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Abstract—We address the problem of allocating transmission deterministic and probabilistic delay guarantees are useful for
rates to a set of network sessions with end-to-end bandwidth yoice, streaming multimedia and gaming.
and delay requirements. We give a unified convex programming Problems of allocating network resources to provide QoS

formulation that captures both average and probabilistic delay . . . L
requirements. Moreover, we present a distributed algorithm and Nave received considerable attention. The studies in [7] and

establish its convergence to the global optimum of the overall rate [24] address the problem of allocating rates on the links of a
allocation problem. In our algorithm, session sourcespdate their ~ single path (or multicast tree), such that an end-to-end delay

rates as to maximize their individual benefit (utility minus band-  requirement is satisfied. In particular, [24] presents a technique
width cost), the network partitions end-to-end delay requirements to map end-to-end QoS requirements directly into link rates.

into local per-link delays, and the links adjust their prices to . . .
coordinate the sources’ and network’s decisions, respectively. This The study in [7], however, presents a framework in which

algorithm relies on a network utility maximization approach, and  €nd-to-end QoS requirements are first partitioned into local
can be viewed as a generalization of TCP and queue managementper-link QoS requirements, then these local QoS requirements
algorithms to handle end-to-end QoS. We also extend our results are mapped into link rates that are reserved along the path (or
to deterministic delay requirements when nodes employ Packet- 1y ticast tree). By considering ontynesession, these studies
level Generalized Processor Sharing (PGPS) schedulers. L . .
have overlooked the intrinsic difficulty of resolving contention
|. INTRODUCTION of multiple co-existing sessions for bandwidth.

Next generation networks will evolve from delivering best- Some studies, e.g., [15] and [9], considered the QoS parti-
effort traffic to supporting applications with different quality-tioning problem separately. Givensingle path (or multicast
of-service (QoS) requirements, e.g., bounded end-to-end delsge) and an additive end-to-end QoS (e.g., delay) budget, the
bounded packet loss and minimum guaranteed rate. Examgitigly in [15] addresses the problem of partitioning the end-
of such applications are voice, streaming multimedia, gamirig;end QoS budget into local per-link QoS requirements, such
distributed computing and remote surgery. QoS requiremettitgt a given cost function is minimized. This study assumes the
are usually negotiated at the session establishment time. Oawgilability of a per-link cost function that accurately captures
a session is admitted, its QoS requirements must be adheifel global optimization objective. It is straightforward to see
to by the network. that this assumption is somewhat unrealistic [5]. The study in

This paper considers the following rate allocation problef®], however, addressed the same QoS partitioning problem as
that is fundamental in providing QoS. We are given a s& maintain explicit load-balance among links.
of communication sessions, each characterized by its routeln this paper, we focus on resource allocation, and assume
a utility function and a set of QoS requirements. The terthat a QoS routing algorithm has already been used to define
“session” is used somewhat broadly in this paper. In particulsine sessions’ paths. QoS routing (see, e.g., [22]) is concerned
a session could be a virtual circuit (as in ATM), or an entir@ith finding a path (or multicast tree) that optimizes a certain
packet flow originating at one node and destined for anothdesign objective while ensuring that some QoS constraints are
node (as in MPLS or IntServ based IP networks). The goalnget. Some studies (e.g., [7]) argue that practical algorithms
to find a set of session data rates, such that the desired lewéleuld address routing and resource reservation separately.
of QoS are achieved, and the total network utility (i.e., the The rate allocation problem considered in this paper is
social welfare) is maximized. We simply refer to this problermelated to the basic network utility maximization (NUM)
as QoS rate allocation problem introduced by Kellyet. al. in [12] and [13]. Given

This paper considers minimum rate (bandwidth) and end-network and a set of sessions, the basic NUM problem is
to-end delay as the QoS measures. In particular, we megncerned with finding a set of session rates that maximizes
require a bounde@verageend-to-end delay. Thisoft QoS the overall network utility without violating link capacity
guarantee is useful fopredictive as opposed tguaranteed constraints. A standard algorithm to solve this problem is
services, e.g., FTP and HTTP. We may also allow the endased on Lagrangian decomposition (see, e.g., [17]). Several
to-end delay of a session to violate its required limit witBubsequent studies, e.g., [17] and [19], address rate allocation
some probability. Finally, we may require a bounded endproblems using the NUM framework. Moreover, existing TCP
to-end deterministic (worst-case) session delay. Note tratd queue management algorithms can be interpreted as im-



plicitly solving a NUM problem [16], [18]. All these studies, ) log(xs) ensures proportional fairness among sessions [12].
however, consider rate allocation in a best-effort network. In the sequel, we assume ttaf(x,) is only knownby session

