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ABSTRACT

In a sensor network, each sensor makes a local observation
of some underlying physical phenomenon, and sends a quan-
tized version of the observation to a central office via com-
munication links. Since the sensors’ observations are often
partial and correlated, the network performance becomes a
complicated and non-separable function of all individual data
rates at each sensor. In this paper, we consider a joint opti-
mization of source coding and power allocation in a sensor
network. We model the sensor network from an information
theoretical perspective, and propose a novel formulation for
distributive source coding to characterize the tradeoff among
source coding rates. The new formulation is capable of deal-
ing with the case where the physical source is described by
a vector of random variables. We further optimize the power
allocation strategy among sensors. We show that the joint
source coding and sensor power allocation problem can be
solved optimally and efficiently via convex programming.

1. INTRODUCTION

Sensor networks have emerged as a promising application in
military sensing, physical security, traffic control and envi-
ronment monitoring. In a sensor network, a large number
of sensors are deployed over a field. Each sensor makes a
local observation of some underlying physical source, quan-
tizes its observation, and transfers the quantized data back to
a “central estimation office” (e.g. CEO) through communica-
tion links.

The design objective of the sensor network is to recon-
struct the underlying physical source under resource limita-
tion i.e., power. Thus, it is natural to define the overall net-
work utility optimization problem as that of minimizing the
overall distortion and power consumption. Here, the distor-
tion is defined as the difference between the true underlying
source and its estimation at CEO. Due to the partial obser-
vation at each sensor, overall estimation at CEO depends on
all sensors’ data rates in a complicated fashion. In particu-
lar, using distributed source coding techniques, it is possible
to tradeoff transmission rate in one sensor with transmission
rate in another sensor. Furthermore, since power is a scarce
resource in a sensor network, it is important to allocate power

optimally among sensors when transmitting observation back
to the CEO.

The joint quantizer design and power allocation problem
has been considered before in the literature. In [1], Xiao,
Cui, Luo and Goldsmith proposed a scheme of optimal power
scheduling for decentralized estimation in sensor networks.
The authors derived a distortion bound based on best linear
unbiased estimation (BLUE). They analytically solved an op-
timization problem of minimizing total power consumption
under distortion requirement.

In this paper, we address the joint optimization of source
coding and power allocation from an information theory point
of view. We focus on a complete digital approach, where each
sensor compresses its local observation into a digital form and
transmits the data digitally. Our main contribution is a source
coding formulation that characterizes the coupled relation of
source rates among nodes. We further show that the overall
minimization of distortion and power can be solved jointly
via convex programming. This paper differs from [1] in that
(i) our source coding formulation is capable of dealing with
physical source that is modelled as a vector of random vari-
ables, while the work of Xiao et al considered the scalar case
only; (ii) we model the source coding problem using rate-
distortion theory and model the power allocation problem us-
ing Shannon capacity formula from an information theoretical
viewpoint, while [1] adopted a signal processing perspective.
This paper also differs from our previous work [2]. Here, we
explicitly characterize the rate-distortion region and the ca-
pacity region, while [2] assumes that both regions are given
and convex.

2. SYSTEM MODEL

Consider an environment sensoring application depicted in
Fig. 1. The underlying physical source θ is a vector of random
variables. N sensors are deployed in the field, each making
a local (and possibly partial) observation of θ, while being
corrupted by observation noise ni. The observation channel
is characterized by a matrix H . At each sensor i, the noisy
observation yi is quantized into a codeword ui. The quan-
tized information from all sensors is transmitted back directly
to a remote CEO with source rates (s1, ...sN ). The source
rates are bounded by the link capacities (c1, ...cN ), which de-
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Fig. 1. Sensor Network

pend on the communication link gain, noise, and transmission
powers. At the remote CEO, the decoder first jointly decodes
the codewords u, then estimates the physical source. The es-
timation is denoted as θ̂. The performance criterion is the
mean-square error distortion, i.e., D(θ̂, θ) = ||θ̂ − θ||2. In
this paper, we assume the physical source is modelled as an
independent Gaussian vector θ, and the observation noise is
modelled as an independent Gaussian vector n.

2.1. Source Coding

The task of source coding at each sensor is to design a good
quantization scheme such that the distortion is minimized.
The quantization process can be modelled as an independent
quantization noise variable q according to [3, 4]. In this case,
the sensor quantization output can be expressed as

u = y + q = Hθ + n + q

Now, suppose that the remote CEO can receive u correctly,
(this is justified in the next paragraph,) the minimum mean
square error (MMSE) estimation, which provides an optimal
estimation θ̂ with a corresponding error covariance matrix
K0, can be expressed as follows:

θ̂ = E(θ|u) = RθuR−1
uuu

K0 = E

[
θ − θ̂

] [
θ − θ̂

]T

= Rθ − RθuR−1
uuRuθ

= Rθ − RθH
T (HRθH

T + Rn + Rq)
−1HRT

θ

where []T denotes matrix transpose, Rθu = E
[
θuT

]
= RθH

T ,
Rθ is the covariance matrix of the underlying source, Ruu =
E

[
uuT

]
= HRθH

T + Rn + Rq, and Rn Rq are diago-
nal covariance matrices of observation noise and quantization
variance respectively. The distortion is the trace of K0

D(θ̂, θ) = tr(K0) (1)

Note that the distortion actually depends on the quantization
schemes at all sensors. This distortion expression naturally
characterizes the coupled relation among sensor rates.

