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Abstract— The complexity-rate tradeoff for error-correcting
codes below the Shannon limit is a central question in coding
theory. This paper makes progress in this area by presenting a
joint numerical optimization of rate and decoding complexity for
low-density parity-check codes. The focus of this paper is on the
binary symmetric channel and on a class of decoding algorithms
for which an exact extrinsic information transfer (EXIT) chart
analysis is possible. This class of decoding algorithms includes
the Gallager decoding Algorithm B. The main feature of the
optimization method is a complexity measure based on the EXIT
chart that accurately estimates the number of iterations required
for the decoding algorithm to reach a target error rate. Under
a fixed check-degree distribution, it is shown that the proposed
complexity measure is a convex function of the variable-degree
distribution in a region of interest. This allows us to numerically
characterize the complexity-rate tradeoff. We show that for the
Gallager B decoding algorithm on binary symmetric channels,
the optimization procedure can produce complexity savings of
30-40% as compared to the conventional code design method.

I. INTRODUCTION

The design of irregular LDPC codes, i.e., the task of finding
good degree distributions, for different decoding algorithms
and channel types has been studied extensively in the literature
(e.g. [11, [2], [3]). The common design objective in all these
approaches is to find a degree distribution that maximizes the
decoding threshold for a given rate or, equivalently, to find
the highest-rate decodable code for a given threshold (channel
condition). However, highly optimized codes obtained from
these design procedures cannot actually be used at their thresh-
old as their decoding would require an impractical number
of iterations [3]. In fact, when a uni-parametric analysis of
the decoder — an extrinsic information transfer (EXIT) chart
analysis for example — is an exact analysis, it can be shown
that the required number of iterations for converge approaches
infinity as the rate of a decodable code increases [4]. The
traditional solution to this problem is to optimize the code
design for a slightly worse channel condition. This way, the
convergence would be ensured in a finite number of steps when
the code is used in the actual channel. Notice that the actual
channel is better than the channel used for the design. This
is not necessarily the best solution, as codes highly optimized
for one channel condition end up being used in a different
channel.

In this paper, we adopt the approach of optimizing the code
parameters directly under a given channel condition and under
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a fixed rate- or complexity-constraint. The central observation
of this paper is that the maximization of rate subject to a
given complexity constraint, or equivalently the minimization
of complexity subject to a given rate constraint, is in fact
numerically feasible. Such an optimization is made possible
by a careful complexity analysis based on EXIT charts. We
show that whenever the EXIT chart analysis is exact (e.g., for
Gallager B decoding algorithm [5] [6],) an accurate measure
of decoding complexity can be obtained from the EXIT chart
shape directly. Further, this complexity measure is a convex
function of the variable-degree distributions (for a fixed check-
degree distribution and under a particular condition to be
discussed later.) This observation allows us to use convex
optimization techniques to find the optimal variable-degree
distribution subject to a complexity constraint and to char-
acterize the precise rate-complexity tradeoff for the Gallager
decoding Algorithm B on a binary symmetric channel. In
particular, we show that as compared to the conventional code
design method, about 30-40% reduction in complexity can be
obtained with such an optimization.

The optimization scheme presented in this paper is one step
toward addressing a central issue in coding theory: the rate-
complexity tradeoff below the Shannon limit. In this direction,
Khandekar and McEliece [7] and Sason and Urbanke [8]
addressed this issue for the binary erasure channel and for
irregular repeat-accumulate codes. The current work appears
to be among the first to address the same issue for the
binary symmetric channel. Our approach is numerical and the
analysis is carried out for a particular fixed class of decoding
algorithms.

The rest of this paper is organized as follows. In Section
II, we review Gallager’s decoding algorithm B and present
an analysis of its decoding complexity per information bit per
iteration. A description of EXIT chart analysis, in particular for
Gallager B decoding algorithm, is presented, and the measure
of complexity per information bit is defined. In Section III,
we derive an approximate formula for the number of required
iterations for convergence to a target error rate in a given EXIT
chart and prove its convexity properties. In Section IV, the
optimization problem is formulated, and the numerically op-
timized degree distributions and the complexity-performance
tradeoff curves are presented. We conclude the paper in
Section V.
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II. BACKGROUND

An ensemble of irregular LDPC codes is defined by its
variable-degree distribution {A2, A3, ...} and its check-degree
distribution {p2, p3,...}, where \; denotes the fraction of
edges incident on variable nodes of degree 7 and p; denotes
the fraction of edges incident on check nodes of degree j.
Given the degree distribution of an LDPC code, it is easy to
see that the design rate of the code is

 Bi
R=1- El i . €))
The actual rate might be slightly higher, if some of the parity
check constraints are linearly dependent.

