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Abstract— We address the problem of allocating transmission
rates to a set of network sessions with end-to-end bandwidth
and delay requirements. We give a unified convex programming
formulation that captures both average and probabilistic delay
requirements. Moreover, we present a distributed algorithm and
establish its convergence to the global optimum of the overall rate
allocation problem. In our algorithm, session sourcesupdate their
rates as to maximize their individual benefit (utility minus band-
width cost), thenetworkpartitions end-to-end delay requirements
into local per-link delays, and the links adjust their prices to
coordinate the sources’ and network’s decisions, respectively. This
algorithm relies on a network utility maximization approach, and
can be viewed as a generalization of TCP and queue management
algorithms to handle end-to-end QoS. We also extend our results
to deterministic delay requirements when nodes employ Packet-
level Generalized Processor Sharing (PGPS) schedulers.

I. I NTRODUCTION

Next generation networks will evolve from delivering best-
effort traffic to supporting applications with different quality-
of-service (QoS) requirements, e.g., bounded end-to-end delay,
bounded packet loss and minimum guaranteed rate. Examples
of such applications are voice, streaming multimedia, gaming,
distributed computing and remote surgery. QoS requirements
are usually negotiated at the session establishment time. Once
a session is admitted, its QoS requirements must be adhered
to by the network.

This paper considers the following rate allocation problem
that is fundamental in providing QoS. We are given a set
of communication sessions, each characterized by its route,
a utility function and a set of QoS requirements. The term
“session” is used somewhat broadly in this paper. In particular,
a session could be a virtual circuit (as in ATM), or an entire
packet flow originating at one node and destined for another
node (as in MPLS or IntServ based IP networks). The goal is
to find a set of session data rates, such that the desired levels
of QoS are achieved, and the total network utility (i.e., the
social welfare) is maximized. We simply refer to this problem
asQoS rate allocation.

This paper considers minimum rate (bandwidth) and end-
to-end delay as the QoS measures. In particular, we may
require a boundedaverageend-to-end delay. Thissoft QoS
guarantee is useful forpredictive as opposed toguaranteed
services, e.g., FTP and HTTP. We may also allow the end-
to-end delay of a session to violate its required limit with
some probability. Finally, we may require a bounded end-
to-end deterministic (worst-case) session delay. Note that

deterministic and probabilistic delay guarantees are useful for
voice, streaming multimedia and gaming.

Problems of allocating network resources to provide QoS
have received considerable attention. The studies in [7] and
[24] address the problem of allocating rates on the links of a
single path (or multicast tree), such that an end-to-end delay
requirement is satisfied. In particular, [24] presents a technique
to map end-to-end QoS requirements directly into link rates.
The study in [7], however, presents a framework in which
end-to-end QoS requirements are first partitioned into local
per-link QoS requirements, then these local QoS requirements
are mapped into link rates that are reserved along the path (or
multicast tree). By considering onlyonesession, these studies
have overlooked the intrinsic difficulty of resolving contention
of multiple co-existing sessions for bandwidth.

Some studies, e.g., [15] and [9], considered the QoS parti-
tioning problem separately. Given asingle path (or multicast
tree) and an additive end-to-end QoS (e.g., delay) budget, the
study in [15] addresses the problem of partitioning the end-
to-end QoS budget into local per-link QoS requirements, such
that a given cost function is minimized. This study assumes the
availability of a per-link cost function that accurately captures
the global optimization objective. It is straightforward to see
that this assumption is somewhat unrealistic [5]. The study in
[9], however, addressed the same QoS partitioning problem as
to maintain explicit load-balance among links.

In this paper, we focus on resource allocation, and assume
that a QoS routing algorithm has already been used to define
the sessions’ paths. QoS routing (see, e.g., [22]) is concerned
with finding a path (or multicast tree) that optimizes a certain
design objective while ensuring that some QoS constraints are
met. Some studies (e.g., [7]) argue that practical algorithms
should address routing and resource reservation separately.

The rate allocation problem considered in this paper is
related to the basic network utility maximization (NUM)
problem introduced by Kellyet. al. in [12] and [13]. Given
a network and a set of sessions, the basic NUM problem is
concerned with finding a set of session rates that maximizes
the overall network utility without violating link capacity
constraints. A standard algorithm to solve this problem is
based on Lagrangian decomposition (see, e.g., [17]). Several
subsequent studies, e.g., [17] and [19], address rate allocation
problems using the NUM framework. Moreover, existing TCP
and queue management algorithms can be interpreted as im-



plicitly solving a NUM problem [16], [18]. All these studies,
however, consider rate allocation in a best-effort network.