In order to correctly decode u at the remote CEO, each
sensor must communicate to the CEO at a sufficiently large
rate. Since the sensors’ observations are correlated, then quan-
tized version u are correlated as well. From an information
theory point of view, it is possible to encode u using dis-
tributive source coding methods (e.g., using the techniques
of Slepian-Wolf [5] and Berger-Tung [6]).

However, Slepian-Wolf coding is not easy to implement
in practice. In this paper, we adopt a suboptimal but compu-
tationally simple source coding expression, which preserves
the coupled relation among sensor’s quantization levels but
does not take into account Slepian-Wolf coding:

si = I(Yi;Ui) =
1
2

log2

(
hT

i Rθhi + σ2
ni + σ2

qi

σ2
qi

)
(2)

where hT
i is the ith row of channel matrix H , σ2

ni and σ2
qi

are the noise variance and quantization variance respectively,
which are the ith diagonal element of Rn and Rq. Note the
source rate si in (2) is an upper bound to the true rate-distortion
region.

For reasons that will be clear later, it is convenient to
define a quantization effort variable wi = 1/(σ2

ni + σ2
qi),

which has a one-to-one map with the quantization variance
σ2

qi. In this case, σ2
qi = 1/wi − σ2

ni, R
−1
w = Rn + Rq. Let

σ2
si = hT

i Rθhi. The distortion and source rate can now be
expressed as:

D = tr (Rθ) − tr
(
RθH

T (HRθH
T + R−1

w )−1HRT
θ

)

si =
1
2

log2

(
1 + σ2

siwi

1 − σ2
niwi

)

σ2
si = hT

i Rθhi, 0 ≤ wi ≤ 1
σ2

ni

where Rw is a diagonal matrix with wi as the ith diagonal
element. Note that larger the quantization effort, i.e., w =
[w1, ..., wN ]T , smaller the distortion is, and higher the source
rates are.

2.2. Power Allocation

In this paper, for the sake of simplicity, we assume that the
communication links are independent, e.g., a time-division
multiple access (TDMA) scheme or a frequency-division mul-
tiple access (FDMA) scheme is used. Therefore, the link
capacity is determined by the power allocation according to
Shannon formula:

ci =
1
2

log2

(
1 +

Gipi

Γi

)
, pi ∈ [0, pi,max], ∀i (3)

where Gi and Γi are the channel gain and noise respectively
for the ith link. The transmission power pi is constrained by
its maximum pi,max.



3. JOINT OPTIMIZATION

Given the characterization of source coding and channel cod-
ing in the previous section, we are now ready to formulate the
joint source coding and power allocation optimization prob-
lem in a sensor network.

minimize D + βT p (4)

subject to si ≤ ci, ∀i

where the objective function illustrates a tradeoff between dis-
tortion minimization and power consumption, with β as the
relative weighting vector, i.e., β = [β1, ..., βN ]T . Here, D is
the distortion and p = [p1, ..., pN ]T is the vector of transmis-
sion power allocation at each node. The inequality constraint
states that the source rate si at each node must be smaller
than its link capacity ci. Furthermore, (4) can be expressed
in terms of quantization effort and power consumption as fol-
lows:

min tr (Rθ) − tr
(
RθH

T (HRθH
T + R−1

w )−1HRT
θ

)
+βT p (5)

s.t.
1
2

log2

(
1 + σ2

siwi

1 − σ2
niwi

)
≤ 1

2
log2

(
1 +

Gipi

Γi

)

σ2
si = hT

i Rθhi, wi ∈
[
0, 1/σ2

ni

]
, pi ∈ [0, pi,max]

Theorem 1 The joint optimization problem of source coding
and power allocation (5) is a convex optimization problem.

Proof: We first prove that the objective function is a con-
vex function over variables (w,p) by checking that its Hes-
sian is positive semidefinite. Denote Y = (HRθH

T + R−1
w ),

Z = HRT
θ , and f(w,p) = βT p − tr

(
ZT Y −1Z

)
. Here, Rθ

is a positive definite diagonal matrix; Rw is a diagonal matrix
with the ith element wi; and R−1

w = Rn + Rq, where Rn, Rq

are positive definite diagonal matrices. Hence, Y is a positive
definite, symmetric matrix. We use the following definition.