A few recent studies that follow the utility/revenue maxis, and unknown to all other sessions in the network. We also
mization framework for QoS traffic do exist. The study in [14hssume that the buffers at the network nodes are large enough
considers constraints on loss, maximum delay and blockirig.allow us to neglect packet loss.
The authors formulate the rate allocation problem as a non-In this section (and Section Ill) we assumgeneral packet
linear integer program that is intractable to solve. The studgngth distributionwith mean1/u and variancers2. If every
in [11] considers the allocation of bandwidth and buffer spadiek is modeled as an//G/1 queue, the the average delay
to sessions with constraints on loss and maximum delan link [ is given by (see, e.g., [8]):

The problem formulation turns out to be non-convex if delay (1= 8)/u B8/
constraints are considered. Consequently, typical optimization E(T) = , (2)
algorithms may not converge to the global optimum [2]. “ a- Z&ZGL(S) s

The contribution of this paper is threefold. where 3 is a constantgiven by:

« We give (in Section II) a unified convex programming B =1+ u%?)/2. @)

formulation for the QoS rate allocation problem that cap-
tures both average and probabilistic delay requirementéote thatZSthL(s) x5 is the total flow of sessions crossing
in addition to minimum bandwidth requirements. link [. It is not difficult to verify that (1) is equivalent to the
« We present (in Section Ill) a distributed algorithm anavell-known Pollaczek-Khinchin(P-K) formula [3] for aver-
establish its convergence to the global optimum of trege delay in}M//G/1 queues. By Kleinrock’s independence
overall rate allocation problem. In our algorithsgssion assumption, thel//G/1 queue is a good approximation for
sourcesupdate their rates as to maximize their individuathe behavior of individual links for networks involving Poisson
benefit (utility minus bandwidth cost), theetwork par- arrivals at entry points, a densely connected network and
titions end-to-end delay requirements into local per-linknoderate-to-heavy traffic loads [3].
delays, and théinks adjust their prices to coordinate the The following observation indicates that the capacity con-
sources’ and network’s decisions, respectively. This algetraint ) . deL(s ) Zs < ¢ is implied by the delay constraint
rithm relies on a network utility maximization approachfz(7;) > # . The proof is omitted due to space limitations.
and can be viewed as a generalization of TCP and queubservation 1:Let E(T;) be given by (2). Thenp <
management algorithms (as interpreted by Low [16]) t§" 1er(s) Ts < ¢ if and only if E(T;) > 7.
handle end-to-end QoS. We formulate the QoS rate allocation problem as follows:
o We extend (in Section IV) our results to deterministic o
delay requirements when nodes employ Packet-level Gen- Maximize Z Us(s)
eralized Processor Sharing (PGPS) [20] schedulers.

Our notations are fairly standard. For any random variable  subject to Z Ts < ¢ — y b —— 15 vi (3a)
T, we useE(T) to signify the expected value &f. For any s:leL(s) K — =
eventA, we useP(A) to signify th\re probability thatd occurs. Z d; < psDs, Vs (3b)
For any real numbet, we let[z]" = max{z, 0}. IeL(s)

Il. PROBLEM DEFINITION zs > Ry, Vs (3c)

A network is modeled as a sét of links. Associated with d; > L, Vi, (3d)
every link | € L is a finite capacityc; (bits/s). The set of re
links are shared by a sét of communication sessions. Everywhere thevariablesare:
sessions € S is characterized by the following attributes: Ts transmission rate of sessiene S (in bits/s);

1) A route that consists of the subskts) C L of links. d; local average delay allowed on link € L (in

2) An end-to-end (average, probabilistic or deterministic) seconds).

delay requiremenD, (seconds). The objective in this formulation is to maximize the over-

