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Abstract—This paper proposes practical methods for and
examines the benefit of dynamic power spectrum optimization for
interference mitigation in wireless networks. The paper envisions
a distributed antenna system, deployed as a means to increase
the network capacity for areas with high data traffic demand.
The network comprises several access nodes (AN), each serving a
fixed set of remote radio units called remote terminals (RT). The
RTs belonging to each AN are separated from each other using
orthogonal frequency division multiple access (OFDMA) over a
fixed bandwidth, where only one RT is active at each frequency
tone. The system performance is thus limited by internode inter-
ference solely, and no intranode interference. This paper proposes
methods for power spectrum optimization based on the idea of
iterative function evaluation. The proposed methods provide a
significant improvement of the overall network throughput, as
compared to conventional wireless networks with fixed transmit
power spectrum. The proposed methods are computationally
feasible and fast in convergence. They can be implemented in
a distributed fashion across all access nodes, with reasonable
amount of internode information exchange. Some of the proposed
methods can be further implemented asynchronously at each AN,
which makes them amenable to practical utilization.

I. INTRODUCTION

Interference is a major bottleneck in wireless network

design. Developing and optimizing advanced, yet practical,

interference mitigation techniques is particularly important

nowadays, due to the rapid pace of growth of wireless net-

works with enormous data usage, and the scarcity of the

available radio resources, e.g. bandwidth and transmit power.

Dynamic power spectrum optimization is an important class

of interference mitigation methods that seek to increase the

network capacity and reliability via power control. The present

paper aims to develop novel, feasible, practical methods for

power spectrum optimization.

Dynamic power spectrum optimization is especially appli-

cable to distributed antenna system (DAS) where the base-

station transmit capability is enhanced by adding multiple

remote radio units. The setup under discussion assumes a

cellular network comprising several remote terminals (RT),

each covering a relatively small area as a means to increase

the network capacity for areas with dense data traffic. The

RTs are then connected to access nodes (ANs) via wireless

links which are meant to replace the expensive optical fiber

links. The ANs are responsible for the transmission strategies

and radio resource management for the different RTs. From a

design perspective, the interest of this paper is to mitigate the

internode interference, thereby maximizing the aggregate data

capacity of the RTs, via practical power spectrum optimization

methods.

The main challenge in power control remains the problem of

finding computationally efficient methods to allocate the power

of the different transmitters across the different frequency

tones. The power spectrum optimization problem is especially

well studied in the literature for digital subscribers lines (DSL)

[1], [2], [3], [4], [5]. For wireless networks, power control can

be performed using the concept of interference price ([6], [7],

[8], [9]) which quantifies the effect of interference between

the multiple transmitter-receiver pairs in the wireless medium.

The power control methods can also be incorporated with

scheduling [10], [11], [12].

This goal of this paper is to study a class of iterative func-

tion evaluation based methods for power management. These

methods have an advantage of low computational complexity,

while showing a significant gain compared to the conventional

maximum power transmission policy. Further, these methods

lend themselves to distributed implementation with reasonable

amount of inter-access-node information exchange. Some of

the methods can also be implemented asynchronously, which

makes them amenable to practical utilization.

The proposed methods make use of channel measurements

done on a per-tone basis for every AN-RT pair. The mea-

surements are subsequently provided to either a central server

for further centralized processing, or to each of the several

access nodes for distributed processing. These measurements

are of particular interest in fixed deployment scenarios, where

the channels are slow varying. Further, the measurement can

be done periodically, thus allowing the adaptation of radio

resource allocations with the dynamically changing environ-

ment. In this paper, the measurements are utilized for internode

interference mitigation via joint dynamic power spectrum

adaptation and scheduling.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a wireless multicell network with L ANs and

K RTs per AN, with single antennas at both the ANs and

RTs. The RTs belonging to each AN are separated from

each other using orthogonal frequency division multiple access

(OFDMA) of N subcarriers over a fixed bandwidth, where

only one RT is active at each frequency tone. This paper
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Fig. 1. A distributed antenna system with seven 7 ANs and 4 RTs per AN.