A few recent studies that follow the utility/revenue maxi-
mization framework for QoS traffic do exist. The study in [14]
considers constraints on loss, maximum delay and blocking.
The authors formulate the rate allocation problem as a non-
linear integer program that is intractable to solve. The study
in [11] considers the allocation of bandwidth and buffer space
to sessions with constraints on loss and maximum delay.
The problem formulation turns out to be non-convex if delay
constraints are considered. Consequently, typical optimization
algorithms may not converge to the global optimum [2].

The contributionof this paper is threefold.

• We give (in Section II) a unified convex programming
formulation for the QoS rate allocation problem that cap-
tures both average and probabilistic delay requirements,
in addition to minimum bandwidth requirements.

• We present (in Section III) a distributed algorithm and
establish its convergence to the global optimum of the
overall rate allocation problem. In our algorithm,session
sourcesupdate their rates as to maximize their individual
benefit (utility minus bandwidth cost), thenetwork par-
titions end-to-end delay requirements into local per-link
delays, and thelinks adjust their prices to coordinate the
sources’ and network’s decisions, respectively. This algo-
rithm relies on a network utility maximization approach,
and can be viewed as a generalization of TCP and queue
management algorithms (as interpreted by Low [16]) to
handle end-to-end QoS.

• We extend (in Section IV) our results to deterministic
delay requirements when nodes employ Packet-level Gen-
eralized Processor Sharing (PGPS) [20] schedulers.

Our notations are fairly standard. For any random variable
T , we useE(T ) to signify the expected value ofT . For any
eventA, we useP (A) to signify the probability thatA occurs.
For any real numberx, we let [x]+ = max{x, 0}.

II. PROBLEM DEFINITION

A network is modeled as a setL of links. Associated with
every link l ∈ L is a finite capacitycl (bits/s). The set of
links are shared by a setS of communication sessions. Every
sessions ∈ S is characterized by the following attributes:

1) A route that consists of the subsetL(s) ⊆ L of links.
2) An end-to-end (average, probabilistic or deterministic)

delay requirementDs (seconds).
3) A minimum rate (bandwidth) requirementRs (bits/s).

Throughout, we use the notions rate and bandwidth
interchangeably.

4) A utility function Us(xs), wherexs is the transmission
rate of sessions ∈ S.

We assume that the functionsUs(xs) are nondecreasing and
strictly concave inxs. Utility functions with these character-
istics are commonly used in the rate allocation and pricing
literature (see, e.g., [13]). For example,Us(xs) = log(xs)
is nondecreasing and strictly concave. Moreover, maximizing

∑
s log(xs) ensures proportional fairness among sessions [12].

In the sequel, we assume thatUs(xs) is only knownby session
s, and unknown to all other sessions in the network. We also
assume that the buffers at the network nodes are large enough
to allow us to neglect packet loss.

In this section (and Section III) we assume ageneral packet
length distributionwith mean1/µ and varianceσ2. If every
link is modeled as anM/G/1 queue, the the average delay
on link l is given by (see, e.g., [8]):

E(Tl) =
(1− β)/µ

cl
+

β/µ

cl −
∑

s:l∈L(s) xs
, (1)

whereβ is a constantgiven by:

β = (1 + µ2σ2)/2. (2)

Note that
∑

s:l∈L(s) xs is the total flow of sessions crossing
link l. It is not difficult to verify that (1) is equivalent to the
well-known Pollaczek-Khinchin(P-K) formula [3] for aver-
age delay inM/G/1 queues. By Kleinrock’s independence
assumption, theM/G/1 queue is a good approximation for
the behavior of individual links for networks involving Poisson
arrivals at entry points, a densely connected network and
moderate-to-heavy traffic loads [3].

The following observation indicates that the capacity con-
straint

∑
s:l∈L(s) xs ≤ cl is implied by the delay constraint

E(Tl) ≥ 1
µcl

. The proof is omitted due to space limitations.
Observation 1:Let E(Tl) be given by (1). Then,0 ≤∑
s:l∈L(s) xs ≤ cl if and only if E(Tl) ≥ 1

µcl
.