3) A minimum rate (bandwidth) requiremert, (bits/s). all network utility. It is straightforward to see that (3a) is
Throughout, we use the notions rate and bandwidéyuivalent to E(T;) < d;, where E(T}) is given by (1).

interchangeably. Thus, (3a) ensures that the average delay on every llink
4) A utility function U,(zs), wherez, is the transmission is guaranteed not to exceetl. Inequality (3b) ensures that
rate of session € S. M < ps. By Markov’s inequality, this ensures that

We assume that the functiofg(x) are nondecreasing andP(ZlesL(s) T, > D) < ps. In other words, (3b) guarantees
strictly concave inz,. Utility functions with these character-that the probability of violating the end-to-end delay require-
istics are commonly used in the rate allocation and pricimgent D, is bounded byp,. Note that ifp, = 1, (3b) will
literature (see, e.g., [13]). For exampl€,(z;) = log(zs) ensure thaEleL (T;) < Dy, i.e., that the average end-to-
is nondecreasing and strictly concave. Moreover, maximizirgnd delay ofs is iaounded byD,. In short, (3b) captures both



averageand probabilistic delay requirements. Constraint seadmission. Once a set of sessions are admitted, their QoS
(3c) ensures that all minimum rate requirements are satisfiegiquirements can be adhered to by the network because a
i.e., every session will be able to transmit at a rate of at leasfeasible rate allocation to problem (3) is guaranteed to exist.
R,. Finally, (3c) and Observation 1 imply that the total flow
on link [ does not exceed its capacity.

Now, we make the following observation.

Observation 2:If the utility function U, (z,) of every ses-

Ill. THE ALGORITHM

In Section Il, we have seen that the rate allocation prob-
lem as formulated by (3) is a convex optimization problem.
sion s is concave in the session ratg, then the QoS rate Therefore, it can be solved in a centralized fashion by efficient

allocation problem as given by (3) is a convex o timizatiointerior'pomt methods [4]. In what follows, we describe a dis-
problem P 9 y P Pributed rate allocation algorithm that is basedl@agrangian

Proof: Maximizing a concave objective function Subjecfecomposmom)\l denotes the price per unit bandwidth on link

to constraints of the formf(z) < 0, where f(x) is a 'Algorithm Rate-Allocation

convex function of the variable set is a convex optimization , |nitialize M for every link I. Inmitialize
problem [4]. Constraints (3b)-(3d) are convex because they the iteration count k=0.

are linear. Moreover, it can be verfified thal_,.; ) s — . CR:r?feEtt etzge_fOHOWing three steps until

o+ B/ (pd — 1;6 is a convex function in the variables a & g:: .k + 1. Every session s maximizes
{zs:se€ St and{d, : 1l € L} as long asud;, > (1 —3)/q its individual benefit, by (selfishly)

(which is ensured by (3d) and the fact thats nonnegative). solving:

Therefore, constraint (3a) is also convex. Consequently, (3) is

a convex optimization problem as long as, for every/,(«;) max  Us(zs) ( Z Az) e ()
is a concave function of. [ ] a2 Ra 1EL(s)

In general, the QoS rate allocation problem (3) may nothavqs) The network partitions the end-to-end
a feasible solution. In other words, there may not exist a set delay requirements into per-link delays,
session rates that satisfy constraints (3a)-(3d). In what follows by solving:
we shall see that there are natural, necessary and sufficient

conditions under which a feasible solution for problem (3) minimize Z %
exists. T kdi— =
Observation 3:Problem (3) has a feasible solution if and subject to Z d; < psDs, Vs (5a)
only if 1eL(s)
1) & >3 cps) Rs for every linkl € L; and 4> (5b)
1-8)/p B/u e
2) pst. Z Z:leL(s) ( o T Cl=2 sueL(s) Rs) for every (3) Every link I updates (independently) its
sessions € S. price as follows:
Proof: Even though a rigorous algebraic proof is possi- +
ble, we present here a short and more intuitive argument. o= | A —ak(e — Ll _ Z z)| . (6)
It is straightforward to verify that if these two conditions pudy — c_,ﬂ silEL(s)
are satisfied, then a solution definedas= R, for every where «y is the step size at iteration k
sessi.onis, andd; = (1_5)/” + CL*ZZ/:L(S) 7. for every link (ax =1/Vk is an appropriate choice).
I, satisfies (3a)-(3d). In the following theorem we establish the convergence of

