional-ap

proach is that the resulting relaxed problem is not neciygsar

always easy to solve, and the final quantization step mayeaot b

easy to design (naive rounding scheme is usually subogtimal
A key observation of this paper is that instead of relaxireg th

discrete scheduling variables and trying to convexify thebp

lem, we can take advantage of the fact that specific class of



discrete optimization problems, namehe weighted bipartite
matching problemcan be efficiently solved in polynomial-
time using established methods such as the Hungarian al-
gorithm [6] and the auction algorithm [7]. By recasting the
uplink scheduling problem in a weighted bipartite matching
form, via a proposed new technique nanmsejrangian dual
transform which can “move” the fractional SINR term to the
outside of the logarithm, and subsequently allow the quadra
transform and bipartite matching method to be applied, an
overall efficient uplink scheduling algorithm can be design

The proposed scheme is markedly different from the ex-
isting approaches to the uplink scheduling problem studied
extensively in the literature. The uplink scheduling sckem
implemented in practice [8], [9] are often based on channel
quality alone or assume worst-case interference. Becaluse o
the difficulty in quantifying the cross-cell interferenaapst .
existing uplink scheduling algorithms are heuristic inurat
For example, [10]-[12] propose various heuristics to appro
imate the uplink SINR. The game theoretical approaches are
considered [13], [14], but not in a rigorous way. Other commo
heuristics include opportunistic method [10], [15], grged
method [16]-[19], relaxation method [20], and clustering
method [21].

While the use of these heuristics is justified by the prac-

auxiliary variables.

Joint User Scheduling and Beamformiribhe objective

is to schedule uplink users and to set their transmit
beamformers jointly across multiple cells so as to max-
imize the network utility in a multiple-input multiple-
output (MIMO) network. The key step is to incorporate
a further FP reformulation involving vector variables.
The resulting reformulation allows the optimization of
discrete and continuous variables in a joint and distrithute
fashion using bipartite matching algorithms. Moreover,
when the beamforming variable is also discrete (i.e.,
the beamforming vector must be selected from a given
codebook), we propose a nearest point projection scheme
which is more efficient than the direct searching; this
scheme works for discrete power control as well.

FP versus WMMSEThe proposed FP framework is com-
pared with the well-known WMMSE algorithm for beam-
forming. Although originally motivated from a minimum-
mean-square-error perspective [25], [26], the WMMSE
algorithm can be shown to be closely related to FP. This
paper shows however that our proposed way of applying
FP to scheduling is more advantageous than WMMSE
when dealing with discrete scheduling variables.

tical consideration in the cost for obtaining channel state 1n€ notation follows that in Part I. In particular, dendte
information (CSI), this paper aims to show how much bett&@S the set of real numberg,. the set of nonnegative real
the performance of uplink scheduling algorithm can be fumbers, andR,.. the set of strictly positive real numbers.
CSl is available. In this realm, [22] shows that the uplinP€noteC as the set of complex numbers. DenBte;. as the

scheduling and power control problem can be solved globafi§t ©f Symmetric positive definite matrices.

by a monotonic optimization, but in exponential time. The
optimality of uplink scheduling is also considered in [23]
under some very specific channel conditions. Moreover, it-
erative scheduling and power control schemes are proposed
in [12], [24], which do not perform as well as the scheme

Il. QUADRATIC TRANSFORM

proposed in this paper for the uplink. We remark here that\ye priefly review the quadratic transform in this section;

although the scheduling problem can be thought of as a powggre details can be found in the Part | of this paper [3].
control problem, the approach of relying of power control

for scheduling (thereby sidestepping the difficulty of dite Theorem 1 (Quadratic Transform[3]). Given a nonempty
optimization) typically do not perform well, because it cagonstraint sett C R?, a nonnegative functionl(x): RY —
result in premature turning-offas discussed in Section IV-B. R, and a positive functio®3(x): RY — R, ,, whered € N,

The main goal of this paper is to show that the FP techniquagsingle-ratio) FP problem is
can be applied to the uplink scheduling problem, and that

cooperation across the multiple cells in a wireless callula maximize % (1)
network has the potential to significantly improve the ollera subjectto  x € X (1b)
performance of the network. Toward this end, we make the ’
following contributions: This problem is equivalent to
« Joint Uplink Scheduling and Power Controrhe objec- - —
tive is to optimally schedule uplink users and to set their maﬁ!!;"'ze 2y ARx) - y*B(x) (22)
transmit power levels jointly across multiple cells so as subjectto xe X, yeR. (2b)

to maximize the network utility in a single-input single-
output (SISO) network. The problem involves mixed corCorollary 1 (Sum-of-Ratios Problerf8]). Given M pairs of
tinuous variables (power) and discrete variables (uplirflonnegative functiod,, (x) : R* — R and positive function
scheduling); it is quite challenging, because schedulindy:(x) : R* = R, for m = 1,..., M, the sum-of-ratios
and power decisions in each cell significantly affect theroblem

interference patterns in neighboring cells. This paper

proposes an FP-based reformulation that allows power maximize
control and uplink scheduling to be determined jointly *

and in a distributed fashion with the assistance of some subject to
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is equivalent to where w,,’s are nonnegative weightsi,,(x)’'s are nonneg-
M ative functions andB,,’s are positive functions for alkn,

imi / a2 and X is a nonempty constraint set. The above formulation
St mX::l (2ym Am () ymBm(X)) (42) is often used to model the weighted sum rate maximization
subjectto  x e X. (4b) problem of a communication network. The ratlg, /B, can

be physically interpreted as the SINR term. The problem (7)
has no known convex reformulation. Further, the constraint
represented byt’ is not necessarily compact, i.e., the variable
x may be discrete or mixed discrete-continuous.