We formulate the QoS rate allocation problem as follows:

maximize
∑

s

Us(xs)

subject to
∑

s:l∈L(s)

xs ≤ cl − β

µdl − 1−β
cl

, ∀l (3a)

∑

l∈L(s)

dl ≤ psDs, ∀s (3b)

xs ≥ Rs, ∀s (3c)

dl ≥ 1
µcl

, ∀l, (3d)

where thevariablesare:

xs transmission rate of sessions ∈ S (in bits/s);
dl local average delay allowed on linkl ∈ L (in

seconds).

The objective in this formulation is to maximize the over-
all network utility. It is straightforward to see that (3a) is
equivalent toE(Tl) ≤ dl, where E(Tl) is given by (1).
Thus, (3a) ensures that the average delay on every linkl
is guaranteed not to exceeddl. Inequality (3b) ensures that∑

l∈L(s) E(Tl)

Ds
≤ ps. By Markov’s inequality, this ensures that

P (
∑

l∈L(s) Tl ≥ Ds) ≤ ps. In other words, (3b) guarantees
that the probability of violating the end-to-end delay require-
ment Ds is bounded byps. Note that if ps = 1, (3b) will
ensure that

∑
l∈L(s) E(Tl) ≤ Ds, i.e., that the average end-to-

end delay ofs is bounded byDs. In short, (3b) captures both



averageand probabilistic delay requirements. Constraint set
(3c) ensures that all minimum rate requirements are satisfied,
i.e., every sessions will be able to transmit at a rate of at least
Rs. Finally, (3c) and Observation 1 imply that the total flow
on link l does not exceed its capacity.

Now, we make the following observation.
Observation 2:If the utility function Us(xs) of every ses-

sion s is concave in the session ratexs, then the QoS rate
allocation problem as given by (3) is a convex optimization
problem.

Proof: Maximizing a concave objective function subject
to constraints of the formf(x) ≤ 0, where f(x) is a
convex function of the variable setx, is a convex optimization
problem [4]. Constraints (3b)-(3d) are convex because they
are linear. Moreover, it can be verfified that

∑
s:l∈L(s) xs −

cl + β/
(
µdl − 1−β

cl

)
is a convex function in the variables

{xs : s ∈ S} and {dl : l ∈ L} as long asµdl ≥ (1 − β)/cl

(which is ensured by (3d) and the fact thatβ is nonnegative).
Therefore, constraint (3a) is also convex. Consequently, (3) is
a convex optimization problem as long as, for everys, Us(xs)
is a concave function ofxs.

In general, the QoS rate allocation problem (3) may not have
a feasible solution. In other words, there may not exist a set
session rates that satisfy constraints (3a)-(3d). In what follows
we shall see that there are natural, necessary and sufficient
conditions under which a feasible solution for problem (3)
exists.

Observation 3:Problem (3) has a feasible solution if and
only if

1) cl ≥
∑

s:l∈L(s) Rs for every link l ∈ L; and

2) psDs ≥
∑

l∈L(s)

(
(1−β)/µ

cl
+ β/µ

cl−
∑

s:l∈L(s) Rs

)
for every

sessions ∈ S.
Proof: Even though a rigorous algebraic proof is possi-

ble, we present here a short and more intuitive argument.
It is straightforward to verify that if these two conditions

are satisfied, then a solution defined asxs = Rs for every
sessions, anddl = (1−β)/µ

cl
+ β/µ

cl−
∑

s:l∈L(s) Rs
for every link

l, satisfies (3a)-(3d).
It is readily seen that the first condition ensures that the

link capacities are sufficient to support the corresponding link
flows induced by allocating the minimum required rate to
every session (xs = Rs). Moreover, the second condition
ensures that the end-to-end delay requirements (3b) is satisfied
if every session is allocated its minimum required rate. Now
assume that the first (respectively, the second) condition does
not hold. This implies that the minimum rate allocationxs =
Rs cannot be supported by the link capacities (respectively,
cannot satisfy the delay requirements). Moreover, any other
rate allocation that involves higher rates would need higher
link capacities and would induce longer delays. Consequently,
a rate allocation that satisfies (3a)-(3d) cannot exist.

It is worth noting that the conditions in Observation 3 are
easy to compute, and can be used by the network to negotiate
rate and delay requirements with the sessions prior to their

admission. Once a set of sessions are admitted, their QoS
requirements can be adhered to by the network because a
feasible rate allocation to problem (3) is guaranteed to exist.

