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Abstract— The complexity-rate tradeoff for error-correcting
codes below the Shannon limit is a central question in coding
theory. This paper makes progress in this area by presenting a
joint numerical optimization of rate and decoding complexity for
low-density parity-check codes. The focus of this paper is on the
binary symmetric channel and on a class of decoding algorithms
for which an exact extrinsic information transfer (EXIT) chart
analysis is possible. This class of decoding algorithms includes
the Gallager decoding Algorithm B. The main feature of the
optimization method is a complexity measure based on the EXIT
chart that accurately estimates the number of iterations required
for the decoding algorithm to reach a target error rate. Under
a fixed check-degree distribution, it is shown that the proposed
complexity measure is a convex function of the variable-degree
distribution in a region of interest. This allows us to numerically
characterize the complexity-rate tradeoff. We show that for the
Gallager B decoding algorithm on binary symmetric channels,
the optimization procedure can produce complexity savings of
30–40% as compared to the conventional code design method.

I. INTRODUCTION

The design of irregular LDPC codes, i.e., the task of finding
good degree distributions, for different decoding algorithms
and channel types has been studied extensively in the literature
(e.g. [1], [2], [3]). The common design objective in all these
approaches is to find a degree distribution that maximizes the
decoding threshold for a given rate or, equivalently, to find
the highest-rate decodable code for a given threshold (channel
condition). However, highly optimized codes obtained from
these design procedures cannot actually be used at their thresh-
old as their decoding would require an impractical number
of iterations [3]. In fact, when a uni-parametric analysis of
the decoder — an extrinsic information transfer (EXIT) chart
analysis for example — is an exact analysis, it can be shown
that the required number of iterations for converge approaches
infinity as the rate of a decodable code increases [4]. The
traditional solution to this problem is to optimize the code
design for a slightly worse channel condition. This way, the
convergence would be ensured in a finite number of steps when
the code is used in the actual channel. Notice that the actual
channel is better than the channel used for the design. This
is not necessarily the best solution, as codes highly optimized
for one channel condition end up being used in a different
channel.

In this paper, we adopt the approach of optimizing the code
parameters directly under a given channel condition and under
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rate- or complexity-constraint. The central observation
paper is that the maximization of rate subject to a

omplexity constraint, or equivalently the minimization
plexity subject to a given rate constraint, is in fact
cally feasible. Such an optimization is made possible
reful complexity analysis based on EXIT charts. We
at whenever the EXIT chart analysis is exact (e.g., for
r B decoding algorithm [5] [6],) an accurate measure
ding complexity can be obtained from the EXIT chart
irectly. Further, this complexity measure is a convex

n of the variable-degree distributions (for a fixed check-
distribution and under a particular condition to be

ed later.) This observation allows us to use convex
ation techniques to find the optimal variable-degree
tion subject to a complexity constraint and to char-
the precise rate-complexity tradeoff for the Gallager

g Algorithm B on a binary symmetric channel. In
lar, we show that as compared to the conventional code
method, about 30–40% reduction in complexity can be
d with such an optimization.
optimization scheme presented in this paper is one step
addressing a central issue in coding theory: the rate-
xity tradeoff below the Shannon limit. In this direction,
kar and McEliece [7] and Sason and Urbanke [8]
ed this issue for the binary erasure channel and for
r repeat-accumulate codes. The current work appears
among the first to address the same issue for the
symmetric channel. Our approach is numerical and the
s is carried out for a particular fixed class of decoding
ms.
rest of this paper is organized as follows. In Section
review Gallager’s decoding algorithm B and present
ysis of its decoding complexity per information bit per
n. A description of EXIT chart analysis, in particular for
r B decoding algorithm, is presented, and the measure
plexity per information bit is defined. In Section III,
ve an approximate formula for the number of required
ns for convergence to a target error rate in a given EXIT
nd prove its convexity properties. In Section IV, the
ation problem is formulated, and the numerically op-
degree distributions and the complexity-performance

f curves are presented. We conclude the paper in
V.