Theorem 2 (Multidimensional and Complex FE]). Given
function ar(x): C — C%, function B(x): Ch — §%x®
and constraint set’ C C%, whered;, d, € N, amultidimen-
sional and comple¥P problem of

maximize o' (x)(B(x)) la(x) (5a)
subjectto  x € X. (5b) B. Transform
is equivalent to The main result is the following Lagrangian dual transform
maximize 2Re{yTa(x)} By (63) capable of converting (7) to a sum-of-ratios form.
Y d Theorem 3(Lagrangian Dual Transfortn The weighted sum-
subjectto xe X, y € C*. (6b)

of-logarithms problem (7) is equivalent to
This multidimensional and complex quadratic transform can

X ; maximize  f.(x,7) (8a)
also be extended to the multiple-ratio case [3]. X,y
subjectto xe X (8b)
I1l. L AGRANGIAN DUAL TRANSFORM where~,, is introduced as an auxiliary variable introduced for

The quadratic transform as stated above is the core E&ch ratio tern¥,,(x)/B,,(x); the new objective functiorf,
technique used in Part | for treating the continuous problems defined by
When it comes to the discrete problems of user scheduling,

M M
we need to introduce a new FP technique nafagrangian
= log(1 -
dual transform fr(x7) n;wm 0g(1 +vm) mz;l WinYom

A. Target Problem

Optimization problem for communication system design
often involves data rates expressed as logarithmic fumstio sum-of-ratio term
of SINR, i.e.,log(1 + SINR). Part | of this paper [3] proposesThe two problems are equivalent in the sense thas the
two different approaches for applying FP to such problems. $olution to (7) if and only if it is the solution to (8), and the
the direct FP, the quadratic transform is immediately aabli optimal objective values of these two problems are alsolequa
to the log-function of the ratio to decouple the numeratat an ] ) ) )
denominator, while in the closed-form FP, a Lagrangian duB[of- Observe thatf. is a concave differentiable function
transform is first applied to take the ratio out of the logarit OV whenx is held fixed, sy can be optimally determined
For continuous optimization problems, the two approachB¥ Setting eactdf./dv,, to zero, i.e.y* = A (x)/ B (x).
give comparable performance. However, for discrete sdhedguPstituting thisy* back in f,. recovers the weighted sum-of-
ing problems involvinglog(1 + SINR), the second approach!oganthms objectlv_e function in (7a) exactly. The equéraie
of using Lagrangian dual transform becomes indispensabldS therefore established. -
This paper develops the Lagrangian dual transform tech-
nique that accomplishes the task “moving” SINR to the o@tsid Theorem 3 can be extended to the multidimensional and
of logarithm. This technique plays a crucial role in addire®s complex case as follows.
the discrete scheduling problems, because it allows a subse
quent quadratic transform to express all optimizationaldles Theorem 4 (Lagrangian Dual Transform in Multidimensional
in linear terms. This section gives a detailed derivatiothef and Complex Cage Given a sequence of multidimensional
Lagrangian dual transform technique with a constructieepr and complex functione(x) : C** — C® form =1,..., M,
of the main result. a multidimensional functioB(x) : C* — S%X% and a
The target problem is a weighted sum-of-logarithms maxponempty constraint set C C%, whered;,d, € N, a
mization': multidimensional and complex logarithmic FP problem

M
wm(l + ’Ym)Am(x)
t L T B O

- - A (x) M
maximize Z W, log <1 + Bm (x)> (7a)  maximize Z wm log (1+ af, (x)B,! (x)au,(x)) (10a)
m=1 m * m=1

subjectto  x € X, (7b)  subjectto x € X (10b)

LFor ease of notation, we use the natural logarithm througtimipaper. can be also recast to the form of (8) where the new objective



function f,. is defined to be But from the trivial solution to the optimization problem3)1
we already know thay, = A, (x)/Bn(x), SO

o= Wiy, B (%)
M " A (%) + Bim(x)

Z Wi (14 v )l (%) (0 (x) (%) + B (%)) L (x). Note thatAy, > 0 is automatically satisfied here. Using (17)
in (15), problem (13) can then be reformulated as

M M
.fT(Xv 7) = Z Wm log(l + Vm) - Z wm’}/m"'
m=1

m=1

 Ym=1,...,M.  (17)

m=1

(11)
Proof. Since f,. is analytic in the complex plane and algp
is concave ovety for fixed x, we take its complex derivative Furthermore, combining with the outer maximization oxer
and solve eacldf,/0v,, = 0. The optimaly* is easily X and after some algebra, we find (18) to be exactly the same
seen asy] (x)B.!(x)a,,(x). Substituting thisy* back inf. as the maximization of (9) in Theorem 3.
recovers the weighted sum-of-logarithms objective fuorctn We remark that a similar Lagrangian dual procedure based
(10a) exactly, thereby establishing the equivalence. [0 on the multidimensional complex differentiation can be de-

rived for Theorem 4; the details are omitted.

maximize L(vy,\™). (18)
Y

C. Constructive Derivation

To provide insight on how the above transform is obtained,lv' JOINT UPLINK SCHEDULING AND POWER CONTROL

we revisit the weighted sum-of-logarithms problem (7) from We now consider the coordinated uplink scheduling and
a Lagrangian dual perspective, and provide an alternatigewer control problem as an application of FP to discrete

constructive proof of Theorem 3. optimization.
First, by introducing a new variabtg,, to replace each ratio
term inside the logarithm, (7) can be rewritten as A. Problem Formulation
o M Consider the uplink of a wireless cellular network. L&t
maximize > wnlog (1 +7m) (128) pe the set of base-stations (BSs) deployed in the netwotk, an
. m=1 let IC; be the set of users who are associated withi BSach
subjectto  xc & (12b) s ; together with its associated userskin forms a cell. In
o < Am(x) Vi = 1 M (12¢) every time-slot, users are scheduled for uplink transmisen
"= Bp(x)’ T a cell basis. In this section, the BSs and the users are adsume
where ~ refers to a collection of auxiliary variablest© P& €quipped with a single antenna each; extension to the
{71,..,70}. The above optimization can be thought of agwlnple—antgnna case |nvolv_|ng beamforming optlmlzgtls
an outer optimization ovex and an inner optimization over considered in the next _sectlon. For 'ghe user scheduling and
~m With fixed x. The inner optimization is as follows: power control purpose, introduce variablge ; to denote

the user to be scheduled at BSand introduce variablg;, to

denote the transmit power level of ugeif it gets scheduled

for uplink transmission. Lek; ;, € C be the uplink channel

A (x) coefficient from usek to BSi; let o2 be the additive white

subjectto v, < =2 ¥Ym=1,...,M. (13b) Gaussian background noise (AWGN) power. Given a set of
Bin(x) weightswy, that reflect the user priorities in each time-slot, we