There are many decoding algorithms available for LDPC
codes. In this work we focus on Gallager’s decoding algorithm
B, which will be referred to as Algorithm B in the remainder
of this paper. Algorithm B is the focus of this paper because
it has the property that its EXIT chart analysis is exact. As
shown by Gallager [5], the convergence behavior of Algorithm
B can be visualized by plotting the error rate of the extrinsic
messages in one iteration as a function of the error rate in
the previous iteration. This is almost equivalent to the EXIT
chart analysis of [9] and exactly equivalent to the EXIT chart
analysis of [4]. The main difference between these two types of
analysis is that in [9] and many other works, EXIT charts track
the evolution of mutual information, whereas the generalized
EXIT charts of [4] track the error rate.

EXIT chart analysis based on error rate has a key advantage
in that the EXIT chart of an irregular code can be decomposed
as a linear combination of EXIT charts of regular codes (i.e.,
elementary EXIT charts [4]), whereas for mutual information
EXIT charts, this decomposition is not always possible. This
observation is central to the formulation of the optimization
problem as will be seen in the next section.

A. Gallager decoding algorithm B

In Algorithm B, introduced by Gallager [5], the message
alphabet is {0, 1}. No soft information is used. The update
rule at a check node c is

yen(c)—{v}
where @ represents modulo-two sum of binary messages,
my_.. represents a message sent from variable node y to the
check node ¢ and n(c) represents the set of the neighbors of
check node c.
At a variable node v the outgoing message 1, is

mo if Jy1,y2, ...,y € n(v) — {c}
such that my, ., = -+ =my, ., =Mo; (3)
mg otherwise,

Me—sy = my—»ca (2)

My—c =

where b is an integer in the range | ©-1] < b < d,. Here,
the outgoing message of a variable node is the same as the
intrinsic message, unless at least b of the extrinsic messages
disagree. The value of b may change from one iteration to
another. The optimum value of b for a regular (d,, d.) LDPC

Input to the next iteration

?

Channel D—»Q

Output from the previous iteration

Fig. 1. One iteration of decoding for a regular (3, 6) code

code is computed by Gallager [5] and is the smallest integer
b for which

1—po 1+ (11— 2p)dc_1 2b—d,+1

po ~ [1—-(1-2p)de—t ’

where pg and p are channel crossover probability (intrinsic
message error rate) and extrinsic message error rate, respec-
tively. For irregular codes, one can use Algorithm B for nodes
of different degree separately.

“

B. EXIT chart analysis for Algorithm B

Using (2), (3) and (4), for a given check- and variable-
degree distribution and a given channel condition, one can
easily produce a p;, Vvs. poyt EXIT chart. Here, p;, is the
error rate before an iteration (error rate of messages sent from
variable nodes to check nodes) and p,,: is the error rate after
an iteration, i.e., after updating the messages at the check
nodes and back at the variable nodes (see Fig. 1). Fig. 2 shows
such an EXIT chart for a regular (4, 8) code.

For an irregular code, at each p;,, the p,,: at the output
of variable nodes is computed by first computing the error
rate p. at the output of the check nodes using Baye’s rule,
then similarly updating the p,,: at the output of the variable
nodes. The resulting p,,; can be equivalently computed by
linearly combining the corresponding p ;s for regular codes.
Consequently, when the check degree distribution is fixed, the
EXIT chart of an irregular code is simply a linear combination
of EXIT charts of regular codes weighted by the variable
degree distribution.

The ability to linearly combine EXIT charts of regular codes
to produce the EXIT chart of an irregular code is an important
feature for EXIT charts based on tracking the probability of
error [4]. This feature allows the optimization problem to be
formulated easily. The EXIT chart corresponding for a fixed
variable-degree ¢ is called the elementary EXIT chart of degree
i. It is denoted as f;(p) in the rest of the paper. For example
f3(p) is the EXIT chart of a code whose variable nodes are all
degree three. With a variable-degree distribution A;, the EXIT
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Fig. 2. Shows the Algorithm B EXIT chart for a regular (4, 8) code

chart of the irregular code becomes
f)=>_Xifi(p) 5)

The elementary EXIT charts can be pre-computed. The code
design variables are \; with Zl Ai=1and \; > 0.