aims to use power management methods to alleviate internode

interference. In particular, the lth AN may allocate its power

Pn
l at each tone n ∈ {1, · · · , N}, depending on the scheduling

assignment of RTs and the channel gains between the AN-RT

pairs. Let k = f(l, n) and k′ = f(j, n) be the scheduled RTs

of the lth AN and the jth RT respectively, both at the nth

tone. The received signal at the kth RT is a summation of the

intended signal and the internode interference:

ynl = hn
llkx

n
l +

∑

j 6=l

hn
jlkx

n
j + znl (1)

where xn
l is a complex scalar denoting the information signal

for the kth RT, hn
jlk ∈ C is the channel from the jth AN to

the kth RT, and znl is the additive white Gaussian noise with

variance σ2/2 on each of its real and imaginary components.

Fig. 1 illustrates the system model for seven ANs and four

RTs per AN.

B. Problem Formulation

For completeness, the overall network optimization problem

can be stated as a maximization of the log utility function:

max
∑

l,k

log
(

R̄lk

)

s.t. Rlk =
∑

{n|k=f(l,n)}

log (1 + SINRn
lk)

0 ≤ Pn
l ≤ Smax ∀l, n

SINRn
l =

Pn
l |h

n
llk|

2

Γ(σ2 +
∑

j 6=l P
n
j |h

n
jlk|

2)
(2)

where R̄lk is the long term average rate of the kth RT of the

lth AN, Smax is the maximum power constraint imposed on

each AN at each tone, and where the maximization is over the

scheduling assignment k = f(l, n), and the power spectral

density levels Pn
l . The Γ is the signal-to-noise ratio (SNR)

gap.

This paper adopts an iterative scheduling and power control

policy similar to that in [10], [11], [12], in which the schedul-

ing is done assuming fixed power, and power optimization is

done assuming a fixed schedule. The focus of this paper is the

power allocation step, which is essentially a weighted rate-sum

maximization problem on a per-tone basis:

max
∑

l

wlkr
n
lk

s.t. 0 ≤ Pn
l ≤ Smax (3)

where

rnlk = log

(

1 +
Pn
l |h

n
llk|

2

Γ(σ2 +
∑

j 6=l P
n
j |h

n
jlk|

2)

)

(4)

is the instantaneous rate of the scheduled kth RT for the lth
AN at the nth tone, the weights comes from the scheduling

objective (e.g. wlk =
1

R̄lk
for proportional fairness), and where

the maximization is over the set of powers Pn
l . The rest of

the paper examines practical numerical methods to solve (3)

and quantifies their performance.

III. POWER SPECTRUM OPTIMIZATION

The weighted sum-rate maximization problem (3) is a non-

convex optimization problem, whose global optimal solution

is not easy to find. Like many previous approaches, this paper

also aims at local optimal solutions, but with a focus on

reduced computational complexity. In particular, the current

paper considers a class of strategies based on an iterative

function evaluation approach. The novel methods, described

below, are simple to implement, fast in convergence, and

similar in performance to traditional full-blown Newton’s

method. Some of the proposed methods can be implemented

in a distributed fashion, and asynchronously at each AN, with

no need for step size choices.

A. Iterative Function Evaluation Methods (IFEM)

1) Full-IFEM: We begin by taking the gradient of the

objective function R of the problem (3) with respect to Pn
l :

∂R

∂Pn
l

= wlk

∂rnlk
∂Pn

l

+
∑

j 6=i

wjk′

∂rnjk′

∂Pn
l

=
wlk

Pn
l

(

SINRn
l

1 + SINRn
l

)

−

∑

j 6=l

wjk′

|hn
ljk′ |2

σ2 +
∑

i 6=j P
n
i |h

n
ijk′ |2

SINRn
j

1 + SINRn
j

(5)

where SINRn
j is defined as:

SINRn
j =

Pn
j |h

n
jjk′ |2

Γ(σ2 +
∑

i 6=j P
n
i |h

n
ijk′ |2)

(6)