The solution to this inner optimization is obviously thaf, have the following weighted sum rate maximization objextiv

should satisfy (13b) with equality. But, let's express thelp W

!em in a different way. Note that (13) is a convex optimizatio r (s p) = Zw&v log (1 i | z,si|2p5i 2) . 9)

in ~, so thestrong duality [27] holds. Introduce the dual B Zj;éi|hi-,5j| Ds; T O

variable \,,, for each inequality constraint in (13b) and for

the Lagrangian function

M

maximize  wy, log(1 + vm) (13a)

v m=1

Mrhe joint scheduling and power control problem in an uplink
SISO network can be written as

M M
A (%) maximize 20a
D) = 3w los(1+9) — 3 A <~ym -4 (x)> | simize (5.0 (20a)
=1 m=1 (14) subjectto 0 < pi < Prax (20b)
Due to strong duality, the optimization (13) is equivalemt t si € KU {o} (20c)
the dual problem wheres denotes the collection of scheduling variables} ¢z,
minimize maximize L(v, ). (15) p denotes the collection of power variablés. }rey, ., k.
AZO v Prax is the maximum transmit power level of the user,
Let (v*, A*) be the saddle point of the above. It must satisfgefers to the decision of not scheduling any user. Because of
the first-order conditio®L/d-,, = 0: the SISO setting, at most one user can be scheduled in each
. Win cell 7; we sets; = k if some userk is scheduled in the cell,

T T vm=1,...,M. (16) and sets; = @ otherwise.



The above problem is difficult to tackle directly due taonvexify this power control problem, e.g, by approximgtin
the fact that the uplink scheduling decisions have significathe problem as a geometric program [28], essentially snsooth
impact on the interference pattern. A particular schedulie- out the local optima; but it works only at high SINR. For the
cision s; in cell 7 strongly influences the scheduling decisionscheduling problem, most of the links have low SINRs—in
s; in its neighboring cells. In addition, even when the diserefact, due to intra-cell interference, at most one link inteac
variables is held fixed, solving for the power variabtein (20) cell can have its SINR higher than 1.
is still nontrivial, because the objective function is noneex. The main contribution of this paper is to show that a

novel use of the Lagrangian dual transform, coupled with
B. Implicit Scheduling by Power Control the quadratic transform from Part I, can avoid the premature

turning-off i th h weighted bipartit tching.
Before proceeding to the proposed FP approach, we discuusr:é“ng ot Isstie through weighted bipartite matching

an alternative perspective of treating the uplink scheduli
problem as a power control problem, and explain why tfe: FP Approach
corresponding optimization method would not produce good The scheduling decision and the transmit power level of
results numerically. the scheduled user in each cell interact with its neighlgorin
As opposed to formulating the joint uplink scheduling angells through the interference term in the denominator tf ra
power control as a mixed discrete-continuous problem as éxpression in the objective function. A naive way for taegli
(20), we could replace the scheduling variabieith the power the problem would be to make scheduling and power allocation
variablep, based on the observation that a ukés scheduled decisions on an individual per-cell basis, assuming that th
if and only if its power leveby, is positive. Then, the problem interference is fixed, then update the interference termd, a
can be converted to a continuous power optimization over dgrate between the cells. But such an approach does not work
users. To formalize this idea, we rewrite the objective fiomc well, because the interference pattern can drasticallpgha

as follows: when a different user is scheduled; there is no guaranteée tha
b2 the iteration would even converge.

fo(p) = Z Z wilog | 1+ || f’“ 5 The main idea of this paper is to devise a way of using FP

i€B keK; Dwrar | hi PP + 0 to enable the individual update of scheduling and power on a

(21) per-cell basis, while ensuring convergence. Toward thi, en
where &’ refers to any other user in the network, includinghe quadratic transform and the Lagrangian dual transfoem a
those who are in the same cell as usgei.e., k' € J,c.5Ki. used together to recast the problem in a sequence of equiivale
The uplink scheduling problem can then be rewritten asférms. We remark that applying the quadratic transform alon
power optimization problem involving only the power valab cannot achieve this desired decoupling.

p: First, apply the Lagrangian dual transform to reformulate

maximize /. (p) (22a) the original objective functiorf, (s, p) as

P
SUbjeCt to 0 S Pk S Pmax- (22b) fT(sa pa'Y) = Zwsi 10g (1 + 71) - Zwsi/yi
ieB i€eB

Clearly, the two problems (22) and (20) are equivalent, i.e. © w (7'€+ D|ha s, [2p
the optimal solutions*, p*) of (20) can recover the optimal + Z = ;L Sl (29)
solutionp* of (22), and vice versa. icB 2 i, [Pps; 0

Problem (22) is nonconvex, but it can be solved by usinghere~ refers to a collection of auxiliary variablesy; };cx.
the gradient method to attain a local optimum, or by using thg,e original problem (20) is now equivalent to
FP method advocated in Part | of this paper [3]. After solving

(22), we simply schedule those users with posiiye me;x}ir[/\ize fr(s,p,7) (24a)
However, as a subtle point we wish to highlight, using a sut;jéct to (20b), (20c) (24b)

power control algorithm to solve the scheduling problem has

a serious deficiency. The main problem is that due to the highl We propose to optimize all the variables iteratively. When
nonconvex nature of the objective function, the statiopaript (s, p) are held fixed, the optimay can be explicitly deter-
of a power control algorithm is highly sensitive to the iaiti mined by settingd f,./0; to zero, i.e.,

condition. As a result, this class of methods suffers from a 2

i ; Sl : * |hisi|“Ps:
seriouspremature turning-offssue. If some link is deactivated v = 5 |h-’ Pp. ot (25)
in the early stage of the iterative optimization, it can ndve g1 1y ["Ps; T O

reactivated in the later iterations, because its local igrad  Next, we apply the quadratic transform on the fraction
would strongly discourage it from doing so. Past efforts teerm in (23) in order to to optimizés,p) in f, for fixed

Fa(s,27,y) = 3w log (L +7) = S wems + 30 {20/ w0s, (s + 1) i P o =52 | 3 b, 0y + 07 | | (26)

icB icB i€B jeB




~. Introduce an auxiliary variablg; for each ratio in the last formally state the scheduling decision as follows:
term of f,.(s, p,). We use Corollary 1 to further reformulate

fr(s,p,7) as fq(s,p,~,y) in (26) shown at the bottom of o, if max{ Gi(k) - ZDj(k) <0

the page. After some algebra, thfs can be rewritten in the kek; y
following form: s = 7 (31)
argmax | G;(k) — » D;(k) », otherwise
fq(sapa'Yay) = Z <w8i log(1+71) — Ws,;Yi _yi202 keki ;
ieB