Throughout this paper, the check-degree distribution is
assumed to be fixed. We do not expect this assumption
to result in significant performance degradation. Notice that
with fixed check-degrees, the capacity of the binary erasure
channel (BEC) can be achieved [10] and a performance very
close to the Shannon limit on the Gaussian channel has been
reported [11]. Our current work can be extended, and further
optimization of check-degree distribution is possible. But, we
do not do so here.

C. Decoding complexity per iteration

From the update rules of Algorithm B, it can be shown that
at a variable node of degree d,, 3d, operations are needed to
compute all the output messages. This is computed as follows.
At each variable node, one can add all d,, 4+ 1 input messages
in d, operations. To compute each outgoing message, an
additional subtraction and an additional comparison (with b)
are required. As d,, outgoing messages need to be computed in
each variable node, the total number of operations (addition,
subtraction and comparison) per iteration for each variable
node is d,+2d,,. Thus, the total number of operations summed
over all variable nodes is 3 ZU dy, or equivalently 3F, where
FE is the number of edges in the graph.

Similarly, at a check node of degree d., a total of 2d, — 1
operations is needed. The number of operations can be counted
as follows: first (d. — 1) modulo-two additions need to be
performed to find the total sum modulo-two, then another
modulo-two addition is needed for every outgoing message. As
there are d. outgoing messages, the total number of operations
is 2d. — 1. Summing across all check nodes, the total number
of operations at the check side of the code is therefore 2E—C,
where C is the number of check nodes.

The total complexity is then 5F — C per iteration. Since
the number of edges in the graph is much larger than the
number of check nodes, i.e., 5F > C, the complexity can be
approximated by 5E. Finally, as the complexity per iteration
is implementation-dependent, it is reasonable to assume that
the complexity is simply proportional to E.

The above complexity computation is for the whole code-
word on a per-iteration basis. The complexity per information
bit per iteration is then proportional to

E

R’
where R is the code rate and n is the block length. As a result,
complexity per information bit, K, is
B N
a ZiAi/i_zipi/i7
where N is the number of iterations. To estimate the total

complexity, the crucial parameter is therefore the total number
of iterations.

K (©)

III. ANALYSIS OF NUMBER OF ITERATIONS

One of the main points of this paper is that the total number
of iterations can be accurately estimated based on the shape
of the EXIT chart f(p). In the following, we present an
approximate formula for the number of iterations needed to
go from some initial probability p to some target probability
of error p; as a function of f(p).

Consider first an EXIT chart which is a straight line, f(p) =
ap. In this case, the number of iterations needed to go from
p to p; can be computed exactly:

N — [ los(p) —log(p)
log(a) '
For a moment, let’s ignore the fact that [NV has to be an integer.
We can compute the incremental increase in N as a function
of the incremental change in p:

dN -1

dp  plog(a)’
Now, we may argue that for an arbitrary f(p) which is not
necessarily a linear function, the local behavior of N as a
function of p depends on an equivalent o, which is %. Thus,

to estimate the total number of iterations from pg to p;, we
may integrate the above:

@)

®)

Po dp .
pe plog (%) )

This formula is a surprisingly accurate estimate of the number
of iterations for a wide range of f(p)’s. Table I verifies
the accuracy of the complexity measure by listing the actual
number of iterations and that computed by the above formula
for several realistic EXIT charts.

Perhaps the most important property of the measure of
complexity (9) is that it is a convex function of the degree
distribution.

N =
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Number of Iterations: | Actual | Estimated
EXIT Chart 1 192 193.41
EXIT Chart 2 180 181.03
EXIT Chart 3 126 126.62
EXIT Chart 4 83 82.45
EXIT Chart 5 62 61.36

TABLE I

ESTIMATE OF NUMBER OF ITERATIONS, pg = 0.05, pt = 106

Theorem 1: Let f(p) = >, \ifi(p) where f;(p) is the
elementary EXIT chart corresponding to degree-i variable
nodes. The measure of number of iterations as expressed in (9)
is a convex function of )\; in the region where f(p) > e~ 2p.