II. BACKGROUND

An ensemble of irregular LDPC codes is defined by its
variable-degree distribution {λ2, λ3, . . .} and its check-degree
distribution {ρ2, ρ3, . . .}, where λi denotes the fraction of
edges incident on variable nodes of degree i and ρ j denotes
the fraction of edges incident on check nodes of degree j.
Given the degree distribution of an LDPC code, it is easy to
see that the design rate of the code is

R = 1 −
∑

i
ρi

i∑
i

λi

i

. (1)

The actual rate might be slightly higher, if some of the parity
check constraints are linearly dependent.

There are many decoding algorithms available for LDPC
codes. In this work we focus on Gallager’s decoding algorithm
B, which will be referred to as Algorithm B in the remainder
of this paper. Algorithm B is the focus of this paper because
it has the property that its EXIT chart analysis is exact. As
shown by Gallager [5], the convergence behavior of Algorithm
B can be visualized by plotting the error rate of the extrinsic
messages in one iteration as a function of the error rate in
the previous iteration. This is almost equivalent to the EXIT
chart analysis of [9] and exactly equivalent to the EXIT chart
analysis of [4]. The main difference between these two types of
analysis is that in [9] and many other works, EXIT charts track
the evolution of mutual information, whereas the generalized
EXIT charts of [4] track the error rate.

EXIT chart analysis based on error rate has a key advantage
in that the EXIT chart of an irregular code can be decomposed
as a linear combination of EXIT charts of regular codes (i.e.,
elementary EXIT charts [4]), whereas for mutual information
EXIT charts, this decomposition is not always possible. This
observation is central to the formulation of the optimization
problem as will be seen in the next section.

A. Gallager decoding algorithm B

In Algorithm B, introduced by Gallager [5], the message
alphabet is {0, 1}. No soft information is used. The update
rule at a check node c is

mc→v =
⊕

y∈n(c)−{v}
my→c, (2)

where ⊕ represents modulo-two sum of binary messages,
my→c represents a message sent from variable node y to the
check node c and n(c) represents the set of the neighbors of
check node c.

At a variable node v the outgoing message mv→c is

mv→c =




m0 if ∃y1, y2, . . . , yb ∈ n(v) − {c}
such that my1→v = · · · = myb→v = m0;

m0 otherwise,
(3)

where b is an integer in the range � dv−1
2 � < b < dv . Here,

the outgoing message of a variable node is the same as the
intrinsic message, unless at least b of the extrinsic messages
disagree. The value of b may change from one iteration to
another. The optimum value of b for a regular (d v, dc) LDPC
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computed by Gallager [5] and is the smallest integer
hich

1 − p0

p0
≤

[
1 + (1 − 2p)dc−1

1 − (1 − 2p)dc−1

]2b−dv+1

, (4)

p0 and p are channel crossover probability (intrinsic
e error rate) and extrinsic message error rate, respec-
or irregular codes, one can use Algorithm B for nodes
rent degree separately.

T chart analysis for Algorithm B

g (2), (3) and (4), for a given check- and variable-
distribution and a given channel condition, one can

produce a pin vs. pout EXIT chart. Here, pin is the
te before an iteration (error rate of messages sent from

nodes to check nodes) and pout is the error rate after
ation, i.e., after updating the messages at the check
nd back at the variable nodes (see Fig. 1). Fig. 2 shows
EXIT chart for a regular (4, 8) code.

an irregular code, at each pin, the pout at the output
able nodes is computed by first computing the error
at the output of the check nodes using Baye’s rule,
ilarly updating the pout at the output of the variable

The resulting pout can be equivalently computed by
combining the corresponding pout’s for regular codes.

uently, when the check degree distribution is fixed, the
hart of an irregular code is simply a linear combination
T charts of regular codes weighted by the variable
distribution.
ability to linearly combine EXIT charts of regular codes
uce the EXIT chart of an irregular code is an important
for EXIT charts based on tracking the probability of
]. This feature allows the optimization problem to be
ted easily. The EXIT chart corresponding for a fixed
-degree i is called the elementary EXIT chart of degree

denoted as fi(p) in the rest of the paper. For example
s the EXIT chart of a code whose variable nodes are all
three. With a variable-degree distribution λ i, the EXIT
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Fig. 2. Shows the Algorithm B EXIT chart for a regular (4, 8) code

chart of the irregular code becomes

f(p) =
∑

i

λifi(p) (5)

The elementary EXIT charts can be pre-computed. The code
design variables are λi with

∑
i λi = 1 and λi ≥ 0.