+ 2yi\/w5i (/Yi + 1) |hi781|2p81 - ZyJQ |hj781:|2p81:
JjEB

wherey denotes a collection of auxiliary variablég; };c5. + 2yi\/wk(1 + i) |h1-_,k|2pk, vk e K; (32)
Thus, in order to solve problem (24) ovés,p), we can

where the functiongs; (k) and D; (k) are defined as
) (27) s
Gi(k) = wklog (1 + ) — wivi — pry; |kl

. X i d
equivalently consider the following problem ovgr, p,y): an
. - D;(k) =y} |hjxl* pr, Yk ¢ K;. (33)
maximize P, a . :
s,p,y Ja(s:P,7.¥) (282) In the above equation (31), we interpr@t(k) and D, (k)
subject to (20b), (20c) (28b) as the utility and penalty functions, respectively, so tet

scheduling decision has an intuitive utility-minus-priteuc-
ture. More precisely(;(k) is the utility gain of scheduling
userk at BS+4 and D,(k) is the penalty for interfering a
neighboring cell; by scheduling usek. The best user to
The newly introduced objective functigfj groups the terms schedule is the one that balances these two effects. Nate tha
related to the same; together. The key observation is thathe scheduling and power control are done on a per-cell basis
the scheduling and power variables p) are nowdecoupled This enables distributed implementation.
in this new formulation (28). Specifically, the schedulimgda  Fyrthermore, when the max value 6f (k) — >z Dj(k)
power optimization in each cell, i.e(s;,p;), can be done gt BS; is less than zero, it implies that no user should be
independently in each cell, as longasandy are fixed. This scheduled at this BS in the time slot in order to reduce
motivates an iterative approach for solving (28). the intercell interference suffered by the neighboring BSs
This case possibly happens in an ultra-dense uplink network
We propose to maximiz¢, over variablesy, y, s andp scenario.
in an iterative manner as follows. The updateyofs already ~ We summarize the proposed joint scheduling and power
shown as in (25). When all the other variables are fixed, tigentrol strategy in Algorithm 1. Note that the algorithm is

The overall strategy is then to iteratively optimizeaccording
to (25) and optimizes, p,y) as in (28).

optimal y can be obtained by settingf,/Jy; to zero, i.e., not a conventional block coordinate ascent method, because
> the optimizing objective function is not fixed, i.es, p and
yr = Vws, (1+ %')2|hivsvv| p;i _ (29) y are optimally updated fof, while ~ is optimally updated

Zjeb’ |his; 1°ps; + 0 for f.. Nevertheless, its convergence can be established, as

specified in Proposition 1.

Fixing y and-, if userk is to be scheduled by its associate|gorithm 1 Joint Uplink Scheduling and Power Control
BS j, we can derive its optimal transmit power leve} Initialization: Initialize s, p and~.

by setting0f,/0p, to zero. Subject to a maximum power

constraints, the optimal,, can be explicitly determined by relfjijfﬁpdatey by (29);
) 2) Update~y by (25);
b= min d P wg (1 + i) [hi k] 3/212 VkeK,. (30) 3) Update(s, p) jointly by (31) and (30);
(ZjeB il yf) until the function valuef, converges.

The most important part of the algorithm is the optimizatdn

the scheduling variable. As stated previously, the objectiveProposition 1. Algorithm 1 is guaranteed to converge, with
function f, has the desirable property that the optimization ¢h€ weighted sum ratg, monotonically nondecreasing after
s is decoupled on a per-cell basis, i.e., the optimization;of €ach iteration. The converged solution is a stationary tpafin
does not depend on the other variables forj + i, when~  fo With respect top if s is assumed to be fixed.

ant;iy are fixed. Novy, since the thimql transmit power levgb,,of see Appendix A. 0
pr IS already determined by (30) if useis scheduled, we can

substitute the optimized powey; into f, and make optimal ~We note that due to the nonconvex nature of the problem
scheduling decision through a simple search to find the useith respect top, finding a stationary point i is likely to
that maximizesf, in each cell. Moreover, we can rewrifg be the best that one can do. Moreover, sinds a discrete
in the form of difference between two positive functionsganvariable, it is difficult to assert any optimality with respeo



TABLE |
SUM LOG-UTILITIES OF FP-BASED COORDINATED UPLINK SCHEDULING 1

AND POWER CONTROL AS COMPARED TO THEBASELINES
0.9 1
Algorithm Total log-utility o8l , , |
Power Control by WMMSE 27.17
Fixed Interference 52.16 g% 1
Proposed FP Method 60.15 2 o6l 1
S 05 F N N -
s. In fact, we can show that even wiih fixed, finding the é 04r 1
optimals is NP-hard. ~ Gogf ‘ ‘ o power conal ]
To see the NP-hardness, we can use an argument inspil Al —©— Fixed interference| |
[29] in which the NP-hardness of the power control problel o ——*— FP method
established. Construct a simplified example, in which e&a8l 0.1r 1
receives interference from a subset of neighboring usess 0 i i i i i
0 2 4 6 8 10 12

and the interference level is large so whenever interferés
present the rate is effectively zero, and otherwise the ig..
one. Selecting one user in each cell to maximize the over&lgll . Comparison of the proposed FP-based coordinateihkupiser
sum rate now amounts to solving a maximum independent $&eduling and power control method with two baseline muthinn term
problem on a graph, which is NP-hard. Further, unlessIRP, of cumulative distribution function of user rates.

it is impossible even to solve the problem within a constant

approximation ratio in polynomial time [30].