It is readily seen that the first condition ensures that th#gorithmRate-Allocatiorto the global optimum of the overall
link capacities are sufficient to support the corresponding linkite allocation problem (3).
flows induced by allocating the minimum required rate to Theorem 1:Let U,(z,) be strictly concave for every ses-
every sessiona; = R;). Moreover, the second conditionsion s. Then algorithmRate-Allocationconverges always to
ensures that the end-to-end delay requirements (3b) is satisfles global optimal solution of problem (3).
if every session is allocated its minimum required rate. Now Proof: We dualize the constraints given by (3a) to obtain
assume that the first (respectively, the second) condition ddks following Lagrangian relaxation of (3):
not hold. This implies that the minimum rate allocation=
R, cannot_be supported by the link capacities (respectively,, ZUS(%) n Z)‘l o — B _—_ Z )
cannot satisfy the delay requirements). Moreover, any other - ; ud
rate allocation that involves higher rates would need higher

c s:l€L(s)

link capacities and would induce longer delays. Consequentlys-t- Z dy < psDs, Vs (7a)
a rate allocation that satisfies (3a)-(3d) cannot exist. B leL(s)
It is worth noting that the conditions in Observation 3 are Ts > R, Vs (7b)
easy to compute, and can be used by the network to negotiate 1
y p y 9 4> —, v, (7c)

rate and delay requirements with the sessions prior to their e



where )\; are the dual variables. By rearranging terms in idistributed algorithms that implicitly solve the basic NUM
objective function, it is readily seen that (7) decomposes inggoblem and its dual. In particular, theession algorithmis
(4) and (5) for a given set of dual variables. Moreover, the duedrried out by TCP and thiink algorithm is carried out by
variables in (7) are precisely the link prices used in (4) arah AQM scheme.

(5). In other words, given a set of dual variables (link prices), Similarly, algorithm Rate-Allocationcan be viewed as a

solving (4) and (5) provides an optimal solution to (7). generalization of TCP/AQM algorithms to handle end-to-end
Let g()\) denote the optimal objective function value of (7)QoS. In particular, Step (1) can be viewed aF@P algo-
The dual problem of (3) is, thus, given by rithm that adapts session data rates in response to congestion
min g(A) st A >0, Vi ®) information that is provided to the sessions in form of link

prices. Notice that if some sessierhaslog(zs) as its utility
The convexity of (3) implies that the problem has zerfunction!, then the corresponding TCP algorithm of Step (1)
duality gap [4]. In other words, solving the dual problem (8yould be simply to adapt the rate of sessienaccording
provides also an optimal solution to the primal problem (3)to (9). Step (3) can be viewed as &QM algorithm that,
It remains to show that the updates (6) solve the dusimilarly to REM [1], updates the price of each link with the

problem (8). In fact, it is not difficult to show that; — purpose of providing the session sources with a link congestion
B/ (pdy — =8 -3 JeL(s) Ts ) is @ subgradient af(X) with measure. Step (2), in which the network partitions the end-to-

respect to);. In other words, the updates (6) are subgradieﬁf‘d delay requirements into local link delays, is the additional
updates [2] of the dual variablel. By the convergence of COMPonent needed to handle end-to-end QoS.

subgradient algorithms for convex optimization problems [2],
the iterations of algorithnRRate-Allocatiorwill converge to an

optimal solution to the dual (8). Because the primal (3) has Now, we consider the QoS rate allocation problem when
zero duality gap and its objective functionssictly concave nodes employ PGPS [20] schedulers. In particular, we assume
the iterations of algorithniRate-Allocationwill also converge that every linkl € L is served by a PGPS scheduler at the

IV. DETERMINISTIC DELAY REQUIREMENTS ANDPGPS

to the uniqueoptimal solution to (3). B source node of the link. Therefore, sessions are associated with
The following remarks are worth mentioning: service weights at each link, and receive service in proportion
« To carry out Step (1), each source requires the knowledge their respective weights. As a result, every sessiois
its own utility function only. guaranteed a certain data rate on every link along its route.

e In Step (3), each link updates its price using locdlnder PGPS scheduling, sessions need not to be allocated the
information only. Note that the aggregate flow crossingame rate on every link along their respective routes.
any link Zs:leL(s) z, ) can be measured locally. We also assume that the traffic of every sessidas shaped

« The network doesnot require the knowledge of the by a token bucket [3] shaper with paramet@rs R;). In other

sessions’ current data rates or utility functions to cariyords, the maximum burst size of sessiors b, (bits) and
out Step (2). its long term average data rate &5 (bits/s).