A local optimal solution must be such that the above gradient

is zero. The main idea of the iterative function evaluation

method (IFEM) is to rewrite the above as:

Pn
l =

wlk
SINRn

l

1+SINRn
l

∑

j 6=l wjk′

|hn
ljk′ |

2

σ2+
∑

i 6=j
Pn

i
|hn

ijk′ |
2

SINRn
j

1+SINRn
j

(7)



It is now possible to compute all the terms on the right-hand-

side of the equation using the current power allocation, and

update the new power allocation as above. This step is a simple

function evaluation, which can be done iteratively, hence this

method is called Full-IFEM.

More formally, the power level of every AN at every tone,

Pn
l , is updated from step t to t+1 according to the following:

Pn
l (t+ 1) =






wlk
SINRn

l (t)
1+SINRn

l
(t)

∑

j 6=l wjk′

|hn
ljk′ |

2

σ2+
∑

i 6=j
Pn

i
(t)|hn

ijk′ |
2

SINRn
j
(t)

1+SINRn
j
(t)







Smax

0

(8)

where the maximum power constraint is also taken into

account.

2) θ-IFEM: The above full-IFEM algorithm requires

finding the individual signal-to-interference-and-noise ratios

(SINRs) at every iteration. To further simplify the computa-

tional complexity, we propose the following heuristic method

that replaces the per-iteration SINR’s with the values of

SINR’s calculated under the initial maximum power transmis-

sion strategy. Although this method does not guarantee local

optimality, it has the advantage that its convergence is easy

to prove. Further, it provides significant gain as compared to

the maximum power transmission strategy, as the simulation

results show. This method, called θ-IFEM, finds the power

level Pn
l according to the following update equation:

Pn
l (t+1) =







wlk

∑

j 6=l wjk′

|hn
ljk′ |

2

σ2+
∑

i 6=j
Pn

i
(t)|hn

ijk′ |
2 θnjl







Smax

0

(9)

where

θnjl =

SINRn
j

1+SINRn
j

SINRn
l

1+SINRn
l

(10)

is a fixed factor calculated from the maximum power trans-

mission strategy.

3) IFEM: To further simplify the power update equations,

one can set θnjl to 1. This is in fact a high-SINR approximation

of the problem. The resulting update equation becomes:

Pn
l (t+ 1) =





wlk
∑

j 6=l wjk′
|hn

ljk′ |2

σ2+
∑

i 6=j
Pn

i
(t)|hn

ijk′ |2





Smax

0

(11)

For physical platforms that only permit each AN to allocate

one value for the power across all tones, the power can be

found by taking the average of the power values of IFEM.

The resulting method is called AP IFEM.

B. Convergence Analysis

The convergence of full-IFEM is difficult to establish in full

generality. But the following convergence result is available

for both θ-IFEM and IFEM under both the synchronous and

asynchronous models.

Proposition 1. Starting from any initial Pn
l (0), both θ-IFEM

and IFEM algorithms converge to a unique fixed point. Fur-

thermore, the convergence is still guaranteed under a totally

asynchronous model.

Proof: The proof is based on corollary 1 in [13], as both

update equations of θ-IFEM and IFEM, written as Pn
l (t +

1) =
[

g
(

Ψ
n(t)

)]Smax

0
, satisfy the following standard function

properties:

1) If Pn
l ≥ 0 ∀l, n, then g

(

Ψ
n
)

> 0.

2) If Pn
l ≥ P

′n

l ∀l, n, then g
(

Ψ
n
)

≥ g
(

Ψ
′n
)

.

3) For ρ > 1, we have ρg
(

Ψ
n
)

> g(ρΨn) ∀l, n.

where the variables Pn
l , ∀ l = 1, · · · , L, are stacked into one

vector Ψn. The convergence to the unique fixed point and the

asynchronous convergence follow as a consequence.

C. Connection with SCALE ([3])

In [3], a power control algorithm named SCALE is pro-

posed. The algorithm is motivated by geometric programming.