Data rate (Mbps)

Observe here that Algorithm 1 avoids premature turning—ofﬁ?mport'm.1a| fa|rnes_s across the USers. Over time, thiinget
of the weights maximizes the log-utility,, log(Ry), over all

Even if a userk is not activated in theth iterate, the related . =
auxiliary variabley; is still non-zero according to (29), so Iongusers in the network, wherg, is the long-term average rate
i ' of userk, expressed in Mbps in the numerical results below.

as at least some other user is scheduled in its cell. Thus, us - ) . . )
k still stands a chance to be reactivated in future iteration;rhe following two baseline uplink scheduling strategies ar

when the interference pattern becomes favorable, as iedica®'>° simulated for comparison purpose:

by (30). « Power Control The uplink scheduling and power control
As a final remark, throughout this paper we have assumed Problem can also be thought of as a global power control
the availability of CSI for uplink scheduling. In practical ~ Problem, in which users not being scheduled are assigned
implementations, the cost of obtaining CSI for all usersloan zero power. Thus, we can run power control for all the
prohibitive. Further, including all users in the schedglstep users in the network at the same time. Most users will
can incur large computational complexity. The complexity i~ Pe assigned zero power; users assigned positive transmit

implementing Algorithm 1 can be lowered in practice using Power levels (typically at most one per cell) are the
a two-stage scheduling strategy. We first roughly choose a ©nes scheduled. This global power control problem is
subset of potential users according to their weights, tipgya highly nonconvex. In the simulation, we use the WMMSE
Algorithm 1 to refine the scheduling decision. This can dyeat  @lgorithm [25], [26] for power control to arrive at a local

reduce the run-time complexity and the cost of obtaining.CSI ~ optimum.
« Fixed Interference MethodIn this method, uplink

scheduling and power control are performed iteratively.

D. Simulation Results Each user is initialized with some power level. In the
To evaluate the performance of the proposed joint uplink scheduling stage, the user that maximizes the weighted
scheduling and power control algorithm, numerical simatat rate in each cell is chosen, assuming fixed interference

is performed in a 7-cell wrapped-around topology with a  pattern from the previous iteration. In the power control
total of 84 users uniformly placed in the network. The BS-  stage, the powers of the scheduled users are updated by
to-BS distance is 800m. Each user is associated with the solving a weighted sum rate maximization problem. We
strongest BS. The maximum transmit power spectrum density iterate between the two steps until convergence or a fixed
(PSD) of the users is-47dBm/Hz; the background noise number of iterations is reached.

PSD is set to be-169dBm/Hz over 10MHz bandwidth. The  Fig. 2 shows the cumulative distribution of the user data

wireless channel model includes a distance-dependeribpathrates in the network and Table | lists the log-utfigchieved
component ati28.1 + 37.6 log,(d)dB (where the distancé py the different methods for uplink user scheduling and powe
is in km) and a log-normal shadowing component with 8dBontrol. We see that the baseline of power control provides
standard deviation. poor performance, mainly because the power control alyarit

In the simulation, the joint user scheduling and power cofends to stuck in a locally optimal solution of the nonconvex

trol problem is solved across the multiple cells in each tim@roblem. The fixed-interference method is also not capable
slot with the user priority weights updated as the reciplooh
long-term average user rates over the time, in order to ensur2The utility is computed for data rate in Mbps throughout ttege.



of arriving at a desirable solution. In contrast, the prgubsB. FP Reformulation and Weighted Bipartite Matching
algorithm performs much better in terms of utility, as shown
in Table I. Fig. 2 shows that the 10th-percentile user rathef
proposed algorithm is at least 50% more than that of the fix

:ggzrtf:ée;ﬁhrgeg;ﬁi dsglcehfrzsir?;:rcaetﬁ 'l;f::fse raerfcggc roblem, whereby the power and scheduling variables can be
ge w : rouped on a per-cell basis. This reformulating procedare c

§tr0nges_t, t.hls ShO.WS. th‘fﬂ the proposed FP-b_asgd "?"90”‘35“ adapted to the multidimensional case for problem (32).
is effective in alleviating interference by coordinatinglink Eirst, apply the multidimensional Lagrangian dual transfo
scheduling and power control. We remark that this gain '

] . . . .
achieved despite the low overall complexity of the FP meIhog Theorem 4 to reformulate the original objective function

: . I d . Jo(s, V) as f,(s,V,v) in (34) shown at the bottom of this
A detailed complexity analysis is included in the next smtti bage, with an auxiliary variable,,,, introduced for each data

V. JOINT UPLINK SCHEDULING AND BEAMFORMING stream(_z,m), and the coll_ect|or{_%-m} denoted byy . Thus,
the original problem (32) is equivalent to

We now consider a more general problem for the uplink of

Recall that in Section IV-C we make use of the quadratic
transform and the Lagrangian dual transform to derive a re-
rmulation for the joint uplink scheduling and power catr

a MIMO multicell network, where the transmit beamformers mgxi/rgize fr(s,V,7) (35a)
are optimized in addition to user schedule and power. subject to (32b), (32¢) (35b)
A. Problem Formulation Following Algorithm 1, we propose to optimize the vari-

ables in (35) in an iterative fashion. When the primal valgab
esdandv are both held fixed, maximizingj. over~ is a convex
problem which can be efficiently solved by settifig,. /9vim

Following the notations as in Section 1V, defifieas the set
of BSs in the networkiC; as the set of users who are associat
with BS 4, o2 as the background noise level, as the weight .
of userk, and P, as the maximum transmit power IeveltO zero, that is
at the user side. Assume that each user is equipped Mith NEL = VlimHZ.s-
antennas and each BS is equipped withantennas. Spatial ' o 1
multiplexing can therefore support up fd data streams per
cell (but some data streams may have zero throughput). Lel o’T+ Z HiijanSmVIjnHzTysg-n Hi,sim Vaim-
sim be the index of the user who is scheduled in théh (Gm)#(im)
stream at BSi. Let v, € CV be the transmit beamformer (36)
of userk if it gets scheduled. LeH;, € CM*N be the Note that the optima};,, is equal to the resulting uplink SINR
uplink channel from usek to BS i. The joint uplink user in data streanti, m) exactly.

scheduling and beamforming problem with a weighted sum-We then consider optimizings and V for fixed ~.

rate maximizing objective can be formulated as This subproblem only involves the last term ¢f which
maximize  f,(s, V) (32a) has a multidimensional sum-of-ratio form. By treating
sV VWs,, (1 + Yim)Hi s, Vs,,, a@s the numerator vectax and
subjectto  ||[Vim||? < Puax (32b) (o021 + G HmnvsjnvljnH;Sjn) as the denominator
sim € K; U{2} (32c) matrix B in Theorem 2, we arrive at a new objective

with the objective functiory, defined in (33) at the bottom of s, V,~.Y) = We,, 10g(1 4+ vYim) — We,,, Yim
the page, wheredenotess;,, }icsme(1,.... vy andV denotes fol&: Vo7 X) Z s 1081+ %im) Z o)
{Vim}ieBmeq,...,my- Note that under this MIMO setting we
allow scheduling up ta\f users per cell.