Throughout this paper, the check-degree distribution is
assumed to be fixed. We do not expect this assumption
to result in significant performance degradation. Notice that
with fixed check-degrees, the capacity of the binary erasure
channel (BEC) can be achieved [10] and a performance very
close to the Shannon limit on the Gaussian channel has been
reported [11]. Our current work can be extended, and further
optimization of check-degree distribution is possible. But, we
do not do so here.

C. Decoding complexity per iteration

From the update rules of Algorithm B, it can be shown that
at a variable node of degree dv , 3dv operations are needed to
compute all the output messages. This is computed as follows.
At each variable node, one can add all dv + 1 input messages
in dv operations. To compute each outgoing message, an
additional subtraction and an additional comparison (with b)
are required. As dv outgoing messages need to be computed in
each variable node, the total number of operations (addition,
subtraction and comparison) per iteration for each variable
node is dv+2dv. Thus, the total number of operations summed
over all variable nodes is 3

∑
v dv , or equivalently 3E, where

E is the number of edges in the graph.
Similarly, at a check node of degree dc, a total of 2dc − 1

operations is needed. The number of operations can be counted
as follows: first (dc − 1) modulo-two additions need to be
performed to find the total sum modulo-two, then another
modulo-two addition is needed for every outgoing message. As
there are dc outgoing messages, the total number of operations
is 2dc − 1. Summing across all check nodes, the total number
of operations at the check side of the code is therefore 2E−C,
where C is the number of check nodes.

The
the num
number
approx
is impl
the com

The
word o
bit per

where R
comple

where
comple
of itera

One
of itera
of the
approx
go from
of erro

Cons
αp. In
p to pt

For a m
We can
of the i

Now, w
necessa
functio
to estim
may in

This fo
of itera
the acc
number
for sev

Perh
comple
distribu
total complexity is then 5E − C per iteration. Since
ber of edges in the graph is much larger than the
of check nodes, i.e., 5E � C, the complexity can be

imated by 5E. Finally, as the complexity per iteration
ementation-dependent, it is reasonable to assume that
plexity is simply proportional to E.

above complexity computation is for the whole code-
n a per-iteration basis. The complexity per information
iteration is then proportional to

E

Rn
,

is the code rate and n is the block length. As a result,
xity per information bit, K , is

K =
N∑

i λi/i − ∑
i ρi/i

, (6)

N is the number of iterations. To estimate the total
xity, the crucial parameter is therefore the total number
tions.

III. ANALYSIS OF NUMBER OF ITERATIONS

of the main points of this paper is that the total number
tions can be accurately estimated based on the shape
EXIT chart f(p). In the following, we present an

imate formula for the number of iterations needed to
some initial probability p to some target probability

r pt as a function of f(p).
ider first an EXIT chart which is a straight line, f(p) =
this case, the number of iterations needed to go from
can be computed exactly:

N =
⌈

log(pt) − log(p)
log(α)

⌉
. (7)

oment, let’s ignore the fact that N has to be an integer.
compute the incremental increase in N as a function

ncremental change in p:

dN

dp
=

−1
p log(α)

. (8)

e may argue that for an arbitrary f(p) which is not
rily a linear function, the local behavior of N as a
n of p depends on an equivalent α, which is f(p)

p . Thus,
ate the total number of iterations from p0 to pt, we

tegrate the above:

N =
∫ p0

pt

dp

p log
(

p
f(p)

) . (9)

rmula is a surprisingly accurate estimate of the number
tions for a wide range of f(p)’s. Table I verifies
uracy of the complexity measure by listing the actual
of iterations and that computed by the above formula

eral realistic EXIT charts.
aps the most important property of the measure of
xity (9) is that it is a convex function of the degree
tion.



Number of Iterations: Actual Estimated
EXIT Chart 1 192 193.41
EXIT Chart 2 180 181.03
EXIT Chart 3 126 126.62
EXIT Chart 4 83 82.45
EXIT Chart 5 62 61.36

TABLE I

ESTIMATE OF NUMBER OF ITERATIONS, p0 = 0.05, pt = 10−6

Theorem 1: Let f(p) =
∑

i λifi(p) where fi(p) is the
elementary EXIT chart corresponding to degree-i variable
nodes. The measure of number of iterations as expressed in (9)
is a convex function of λi in the region where f(p) ≥ e−2p.