Definition 1 If A = [aij ] ∈ Mm,n and B = [bij ] ∈ Mm,n

are given, then the Hadamard (or Schur) product of A and B
is the matrix A ◦ B ≡ [aijbij ] ∈ Mm,n.

Let diag(A) be the vector consisting of the diagonal elements
of A. If a matrix A is positive semidefinite, we denote as
A � 0. By matrix chain rule, we have

∂f

∂w
= −diag

(
R−2

w ◦ [
Y −1ZZT (Y −1)T

])
∂2f

∂w2
= 2

[
R−3

w − R−2
w Y −1R−2

w

] ◦ [
Y −1ZZT Y −1

]
∂f

∂p
= β,

∂2f

∂p2
= 0,

∂2f

∂w∂p
= 0

Now, we prove that both matrices (R−3
w −R−2

w Y −1R−2
w ) and

(Y −1ZZT Y −1) are positive semidefinite. This is true, be-
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Fig. 2. Distortion vs. Beta

cause Rθ, Rw, R−1
w are all positive definite diagonal matrices.

Y = HRθH
T + R−1

w � R−1
w ⇒ R−3

w − R−2
w Y −1R−2

w � 0
ZZT � 0 ⇒ Y −1ZZT Y −1 � 0

According to Schur product theorem [7], the schur product
of two positive semidefinite matrices is positive semidefinite.
Hence, the Hessian is positive semidefinite, and f(w,p) is
convex over (w,p).

Furthermore, the first inequality in (5) is equivalent to

(
1 + σ2

siwi

1 − σ2
niwi

)
−

(
1 +

Gipi

Γi

)
≤ 0

It is not difficult to see that the first term above is convex over
wi under the domain of wi ∈ [0, 1/σ2

ni]. And the second term
is linear in pi under the domain of pi ∈ [0, pi,max]. Therefore,
the constraint is convex.

In conclusion, both the objective function and constraint
sets are convex, hence the joint optimization problem (5) is a
convex optimization problem. Q.E.D.

Given the result of Theorem 1, the joint optimization prob-
lem of source coding and power allocation can be solved op-
timally and efficiently via convex programming [8].

4. SIMULATION EXAMPLE

We simulate an example of a sensor network in Fig. 1. The
underlying physical source to be observed is modelled as a
two dimension Gaussian vector with an identity covariance
matrix. For the sake of simplicity, we consider the case of
two sensors with the corresponding observation matrix H =[

1 0.7
0.7 1

]
and equal weighting elements, i.e., β1 = β2 =

β0. The communication links are independent. The optimiza-
tion problem is solved using the interior-point method.
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Fig. 4. (a) Distortion vs. Observation Noise Variance, (b)
Distortion vs. Communication Channel Gain

Fig. 2 illustrates the tradeoff between distortion minimiza-
tion and power consumption. The larger the cost weight β0

is, the larger the optimal distortion becomes. As we can see
when the cost is small i.e., β0 < 0.12, the system operates
at maximum quantization rate with maximum transmission
power. At the other extreme i.e., β0 > 0.5, it is too ex-
pensive to transmit, therefore the CEO just ‘guesses’, i.e.,
D = tr(Rθ) = 2.

Fig. 3 plots different rate-distortion curves (solid line) and
capacity regions (dash line). It is clear that multiple pairs of
source coding rates (s1, s2) along the curve can achieve the
same distortion. The question of which pair to operate on
depends on how much link capacity is available. For example,
given cost weight β0 = 0.20, the optimal solution of (5) turns
out to be point A, where the rate-distortion curve I intersects
with the capacity region for a distortion level D = 1.65. As
the power becomes more expensive β0 = 0.27, the optimal
solution turns out to be point B, where the distortion is larger
D = 1.74 but the power consumption is also lower.

We further explore how the optimal distortion depends on
other factors, such as the observation noise variance or the
communication channel gain. Consider the configuration of
zero cost i.e., β0 = 0. As illustrated in Fig. 4(a), the optimal
distortion monotonically increases as the variance of obser-

vation noise increases. Similarly when the communication
channel gain becomes larger and larger, the distortion contin-
uously decreases as shown in Fig. 4(b).

5. CONCLUSIONS

In this paper, we address the joint optimization of source cod-
ing and power allocation in a sensor network. An informa-
tion theoretical approach is taken. Our main contribution is a
novel source coding formulation for vector source. Under the
assumption of independent communication links, we prove
that the joint optimization problem is convex, therefore opti-
mal solution can be obtained efficiently via convex program-
ming.

Future extensions of this work will be conducted along
two directions. First, we may consider a more complicated
channel coding model such as the interference links. Second,
the communication from each sensor to the CEO can be done
through a multihop network. Therefore, routing becomes an-
other factor to be optimized along with source and channel
coding.
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