III. T HE ALGORITHM

In Section II, we have seen that the rate allocation prob-
lem as formulated by (3) is a convex optimization problem.
Therefore, it can be solved in a centralized fashion by efficient
interior-point methods [4]. In what follows, we describe a dis-
tributed rate allocation algorithm that is based onLagrangian
decomposition(λl denotes the price per unit bandwidth on link
l).

Algorithm Rate-Allocation
• Initialize λl for every link l. Inmitialize

the iteration count k = 0.
• Repeat the following three steps until

convergence:

(1) k := k + 1. Every session s maximizes
its individual benefit, by (selfishly)
solving:

max
xs≥Rs

Us(xs)−

 ∑

l∈L(s)

λl


 xs (4)

(2) The network partitions the end-to-end
delay requirements into per-link delays,
by solving:

minimize
∑

l

λl

µdl − 1−β
cl

subject to
∑

l∈L(s)

dl ≤ psDs, ∀s (5a)

dl ≥ 1

µcl
∀l (5b)

(3) Every link l updates (independently) its
price as follows:

λl :=


λl − αk(cl − β

µdl − 1−β
cl

−
∑

s:l∈L(s)

xs)




+

, (6)

where αk is the step size at iteration k
( αk = 1/

√
k is an appropriate choice).

In the following theorem we establish the convergence of
algorithmRate-Allocationto the global optimum of the overall
rate allocation problem (3).

Theorem 1:Let Us(xs) be strictly concave for every ses-
sion s. Then algorithmRate-Allocationconverges always to
the global optimal solution of problem (3).

Proof: We dualize the constraints given by (3a) to obtain
the following Lagrangian relaxation of (3):

max
∑

s

Us(xs) +
∑

l

λl


cl − β

µdl − 1−β
cl

−
∑

s:l∈L(s)

xs)




s.t.
∑

l∈L(s)

dl ≤ psDs, ∀s (7a)

xs ≥ Rs, ∀s (7b)

dl ≥ 1
µcl

, ∀l, (7c)



whereλl are the dual variables. By rearranging terms in its
objective function, it is readily seen that (7) decomposes into
(4) and (5) for a given set of dual variables. Moreover, the dual
variables in (7) are precisely the link prices used in (4) and
(5). In other words, given a set of dual variables (link prices),
solving (4) and (5) provides an optimal solution to (7).

Let g(λ) denote the optimal objective function value of (7).
The dual problem of (3) is, thus, given by

min g(λ) s.t. λl ≥ 0, ∀l. (8)

The convexity of (3) implies that the problem has zero
duality gap [4]. In other words, solving the dual problem (8)
provides also an optimal solution to the primal problem (3).

It remains to show that the updates (6) solve the dual
problem (8). In fact, it is not difficult to show thatcl −
β/

(
µdl − 1−β

cl
−∑

s:l∈L(s) xs

)
is a subgradient ofg(λ) with

respect toλl. In other words, the updates (6) are subgradient
updates [2] of the dual variablesλl. By the convergence of
subgradient algorithms for convex optimization problems [2],
the iterations of algorithmRate-Allocationwill converge to an
optimal solution to the dual (8). Because the primal (3) has
zero duality gap and its objective function isstrictly concave,
the iterations of algorithmRate-Allocationwill also converge
to theuniqueoptimal solution to (3).

The following remarks are worth mentioning:

• To carry out Step (1), each source requires the knowledge
its own utility function only.

• In Step (3), each link updates its price using local
information only. Note that the aggregate flow crossing
any link

(∑
s:l∈L(s) xs

)
can be measured locally.

• The network doesnot require the knowledge of the
sessions’ current data rates or utility functions to carry
out Step (2).

• Consider the special case ofUs(xs) = log(xs) for every
s. Inspecting the Karush-Kuhn-Tucker (KKT) conditions
[4] leads then to the following closed-form solution for
(4):

xs = max

{
Rs,

1∑
l∈L(s) λl

}
. (9)

It is worth mentioning that the QoS rate allocation problem
(3) is related to the basic network utility maximization (NUM)
problem studied by Kellyet. al. in [12] and [13]. In particular,
(3) reduces to the basic NUM problem if all QoS constraints
are removed. Moreover, algorithmRate-Allocation and its
derivation (in the proof of Theorem 1) come as an application
to standard algorithm (see, e.g., [17]) to solve the basic NUM
problem. The iterations of the basic NUM algorithm in [17])
can be broadly stated as follows:

1) Session algorithm:every session maximizes its own ben-
efit by solving a problem similar to (4).