The above problem is more challenging than the uplink
user scheduling and power control problem (20) of the SISO
case. In addition to the crosscell interference, we alsad tee

(i,m) (z,m)

+ Z 2 wsim (1 + '%,m) ’ Re{vlim HZTySimyim}

i,m)

. ; _ t 2 t
take into account the interference coming from the same cell = Yim | o 1+ Z Hi Ve, vi H | Yim (37)
because multiple users can be scheduled at each BS. (4,n)
—1
fo(s, V) = Z ws,,, log | 1+ vlmH;f,Sm o1 + Z Hi,sj-nVs]'nVljn HZSM H,;, Vs, (33)
(i,m) (4,m)#(i,m)
—1
fT(Sa V, 7) = Z Ws i, log(l + Vim) = Yim + (1 + 'Yim)vlim H-ir,si,m o1 + Z Hivsjnvsjnvljn H-ir,sjn Hi-,SimVSim
(i,m) (J:m)

(34)



where an auxiliary variablg;,, € C* is introduced with re-
spect to each data stredmm), and the collection of auxiliary
variable{y;} is denoted byY. Thus, the optimization of,
in (35) is further recast to

maximize  f,(s,V,v,Y) (38a)
s,V,v,Y
subject to (32b), (32c) (38b)

WIFh the uDd_at? Of'y already ShO\_Nn n (_36)’ we now Fig. 3. The scheduling variable is decoupled on a per-cell basis after the
consider the optimization af, V andY in f,. First, when all fp-based reformulation. Optimizing the scheduling vaeiabin (38) can be
the other variables are fixed, the optin;alcan be explicitly characterized as a weighted bipartite matching betweengbes and the data

: : : treams in each cell, with the matching weights defined by. (42
determined by setting@f,. /0y, to zero, that is s
-1
ing weighted bipartite matching problem:
Yin = oI+ Z Hiysjnvsjnvlf HI

Sjn %,8jn

N
(4:m) .
maximize imZk.im 43a
vV wsim(l + ’Yim)Hiysimvsim' (39) x Z Z gk, " ( )

kekK; m=1
Observe that the optimaly;, is exactly a minimum subject to Zxk,imél, vm (43b)
mean-square-error (MMSE) receiver scaled by a factor of keK;

Ws,,, (1 + vim ), With respect to each data stredmm).

N
Thim < 1, VK 43c
It remains to optimize the variablesandV in f,. We gain mZ:l " (43¢)

incorporate the idea ofveighted bipartite matchindgor the Thim € {0,1}, (43d)
joint optimization of these two variables. The key obsdorat
is that the scheduling of user,, and its transmit beamformerwhere the binary variabley. ., indicates whether or not user
vim In a particular data streanti,m) contribute to the & is scheduled in thenth data stream at its associated BS
objective function (37) in a way that imdependenpf the We remark that the above matching problem is considered at
scheduling and beamformer choices in other streams. M&@ch BSi individually, as illustrated in Fig. 3.
specifically, if some usek is scheduled in the data stream Weighted bipartite matching is a well-studied problem in
(i,m), i.e., sim = k, then the optimal transmit beamformetthe field of combinatorics [31]. It can be efficiently solveg b
of user k with respect to(i,m), denoted asr ;,,, can be the existing algorithms with polynomial-time computatidn
determined by solvingf,/dv,,, =0, i.e., complexity using, e.g., the Hungarian algorithm [6] and the
auction algorithm [7], with a computational complexity of
O((K + M)3). Further, because in practice the matching
Thyim = Z H; kyg'ny;nHj,k + Nk im 1 weights &, are always evaluated with finite precision, in
’ this finite-precise case, the complexity of matching can be
ot reduced taO((K + M)?) using the algorithm in [32].

V(L4 Yom JH yim. (40) g solving forx in problem (43), we recover the optimal
where the dual variable; ;,, accounts for power constraintscheduling variable* by
(32b) and is optimally determined by the complementary

-

-1

(4,m)

e o ‘
slackness condition k, it x’“vim__ 1 for somek € K (44)
. . ) @, otherwise

Me,im = mln{nk,m >0: HTk,im(nk,im)H < Pmax}- (41) . . . .

- o o ) where the decisionz is made in data streary,m) if any
This 77 ;,, can be efficiently evaluated via bisection search.,ser scheduled in the stream would have contributedi,to

negatively. Note thatz} , ~must be zero ifé; ., < 0.
In practice, we can further facilitate weighted matching by
removing the edges corresponding to negaivg,, from the

bipartite graph. The transmit beamformers of the scheduled

users are then set to the optimal values in (40) accordingly:

Therefore, the utility value (in terms of;) of scheduling
userk in one particular data strea, m) can be determined
analytically. This allows solving and'V jointly by weighted
bipartite matching. To formalize the idea, we define thatwytil
value of assigning usek to data streanti, m) as

* H * .
o im = wp Tog(1 4+ 7im) — Wi Vi = Thim, It T, = 1 for some(i, m). (45)

t t 5 5 We summarize the proposed iterative distributed optimiza-
+ 2¢/wr (1 + Yim) - Re{Tk,imHi,kyim} — o [lyiml tion in Algorithm 2.

. - L Like Algorithm 1, this algorithm guarantees convergence
— g Vi e im Ty HY  yin.  (42) 9% ' -
Jro BB R (ke m gk I although it is not a block coordinate ascent method, asdstate

N in the following proposition.
Then, thef, maximizing problem (38) reduces to the follow-

(J’n)



10

Algorithm 2 Joint Scheduling and Beamforming Algorithm and then find the discrete solutigne V that is closest to the

Initialization: Initialize s, V and~. relaxed solutiorw;,,,, for every(i,m) pair, i.e.,
repeat ] B
1) UpdateY by (39); Thiim = Argmin | — Viml|2 (48)

2) Updatey by (36);
3) Updates andV jointly by (40), (44) and (45);
until the function valuef, converges.

where the relaxed solutiow;,, is ther, ;,, in (40) without the
discrete codebook constraint. Observe that the right-lsaiel
of (47) is a concave quadratic function of variakleand then
after completing the square, it can be shown that updating
- ) ) . Trim DY (48) yields exactly the same solution as in (47).
Proposition 2. Algorithm 2 is guaranteed to converge, W'thTherefore, although the above relax-and-then-round @mbro
the weighted sum rat¢, monotonically nondecreasing aftery (48) is a common heuristic for discrete beamforming, our
each iteration. The converged solution is a stationarytpafin £p framework gives a theoretical justification by showinatth
fo with respect toV if s is assumed to be fixed. this approach actually maximizes the reformulated objecti
Proof. See Appendix A. O Jfq which acts as a lower bound of the original objectjfe
according to Lemmas 1 and 2 in Appendix A.