Proof: To show the convexity of an integral, we only need
to show the convexity of the integrand. Further, to show the
convexity as a function of \;, we only need to show convexity
along any line in the A-plane. Let A\, = v, A + (; for some
arbitrary ; and (;. The convexity of the integrand as a
function of A can be verified directly by taking its second
derivative. The integrand is of the form:

1/p
)\ =
IN = F o B
where C' = log(p), A = 3=, v fi(p) and B =}, B; fi(p).
Using the fact that C' > log(A\ + B), a direct verification
reveals that the second derivative is always positive if C' —
log(AX + B) < 2, which is equivalent to f(p) > e 2p. O

(10)

The condition f(p) > e~2p is a fairly mild one at rates
close to the decoding threshold. Numerically, the curve f(p) =
e 2p = 0.1353p is substantially below the line f(p) = p.
At rates close to the decoding threshold, an optimized code
generally has an EXIT chart that is between f(p) = p and

f(p) = 0.1353p.

IV. OPTIMIZATION PROBLEM
A. Formulation

We are now ready to formulate the problem of minimizing
the complexity of a code subject to a rate constraint.

minimize K

subject to R > Ry. (11

The optimization variables are the variable-degree distribution
parameters A;. Implicitly, we must have Zi Ai =1and \; >
0. It is easy to see from (1) that if the check-degree distribution
p; 1s fixed, the code rate R is simply a function of \;. More
specifically, the rate constraint becomes a linear constraint:

DNz 1_IROZ”/Z*

Clearly the above constraint would be met with equality for the
minimal complexity code. In this case, the complexity measure
K is directly proportional to the number of iterations N. As
N 1is a convex function of \; and the constraints are linear,

12)

this is a standard convex programming problem for which
efficient numerical algorithms are available. For the sake of
completeness, the optimization problem is:

1— Ry )/PO dp
Ro>2ipili) Jp, plog <#>

> Nifi(p)
1
subject to g )\i/izl 7 g pift
X - 0 -

Z)\izl

Ai >0

minimize (

(13)

Here, Ry, p; and f;(p) are fixed parameters. \; is the optimiza-
tion variable. In practice, the integral is numerically evaluated
as a Riemann sum.

B. Numerical Results

We used an interior-point method to perform the numerical
minimization of the code complexity subject to rate constraints
on a binary symmetric channel with crossover probability of
0.05 and a target probability of error 10 ~%. The check degree
is fixed to 14 and variable degrees of up to 20 are used.

The optimized complexity rate tradeoff result is plotted in
Fig. 3. Also plotted on the same figure is the complexity
of the codes designed using conventional methods. In the
conventional method, the code is designed for a slightly worse
channel (with a higher crossover probability) but tested in the
actual channel. Our convex optimization approach significantly
lowers the complexity. In many cases, the complexity savings
are about 30-40%.

The tradeoff figure also illustrates clearly that Algorithm B
is capable of decoding at a rate up to 0.575. As expected, the
complexity-rate tradeoff curve is the steepest in that regime,
and it tapers off rapidly as the rate decreases below 0.56.

Fig. 4 and Fig. 5 show the EXIT charts of the optimized
codes in the linear scale and log scale, respectively. As
expected, the EXIT chart opens more widely as rate decreases
and complexity decreases. In a log-scale, the EXIT charts
at low probabilities essentially behave like f(p) = ap for
different values of the coefficient. All EXIT charts are within
the convexity region stated in Theorem 1. Table II lists the
optimized degree distributions at various complexity levels.

V. CONCLUDING REMARKS

The paper illustrates that the conventional LDPC code-
design in which the design rate is maximized subject to
successful decoding is not necessarily the best approach. The
central observation of this paper is that rate maximization can
be done more directly subject to a complexity constraint. Our
numerical method relies on an accurate EXIT chart analysis
of the decoding algorithm based on the probability of error,
and on the fact that the complexity in terms of the number
of decoding iterations is a convex function of the degree
distribution (which is true at rates close to the decoding
threshold.) When the EXIT chart analysis is exact (as is
the case for Algorithm B), this method produces an accurate
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numerical characterization of the complexity-rate tradeoff for
optimized codes.
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