2) Link algorithm: every link updates its price per unit
bandwidth using a formula similar to (6).

Low et. al. [16], [18] showed that existing TCP and (active)
queue management (AQM) protocols can be interpreted as

distributed algorithms that implicitly solve the basic NUM
problem and its dual. In particular, thesession algorithmis
carried out by TCP and thelink algorithm is carried out by
an AQM scheme.

Similarly, algorithm Rate-Allocationcan be viewed as a
generalization of TCP/AQM algorithms to handle end-to-end
QoS. In particular, Step (1) can be viewed as aTCP algo-
rithm that adapts session data rates in response to congestion
information that is provided to the sessions in form of link
prices. Notice that if some sessions haslog(xs) as its utility
function1, then the corresponding TCP algorithm of Step (1)
would be simply to adapt the rate of sessions according
to (9). Step (3) can be viewed as anAQM algorithm that,
similarly to REM [1], updates the price of each link with the
purpose of providing the session sources with a link congestion
measure. Step (2), in which the network partitions the end-to-
end delay requirements into local link delays, is the additional
component needed to handle end-to-end QoS.

IV. D ETERMINISTIC DELAY REQUIREMENTS ANDPGPS

Now, we consider the QoS rate allocation problem when
nodes employ PGPS [20] schedulers. In particular, we assume
that every linkl ∈ L is served by a PGPS scheduler at the
source node of the link. Therefore, sessions are associated with
service weights at each link, and receive service in proportion
to their respective weights. As a result, every sessions is
guaranteed a certain data rate on every link along its route.
Under PGPS scheduling, sessions need not to be allocated the
same rate on every link along their respective routes.

We also assume that the traffic of every sessions is shaped
by a token bucket [3] shaper with parameters(bs, Rs). In other
words, the maximum burst size of sessions is bs (bits) and
its long term average data rate isRs (bits/s).

Under PGPS scheduling, the worst-case end-to-end delay
Ts of sessions can be bounded by [10], [23]:

Ts ≤ bs

minl∈L(s){xl
s}

+
∑

l∈L′(s)

Ms

xl
s

+ δs, (10)

where

xl
s rate allocated to sessions on link l ∈ L(s) (in bits/s);

L′(s) partial route used by sessions that consists of all
links in L(s) except the last hop;

Ms maximum packet length of sessions (in bits);
δs constant that is completely characterized by the

scheduling algorithm and the propagation delay
along the route of sessions.

In particular,δs =
∑

l∈L(s)

(
maxs′∈L(s){Ms′}

cl
+ τl

)
, whereτl

is the propagation delay on linkl.
Let Ds denote the worst-case delay requirement of session

s, and letUs be the utility of sessions as a function of the
smallest (bottle-neck) data rate allocated tos. We express the

1It has been shown that sessions that use TCP Vegas have an implicit utility
function that is proportional tolog(xs).



QoS rate allocation problem as follows:

max
∑

s

Us(xs)

s.t.
∑

s:l∈L(s)

xl
s ≤ cl, ∀l (11a)

bs

xs
+

∑

l∈L′(s)

Ms

xl
s

+ δs ≤ Ds, ∀s (11b)

xl
s ≥ Rs, ∀s ∈ S, l ∈ L(s) (11c)

xs ≤ xl
s, ∀s ∈ S, l ∈ L(s), (11d)

where thevariablesare:
xl

s rate allocated to sessions on link l ∈ L(s) (in bits/s);
xs smallest data rate allocated to sessions, i.e., xs =

minl∈L(s) xl
s.

The objective in (11) is to maximize the total network
utility. Constraint set (11a) ensures that the total flow on each
link is less than its capacity. Note that it is also implicitly
assumed that

∑
l∈L(s) Rs < cl. Therefore, (11a) ensures also

that network of PGPS servers isglobally stable. Constraints
(11b) represent the end-to-end delay constraints. Constraint
set (11c) ensures that the minimum rate requirements are
met. Each session is, thus, ensured to belocally stable.
Constraint set (11d) implies that, at the optimal solution,xs =
minl∈L(s){xl

s}, i.e.,xs is precisely the rate allocated to session
s on its bottleneck link. In particular, assume that the optimal
solution of (11) satisfiesxs < minl∈L(s){xl

s}. Consequently,
the objective function value can be increased by increasingxs

to minl∈L(s){xl
s} without violating any constraint.