We note that the SISO algorithm in Section IV is a special An efficient way to perform the optimization (47) can
case of the weighted bipartite matching approach for tm@w be devised based on (48), as stated in the following
MIMO problem. Further, we can use the same agument pooposition.
show that computing the optimalfor fixed V is already NP-

- Proposition 3 (Nearest Point Projection for Beamforming
hard, so the above convergence result is likely the best Opgs optimal update (47) for discrete beamforming can be

can hope for. . : o . ;
. . . ... . realized by the nearest point projection as in (48 th a
As a final remark, Algorithms 1 and 2 can be 'n't'al'ze%orr:;utatignal complexity%@l(logwjn ! in (48) wi

with simple but reasonable heuristic. For example, a2
MIMO network, the two users with the highest weights in eadRroof. Construct ak-d tree [33] for all the elements of

cell can be scheduled at the beginning, and their beamfermisr advance. The following three steps produce the nearest-
can be set to maximize the signal strength. Moreover, we $stint projection (48): Inser¥’;,,, in the k-d tree; then search
some small constardt > 0 and use the convergence criteriofor the nearest neighbor of;,,, in the tree and output it as

£ — f8=1) < 5 wheret is the iteration index. the projection result; finally delete;,, from the tree. The
insertion, search, and deletion operations all have arageer
complexity O(log |V)). O

C. Discrete Beamforming
We remark that a similar result can be derived for discrete

So far it is assumed that each beamformey, can be ower control in the SISO case, in which case the search

set t02 an arbltr_ary v_e(?tor as long as the power constra H}ough thek-d tree reduces to a one-dimensional bisection
[[Vim || < Pmax IS satisfied. We now consider a discrete sce;

Search.
nario for beamforming where the choice foy,, is restricted

to a codebook
D. Simulation Results

V=A{drd2 o} (46)  \we validate the proposed FP-based approach by simulating
In the above, eackp,, € CV (for n = 1,...,|V|) represents a network consisting of 7 cells in a wrapped around topology.
a possible beamforming vector. A total of 84 users randomly distributed in the network are

In this case, if some uséris scheduled in the data streanmassociated with the BS to which the channel is the strongest.
(i,m), then its optimal transmit beamformeg ., in terms of Each user is equipped with 2 antennas and each BS is equipped
/4 can be obtained by searching through the codebook, i.ewith 4 antennas. The uplink MIMO channels consist of two

components: a large-scale fading component (i.e., patlsod
o . frrt o shadowing), which follows the model discussed in Section
Thyim = argl??\)/({ 2v/w(L+ Yim) - Re{v Hivky"”} IV-D, and a Rayleigh fading component. The user weights
; fext in every time-slot are updated as the reciprocal of the long-

— > yLHwWH y, } (47)  term average rates in order to maximize a proportional ésisn

(4,n) utility. All other parameters, i.e., the channel pathlossde,
The bipartite matching process (43) can then be performedckground noise level, maximum transmit power level, and
with &, set according to (42) but using the abowg;,,. bandwidth, follow the settings in Section IV-D.

After matching, the optimaV is recovered by (45). The following methods are introduced as benchmarks:

To find the optimalv;,,, in the discrete search (47) requires « WMMSE The WMMSE algorithm is introduced in [25],
at most a computational complexity 6 |V|). This complexi- [26]. To use WMMSE for user scheduling, we initialize
ty can be further reduced t0(log |V|) by taking advantage of all the users in the network with some random beam-

the functional structure of (47). The idea is to first maxieniz formers, then run the WMMSE algorithm to optimize
fq over V without considering the discrete constraint (46) weighted sum rate. At convergence, most users would
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TABLE Il
SUM LOG-UTILITIES OF THE PROPOSED COORDINATED UPLINK

SCHEDULING AND BEAMFORMING METHOD AS COMPARED TO
09 THE TWO BASELINE SCHEMES
o8y Algorithm Total log-utility

g 07f WMMSE 175.87

2 oel Fixed Interference 183.45

5 Proposed FP Method 193.79

o 05f

E 0.4

E VI. CONNECTION WITH WMMSE

O g3l —p— WMMSE E . .

—o— Fixed interference As already mentioned, the well-known WMMSE algorithm
0zf ——%— FP method 1 [25], [26] can already be used for the uplink coordinated
01l , joint scheduling, power control, and beamforming problem.

: : Assume that all the users in the network are scheduled at the

0 10 20 30 40 50 beginning; run the WMMSE algorithm to design beamformers
Data rate (Mbps) for all the users; then only schedule the users with positive
transmit power levels at the end. Interestingly, there ifaaot

Fig. 4. Comparison of the proposed FP-based coordinatethkupiser a connection between WMMSE and our FP approach
scheduling and beamforming method with two baseline methiodterms ’

of cumulative distribution function of user rates.

A. Interpretation of WMMSE from FP
The WMMSE algorithm is originally derived based on a

) _ ) Zsﬁi)[gnal minimum mean-square-error analysis [25], [26]. hatv
be assigned zero beamformer; those assigned nonzgjiy, s "\we give another derivation for WMMSE based on

geaqurmgrs ?_r? lche%uled.stgr schedr?ling is therefmg proposed quadratic transform. Recall that after the use
eterminedmplicitly by beamforming. In the SISO case ¢ | 5grangian dual transform, the original objective fuot
the beamforming step reduces to power control. fo(s, V) isrecast tof,.(s, V,~), in which the primal variables

y Fixe‘?' inte_rference methodhis _heurist_ic method exte_ndss andV only appear in the last sum-of-ratio term. Specifically,
the fixed interference method in Section IV-D. Iteratively, 1 (atio contained in the sum-of-ratio term bf can be
apply a beamforming method (e.g., WMMSE) for ﬁxe‘i/ritten as

user scheduling variabke and then optimize for fixed di vt
beamformers. This works well in the downlink because o sim
the optimal scheduling can be explicitly determined [12jvhere two new notationsgl;,, and B;,, are introduced to
For the uplink, the heuristic is to emulate the downlink bgimplify notation:
assuming fixed interference from the neighboring cells.