« Consider the special case bt (z,) = log(z,) for every ~ Under PGPS scheduling, the worst-case end-to-end delay
s. Inspecting the Karush-Kuhn-Tucker (KKT) conditionsls of sessions can be bounded by [10], [23]:

[4] leads then to the following closed-form solution for b M
1 mine g5y {2} } e L
T :maX{RS,A}. (9)
2ier(s) N where

It is worth mentioning that the QoS rate allocation problem rate allocated to sessiaon link ! € L(s) (in bits/s);
(3) is related to the basic network utility maximization (NUM) L/(s) partial route used by sessienthat consists of all
problem studied by Kellt. al.in [12] and [13]. In particular, links in L(s) except the last hop;
(3) reduces to the basic NUM problem if all QoS constraints A/, maximum packet length of sessien(in bits);
are removed. Moreover, algorithrRate-Allocationand its s constant that is completely characterized by the
derivation (in the proof of Theorem 1) come as an application scheduling algorithm and the propagation delay
to standard algorithm (see, e.g., [17]) to solve the basic NUM along the route of session
problem. The iterations of the basic NUM algorithm in [17]% particular, 5, = ZZEL(S) (maxszeL(S){]\ls/}

can be broadly stated as follows: c
y is the propagation delay on link

1 S%SZ'Or;oall\lfi]r?mgmfgﬁ{gnie;zﬁgrr?g)zg'Zes its own ben- Let D, denote the worst-case delay requirement of session
y gap ) s, and letU, be the utility of sessiors as a function of the

2) Link a!go”th'?"“ every link up d_ates Its price per unltsmallest (bottle-neck) data rate allocatecstdVe express the
bandwidth using a formula similar to (6).

Low et. al.[16], [18] showed that existing TCP _and (active) 11t has been shown that sessions that use TCP Vegas have an implicit utility
gueue management (AQM) protocols can be interpreted fasction that is proportional téog ().

+ n), whereT;



QoS rate allocation problem as follows:

max Z Us(zs)

s.t. Z al <, Wi (11a) ."‘ ------------------

. 7
Session 3 |
'

Session 2

s:l€L(s)
b M o
s S 8, < Dy, V 11b Session 1
Zs + ZELZ/(‘) ol + 45 < s (11b)
. ‘ Fig. 1. A simple network with 4 nodes, 3 links and 3 sessions.
xy > Rs, Vs € 5,1 € L(s) (11c)
z, <zl Vse Sl Ls), (11d)

25

where thevariablesare:
! rate allocated to sessison link! € L(s) (in bits/s);

S
T smallest data rate allocated to sessipn.e., x;, =
minger,(s) xls

The objective in (11) is to maximize the total network
utility. Constraint set (11a) ensures that the total flow on each
link is less than its capacity. Note that it is also implicitly
assumed tha} ., ) Bs < ¢;. Therefore, (11a) ensures also
that network of PGPS servers ggobally stable Constraints
(11b) represent the end-to-end delay constraints. Constraint
set (11c) ensures that the minimum rate requirements are
met. Each session is, thus, ensured to lbeally stable. 0 50 100 150 200
Constraint set (11d) implies that, at the optimal solution= eration Gount
miner,(5){z}, i.e.,z, is precisely the rate allocated to session
s on its bottleneck link. In particular, assume that the optimal
solution of (11) satisfies; < minzeL(s){fEls}- Consequently,
the quective ftlncti.on valug can be increased py increasing (2) Every link updates (independently) its
to min;e 7,5 {z} Without violating any constraint. price as follows:

Note that admission control techniques, e.g., the technique
in [6], have to be used to decide wether (11) has a feasible *
solution or not. A= {Az S ACEEDY wls)] : (13)