Proof: To show the convexity of an integral, we only need
to show the convexity of the integrand. Further, to show the
convexity as a function of λi, we only need to show convexity
along any line in the λ-plane. Let λi = γiλ + βi for some
arbitrary γi and βi. The convexity of the integrand as a
function of λ can be verified directly by taking its second
derivative. The integrand is of the form:

g(λ) =
1/p

C − log(Aλ + B)
(10)

where C = log(p), A =
∑

i γifi(p) and B =
∑

i βifi(p).
Using the fact that C ≥ log(Aλ + B), a direct verification
reveals that the second derivative is always positive if C −
log(Aλ + B) ≤ 2, which is equivalent to f(p) ≥ e−2p. �

The condition f(p) ≥ e−2p is a fairly mild one at rates
close to the decoding threshold. Numerically, the curve f(p) =
e−2p = 0.1353p is substantially below the line f(p) = p.
At rates close to the decoding threshold, an optimized code
generally has an EXIT chart that is between f(p) = p and
f(p) = 0.1353p.

IV. OPTIMIZATION PROBLEM

A. Formulation

We are now ready to formulate the problem of minimizing
the complexity of a code subject to a rate constraint.

minimize K

subject to R ≥ R0. (11)

The optimization variables are the variable-degree distribution
parameters λi. Implicitly, we must have

∑
i λi = 1 and λi ≥

0. It is easy to see from (1) that if the check-degree distribution
ρi is fixed, the code rate R is simply a function of λi. More
specifically, the rate constraint becomes a linear constraint:

∑
i

λi/i ≥ 1
1 − R0

∑
i

ρi/i. (12)

Clearly the above constraint would be met with equality for the
minimal complexity code. In this case, the complexity measure
K is directly proportional to the number of iterations N . As
N is a convex function of λi and the constraints are linear,
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t numerical algorithms are available. For the sake of
teness, the optimization problem is:

inimize
(

1 − R0

R0

∑
i ρi/i

) ∫ p0

pt

dp

p log
(

pP
i λifi(p)

)

bject to
∑

i

λi/i ≥ 1
1 − R0

∑
i

ρi/i (13)

∑
i

λi = 1

λi ≥ 0

0, ρi and fi(p) are fixed parameters. λi is the optimiza-
riable. In practice, the integral is numerically evaluated
emann sum.

erical Results

sed an interior-point method to perform the numerical
zation of the code complexity subject to rate constraints
nary symmetric channel with crossover probability of
d a target probability of error 10−6. The check degree
to 14 and variable degrees of up to 20 are used.

optimized complexity rate tradeoff result is plotted in
Also plotted on the same figure is the complexity
codes designed using conventional methods. In the

tional method, the code is designed for a slightly worse
l (with a higher crossover probability) but tested in the
hannel. Our convex optimization approach significantly
the complexity. In many cases, the complexity savings
ut 30–40%.
tradeoff figure also illustrates clearly that Algorithm B
ble of decoding at a rate up to 0.575. As expected, the
xity-rate tradeoff curve is the steepest in that regime,
apers off rapidly as the rate decreases below 0.56.
4 and Fig. 5 show the EXIT charts of the optimized
in the linear scale and log scale, respectively. As
d, the EXIT chart opens more widely as rate decreases
mplexity decreases. In a log-scale, the EXIT charts
probabilities essentially behave like f(p) = αp for
t values of the coefficient. All EXIT charts are within
vexity region stated in Theorem 1. Table II lists the
ed degree distributions at various complexity levels.

V. CONCLUDING REMARKS

paper illustrates that the conventional LDPC code-
in which the design rate is maximized subject to
ful decoding is not necessarily the best approach. The
observation of this paper is that rate maximization can
more directly subject to a complexity constraint. Our

cal method relies on an accurate EXIT chart analysis
decoding algorithm based on the probability of error,
the fact that the complexity in terms of the number

oding iterations is a convex function of the degree
tion (which is true at rates close to the decoding
ld.) When the EXIT chart analysis is exact (as is
e for Algorithm B), this method produces an accurate
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