,8im

dim = Ws,,, (1 + Vs, ) (54)
The proposed algorithm is compared with the aforemeAnd ) ; :
tioned two baselines. As shown in Fig. 4, the proposed FP- Bim =0’T+ Y Hi,, v, v H . (55)
based method has a significant advantage over the baselines (4,m)

particularly for low-rate users. For example, the ratesh&f t Recall that in deriving the further reformulation of,,
10th-percentile users is improved by at least 50% the pebosye propose in Section V-B to apply the multidimensional

algorithm. These low-rate users are mostly located close dQadratic transform in Theorem 2 by identifying the ratio
the cell edges, highlighting the important role of coord&tg pattern of (53) as

uplink scheduling and beamforming in interference mitigrat

Table Il shows that the proposed FP method substantially (‘/dimHi,simVsim)TBi_m{ (~/dimHi,smV5m) (56)
improves the sum log-utility in the network as compared to

the benchmarks, verifying that interference management by Numerator vectorx

coordinating user schedules and beamformers is crucifleto twhere a represents the numerator vector in the multidimen-
network performance. sional FP problem.

fq(SaV777Y) =

1,Sim

(i,m) (4,m)

Z wswn log(]‘ + 77‘7774) — Yim + (1 + 77‘7774) 2Re{v‘17mHT }’zm} - y:er 021 + Z Hi73jnvsjnv‘1jn HI,SJ-.,,, Yim

(58)
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However, this is not the only way to implement the FRollect (V,~,Y) with respect to every user in the network,
technique. In fact, we could have applied the multidimenaio thus the overall communication complexity of WMMSE is

guadratic transform to the ratios in a different way: O(M K B2+ N K B?%). WMMSE in general has a much higher
communication complexity, because normally > M (i.e.,
dim ( (His,, Ve ) BiY (Hi, Ve, > . (57) only a small portion of users in the cell are scheduled in each
S~ time-slot).

Numerator vectoix . . .
We further analyze theomputational complexityAssuming

that the classic Hungarian algorithm is used for weight-

fa as shown in (5_8) at .the bottom of Fhe page. .. ed bipartite matching, the overall computational complex-
This reformulation gives the following iterative algonith ity of Algorithm 2 can be shown to be)(cep), where

go[ogtimizi_ng begrrrformers. Findingthe opt_irﬁiilby solving cep = MAB? + MN3KB + (M3N + MN?)KB? + (K +
fq/0yim = 0 with respect to eachi,m) pair amounts o y3p  The WMMSE algorithm involves a matrix multi-
-1 plication with respect to every user-BS pair in the net-
Vim = | 021+ Z Hi,sjnvsjnVZ.n sz~ Hi., Vs, work. Consequently, it requires a3 comgutational cgomp};axit
! wam O(CWMMSE)n wherecwmmse = (M + N )KB+M KB*+
(59) (MN + N?)K?B?. We remark thatmatrix chain ordering
Note that the above;,,, solution is exactly an MMSE receiver.needs to be optimized for both of the algorithms to find the

Likewise, the optimal transmit beamformer is most efficient way of multiplying matrices. For simplicitye
further assume that/ and N are fixed and also thdt is much

greater than botll/ and N. Then, the above computational
Vorw = | D dinH  yinyl Hjs, + 1151 complexities become

(@:m) CFp = KB?+ K®B and CWMMSE = KQBQ, (61)
cdimH , yim (60)

In this case, we would have arrived at a different reformoiat

(4:n)

so Algorithm 2 is more complex if the number of usdfsis
where 75, = min{nim > 0 : [[¥(im)lI*> < Puax} IS large. However, as already mentioned in Section V-B, bezaus
the optimal dual variable for the power constraint (32b) bfhe matching weights are in practice expressed with finite
complementary slackness. Finally, the update eémains the precision, the efficiency of bipartite matching can be invex

same as in (36). When iteratively applying the above updatgém O (k) to O(K?) by using the algorithm of [32]. Then,
of 4, V andY for the fixed scheduling variable we arrive at we have

exactly the WMMSE algorithm for beamforming. Therefore, ) ) R
WMMSE can be interpreted as a specific way of using FP to crp = KB” + K°B < K*B" = cwmmse- (62)
solve the optimal beamforming problem. In this case, Algorithm 2 is overall more computationally
However, unlike our proposed reformulatignin (37), this  efficient than WMMSE.
fq does not allow an explicit distributed solution fgrbecause
the discrete variables;’s are not decoupledn the last term
of fq as shown in (58). While the FP-based method proposed
in this paper is able to use weighted bipartite matching to This paper explores the application of FP for the discrete (o
find the optimals, the WMMSE algorithm can only optimize mixed discrete-continuous) problems for the communicatio
the scheduling variable implicitly by optimizing beamfaers system design. The central idea is to decouple the comedcat
for all the users in the network. This implicit scheduling ointerfering interactions among the different links by a aelov
WMMSE is not only more computationally complex, but alsguadratic transform and a Lagrangian dual transform, byere
has inferior performance as shown in the previous section.allowing efficient and distributed optimization. This pape
illustrates the proposed FP approach by considering thekupl
user scheduling, power control, and beamforming problam fo
wireless cellular networks. By incorporating weightedasifie
We now compare the complexities of Algorithm 2 and thenatching, this paper devises a novel use of FP whereby the
WMMSE method [25], [26] (which is modified to includediscrete scheduling variables can be jointly optimizedhwit
scheduling as stated in Section VI). For ease of analysiBe continuous variables such as power and beamformers. As
assume that each cell has the same number of userdsLetompared to the existing methods, the proposed FP approach
be the number of users per cell; 18 be the total number treats discrete optimization rigorously without relarati The
of BSs deployed throughout the network. Following [26], weaper further shows that the well-known WMMSE algorithm
evaluate the algorithm complexity with respect to each douris a particular form of FP, but in contrast to the proposed
of iteration. approach, WMMSE is not well equipped to deal with discrete
First consider theommunication complexityn Algorithm user scheduling variables. As a final remark, we mention that
2, every BS needs to colle¢s, V,Y) excepty with respect many other discrete optimization problems in communicatio
to each(j,n) pair, so the overall communication complexitysystem design are closely related to scheduling. Thus, the
of Algorithm 2 is O(M?B? + M N B?), which is indepen- proposed FP approach can have wider applications in com-
dent of K. In the WMMSE method, each BS needs tanunication system design.

VII. CONCLUSION

B. Complexity Comparison
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APPENDIXA
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