SCALE is a two-stage algorithm, and in the notation of this

paper can be thought of as having a θ-IFEM-like algorithm in

the inner loop, and a θnjl update in the outer loop. The SCALE

algorithm defines αn
j =

SINRn
j

1+SINRn
j

, so that θnjl = αn
j /α

n
l . It runs

iterative function evaluation with fixed αn
j in the inner loop,

then update αn
j based on the resulting SINRs in the outer

loop. The full-IFEM proposed in this paper is essentially a

simplification of SCALE. Instead of the two-stage process in

which θnjl is updated in an outer loop, full-IFEM implicitly

updates the power vector and θnjl at the same time.

In addition, as shown in the simulation results, the use of

a single fixed θnjl derived from the maximum transmit power

level may already be near optimum (leading to θ-IFEM), thus

θnjl may not need to be updated at all. Further, at high SINR,

θnjl can be set to 1, leading to IFEM.

D. Comparison with Newton’s Method

As a baseline comparison, we also describe the following

Newton’s method (NM) update equation as in [12]:

Pn
l (t+ 1) = [Pn

l (t) + µ∆Pn
l (t)]

Smax

0 , (12)

where µ is the step size, and

∆Pn
l (t) =

wlk

Pn
l (t)

(

1 +
1

SINRn
l

)−1

−
∑

j 6=l

τnjl

wlk

(Pn
l (t))

2

(

1 +
1

SINRn
l

)−2 (13)

where τnjl is the interference price defined as

τnjl = wjk′

|hn
ljk′ |2

σ2 +
∑

i 6=j P
n
i (t)|h

n
ijk′ |2

SINRn
j

1 + SINRn
j

(14)

where k′ = f(j, n).
The main disadvantage of the Newton’s method is that the

choice of step size cannot be easily done in a distributed

fashion, and certainly not asynchronously.



Cellular Layout Hexagonal

Number of ANs 7

Frequency Reuse 1

Number of RTs per AN 4

AN-to-AN Distance d1

AN-to-RT Distance d2

Duplex TDD

Channel Bandwidth 10 MHz

AN Max Tx Power per Subcarrier -32.70 dBw

SINR Gap 12 dB

Total Noise Power Per Subcarrier -158.61 dBw

Distance-dependent Path Loss 128.1 + 37.6 log10(d)
Sampling Frequency 11.2 MHz

FFT Size 1024

TABLE I
SYSTEM MODEL PARAMETERS

To simplify the computations required at each iteration of

Newton’s method, we also propose a high-SINR Newton’s

method (HSNM) where the update equation (13) is approx-

imated as

∆Pn
l (t) =

wlk

Pn
l (t)

−
∑

j 6=l

wjk′

|hn
ljk′ |2

σ2 +
∑

i 6=j P
n
i (t)|h

n
ijk′ |2

wlk

(Pn
l (t))

2

(15)

IV. SIMULATIONS

This section evaluates the benefit of the proposed power

spectrum optimization methods on a wireless network com-

prising seven ANs, and 4 RTs per AN, over 10MHz bandwidth.

The transmission of each AN to its own RTs interferes with

the other ANs’ transmissions. RTs belonging to one AN

are separated from each other using OFDMA with 1024

subcarriers, where only one RT is active at each frequency

tone. The parameters used in simulation are as outlined in

Table I. The AN-to-AN distance is set to d1; the AN-to-RT

distance is set to d2. Both d1 and d2 vary so as to study the

performance of the proposed methods for various topologies.

For illustration purposes, the weighting factors wlk in problem

(3) are set to 1, ∀(l, k), which allows a sum-rate comparison.

Fig. 2 shows the sum-rate performance over all ANs for

a network with AN-to-AN distance d1 = 0.5km and AN-

to-RT distance d2 = 0.15km over different realizations of

the channel. Fig. 2 shows that there is a small performance

loss due to the high SINR approximation (i.e. IFEM and

HSNM have a lower performance as compared to full-IFEM).

Nevertheless, IFEM and HSNM outperform the maximum

power method significantly. We also observe that AP IFEM,

which allocates one power value for each AN across all the

tones, is always superior to the maximum power method.