Note that admission control techniques, e.g., the technique
in [6], have to be used to decide wether (11) has a feasible
solution or not.

Now we make the following observation on problem (11).
The proof is omitted due to space limitations.

Observation 4:Problem (11) is a convex optimization
problem as long as the utility functionsUs(xs) are convcave.

Convexity of (11) implies that the problem has zero duality
gap [2]. This gives rise to the use of a Lagrangian decom-
position approach to solve (11). In particular, the following
algorithm will converge to theuniqueoptimal solution of (11)
as long as the utilitiesUs(xs) are strictly concave(the proof
is almost identical to Theorem 1).

Algorithm Rate-Allocation-PGPS
• Initialize λl for every link l. Initialize

the iteration count k = 0.
• Repeat the following two steps until

convergence:

(1) k := k + 1. Every session s selfishly
solves:

max Us(xs)−
∑

l∈L(s)

λlx
l
s

s.t.
bs

xs
+

∑

l∈L′(s)

Ms

xl
s

+ δs ≤ Ds (12a)

xl
s ≥ Rs, ∀l ∈ L(s) (12b)

xs ≤ xl
s, ∀l ∈ L(s). (12c)

Fig. 1. A simple network with 4 nodes, 3 links and 3 sessions.
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Fig. 2. Convergence of the total network utility.

(2) Every link l updates (independently) its
price as follows:

λl :=


λl − αk(cl −

∑

s:l∈L(s)

xl
s)




+

, (13)

where αk is the step size at iteration k
( αk = 1/

√
k is an appropriate choice).

Again, algorithmRate-Allocation-PGPScan be considered
as a generalization of TCP/AQM algorithms (as interpreted
by Low [16]) to handle end-to-end QoS. In particular, the rate
update in Step (1) and the link price update in Step (2) can
be viewed as generalizations to TCP and AQM algorithms,
respectively.

V. NUMERICAL RESULTS

The objective of this numerical study is to illustrate the
convergence of algorithmRate-Allocation.

We use a simple network with 4 nodes, 3 links and 3
(unicast) sessions as shown in Fig. 1. Session 1 uses path 1-
2, Session 2 uses path 1-2-3 and session 3 uses path 1-2-4.
Without loss of generality, we assume that the capacity of
each link is 1 Mbits/s, every session has a minimum data rate
requirement of 250 Kbits/s, and every session has anaverage
delay requirement of 0.0336 seconds (per packet). We also
assume that the utility function for sessions (=1,2,3) is given
by Us(xs) = log(xs).
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Fig. 3. Convergence of the data rate of Session 1.

We assume a general packet length distribution with mean
420 bytes and standard deviation 521 bytes2. In this case,β =
0.5. Fig. 4 depicts the difference between the total network
utility obtained at each iteration of algorithmRate-Allocation
and the optimal total network utility obtained by solving (3).
In fact, after 200 iterations the total network utility is within
0.021% of the optimal value.

Moreover, after 200 iterations, the data rates of Session
1, Session 2 and Session 3 are within 0.02%, 0.019% and
0.019% of their respective optimal values. As an example,
Fig. 5 illustrates the convergence of the data rate of Session 1
to the optimal value of 314 Kbits/s.

VI. CONCLUSION

We addressed the problem of allocating data rates to a
set of network sessions with end-to-end bandwidth and delay
requirements. We gave a unified convex programming for-
mulation that captures bothaverageand probabilistic delay
requirements. Moreover, we presented a distributed algorithm
and established its convergence to the global optimum of
the overall rate allocation problem. In our algorithm,session
sourcesupdate their rates as to maximize their individual
benefit (utility minus bandwidth cost), thenetworkpartitions
end-to-end delay requirements into local per-link delays, and
the links adjust their prices to coordinate the sources’ and
network’s decisions, respectively. Our algorithms came as an
application of a known Lagrangian decomposition approach
for solving the basic network utility maximization problem
[12], [13]. The algorithm can thus be viewed as a generaliza-
tion of TCP and queue management algorithms (as interpreted
by Low [16]) to handle end-to-end QoS. We also extended our
results to deterministic delay requirements when nodes employ
PGPS schedulers.

2These values reflect the length distribution of Internet packets seen
at NASA Ames Internet Exchange (AIX) in February 2000. See
http://www.caida.org/analysis/AIX/plen hist/ .
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