Now we make the following observation on problem (11). s:€L(s)
The proof i§ omitted due to space limitations. S where oy is the step size at iteration &

Observation 4:Problem (11) is a convex optimization (ax = 1/v/k is an appropriate choice).

problem as long as the utility functioris, (z,) are conveave. Again, algorithmRate-Allocation-PGP$an be considered

aco[';‘]’eﬁthff E\}elg ':g:'fs 'E[?]Zt g:z por;)t;Ieg hrzi zi(:lr;) gg?gtgg a generalization of TCP/AQM algorithms (as interpreted
9ap 1<]. 9 _-agrang : rBy Low [16]) to handle end-to-end QoS. In particular, the rate
position approach to solve (11). In particular, the foIIowm%

algorithm will converge to theiniqueoptimal solution of (11) pda_te in Step (1) anc_zl th_e link price update in Step (_2) can
. be viewed as generalizations to TCP and AQM algorithms,
as long as the utilitie®/,(z) arestrictly concave(the proof

=
= & N

Gap to Optimal Network Utility

o
3
T

Fig. 2. Convergence of the total network utility.

is almost identical to Theorem 1). respectively.
Algorithm  Rate-Allocation-PGPS
« Initialize X\ for every link I. Initialize V. NUMERICAL RESULTS
the iteration count k=0. L . . . .
« Repeat the following two steps until The objective of this numerical study is to illustrate the
convergence: convergence of algorithrRate-Allocation
(1) ¥ := Kk + 1. Every session s selfishly We use a simple network with 4 nodes, 3 links and 3
solves: (unicast) sessions as shown in Fig. 1. Session 1 uses path 1-
max U, (zs) — Z P 2, Session 2 uses path 1-2-3 and session 3 uses path 1-2-4.
lEL(s) Without loss of generality, we assume that the capacity of
st bs N Z Ml 6. < D. (12a) each link is 1 Mbits/s, every session has a minimum data rate
To e 55 requirement of 250 Kbits/s, and every session haavarage
delay requirement of 0.0336 seconds (per packet). We also
zh > R,, VI € L(s) (12b) y req (per p )

) assume that the utility function for sessier{=1,2,3) is given
zs < x4, VI € L(s). (12c) by Us(xs) — 10g(933)-



Convergence of the Data Rate of Session 1|
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Fig. 3. Convergence of the data rate of Session 1.

El

We assume a general packet length distribution with me&#]
420 bytes and standard deviation 521 bités this case =
0.5. Fig.4 depicts the difference between the total networki)
utility obtained at each iteration of algorithRate-Allocation
and the optimal total network utility obtained by solving (3)[12]
In fact, after 200 iterations the total network utility is within
0.021% of the optimal value. [13]
Moreover, after 200 iterations, the data rates of Session
1, Session 2 and Session 3 are within 0.02%, 0.019% and
0.019% of their respective optimal values. As an examplé?!
Fig. 5 illustrates the convergence of the data rate of Session 1

to the optimal value of 314 Kbits/s.
[15]

VI. CONCLUSION
[16]

We addressed the problem of allocating data rates to a
set of network sessions with end-to-end bandwidth and delay!
requirements. We gave a unified convex programming for-
mulation that captures bothverageand probabilistic delay [1g]
requirements. Moreover, we presented a distributed algorithm
and established its convergence to the global optimum
the overall rate allocation problem. In our algorithegssion
sourcesupdate their rates as to maximize their individudPol
benefit (utility minus bandwidth cost), theetwork partitions
end-to-end delay requirements into local per-link delays, and
the links adjust their prices to coordinate the sources’ ari@ll
network’s decisions, respectively. Our algorithms came as an
application of a known Lagrangian decomposition approagip]
for solving the basic network utility maximization problem
[12], [13]. The algorithm can thus be viewed as a generaling
tion of TCP and queue management algorithms (as interprete
by Low [16]) to handle end-to-end QoS. We also extended our
results to deterministic delay requirements when nodes emp[%“'
PGPS schedulers.

2These values reflect the length distribution of Internet packets seen
at NASA Ames Internet Exchange (AIX) in February 2000. See
http://www.caida.org/analysis/AlX/plen _hist/
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