Tables II, III, and IV illustrate the performance of IFEM for

different network topologies. Table II considers the effects of

cell sizes, and shows that the benefit of power optimization is

more pronounced in a small-cell setting, where the interference

level is higher. Tables III and IV examine the effect of RT
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Fig. 2. Sum-rate in bps/Hz over 7 ANs, 4 RTs per AN. AN-to-AN distance
is 0.5km. AN-to-RT distance is 150m.

Sum Rate (bps/Hz) Small-cell (d1 = 0.5km) Large-cell (d1 = 1km)

IFEM 60.68 91.33

HSNM 60.68 91.33

Full-IFEM 62.61 91.58

Max Power 53.01 86.22

Full-IFEM Gain 18.1% 6.2%

TABLE II
7 ANS, 4 RTS PER AN. d1 IS THE AN-TO-AN DISTANCE. AN-TO-RT

DISTANCE d2 IS 150M.

locations within each cell. It is shown that the benefit of power

optimization is noticeably higher for cell-edge users, where the

interference is larger.

It can be observed from Tables II, III, and IV that IFEM and

HSNM always have the same performance, as both employ a

high-SINR appoximation. However, at the cell-edge of small

cells, where the SINR level is not sufficiently large to justify

the high-SINR approximation, IFEM and HSNM become

inferior to full-IFEM. This is, however, not the case for cell-

edge users of larger cells, i.e. d1 = 1km, shown in Table IV,

where SINR values are larger, and where IFEM, HSNM and

full-IFEM again have similar performance. In all cases, IFEMs

always remain superior to the maximum power method.

Figs. 3 and 4 compare the convergence performance of

IFEM algorithms with the Newton’s method. For fair com-

parison, the Newton’s method is plotted here with a constant

step size of 1. As seen in Fig. 3, because of the constant step

size, the Newton’s method has a poor performance initially,

and IFEM converges faster overall. Note that the convergence

speed comparison depends on the SINR. Fig. 3 corresponds to

a high SINR situation, where IFEM outperforms the Newton’s

method. Fig. 4 shows an opposite situation, at a relatively

low SINR, where the convergence of the Newton’s method

is faster than the full-IFEM. Note that at high SINR, the

achievable sum-rate performances of IFEM, θ-IFEM, full-



Sum Rate (bps/Hz) Cell-edge (d2 = 333m) Cell-center (d2 = 125m)

IFEM 34.84 78.39

HSNM 34.84 78.39

Full-IFEM 41.11 78.77

Max Power 30.54 71.91

Full-IFEM Gain 34.6% 9.5%

TABLE III
7 ANS, 4 RTS PER AN. AN-TO-AN DISTANCE IS 0.5KM.

Sum Rate (bps/Hz) Cell-edge (d2 = 667m) Cell-center (d2 = 250m)

IFEM 44.86 83.55

HSNM 44.86 83.55

Full-IFEM 46.86 84.24

Max Power 41.49 80.18

Full-IFEM Gain 12.9% 5.1%

TABLE IV
7 ANS, 4 RTS PER AN. AN-TO-AN DISTANCE IS d1 = 1KM.

IFEM and Newton’s method are similar, while at low SINR,

full-IFEM and Newton’s method outperform θ-IFEM, which

in term outperforms IFEM.

V. CONCLUSION

Given the scarcity of the available radio resources, the

performance of future wireless networks is expected to widely

depend on the feasibility of the dynamic power spectrum

optimization methods. This paper presents novel and practical

methods to manage interference in wireless systems. The

proposed methods represent efficient ways of updating the

power spectral density levels for all transmitters, based on the

frequency domain channel measurements. The proposed meth-

ods, full-IFEM, θ-IFEM and IFEM, are simple methods, with

low computational complexity and fast convergence. Their

performance is similar to the full-blown Newton’s method,

but without the need for step size choices. They can also be

implemented in a distributed fashion, and asynchronously at

each transmitter, and are therefore excellent fits for practical

applicability.
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