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Abstract—This paper proposes an algorithm to compute the
uplink transmit beamformers for linear interference alignment in
MIMO cellular networks without symbol extensions. In particular,
we consider interference alignment in a network consisting of G
cells and K users/cell, having N and M antennas at each base sta-
tion (BS) and user respectively. Using an alternate interpretation
of the conditions for interference alignment, we frame the problem
of finding aligned transmit beamformers in the uplink as an
optimization problem to minimize the rank of a set of interference
matrices subject to affine constraints. The interference matrix of a
BS consists of all the interfering vectors at that BS. The proposed
algorithm approximates rank using the weighted Frobenius norm
and iteratively updates the weights so that the weighted Frobenius
norm is a close approximation of the rank of the interference
matrix. A crucial aspect of this algorithm is the weight update
rule that guides the algorithm towards aligned beamformers. We
propose a novel weight update rule that discourages the algorithm
from converging to local minima that do not generate the requisite
number of interference free dimensions. The proposed algorithm
is computationally efficient since it only requires solving a simple
quadratic program in each iteration. Simulation results indicate
much faster convergence to aligned beamformers when compared
to algorithms of similar complexity.

I. INTRODUCTION

Linear beamforming techniques for interference mitigation

are of significant interest in MIMO cellular networks where

increasing density along with new backhaul enhancements have

necessitated and enabled coordinated interference management.

In this context interference alignment has emerged as a key

concept in addressing interference in such networks. In contrast

to asymptotic interference alignment schemes [1], [2] that

typically require decomposition of multi-antenna nodes and

infinite symbol extensions, linear beamforming schemes are

simpler to implement and therefore more relevant in practice.

In this work we develop an algorithm to design aligned transmit

and receive beamformers to achieve a given number of degrees

of freedom (DoF) in a G-cell, K-user/cell network with M

antennas at each user and N antennas at each base station —

a (G,K,M,N) network.
Our interest in designing algorithms for interference align-

ment is threefold. First, in cooperative cellular networks that

operate in an interference-limited regime, these beamformers

identify regions in the optimization landscape where interfer-

ence is significantly mitigated. Second, while there exist several

algebraic-geometry-based techniques that establish feasibility

of interference alignment, iterative algorithms are still typically

necessary to design the beamformers that achieve the requisite

number of DoF. While several iterative algorithms have been

proposed to design aligned beamformers [3]–[9], they are not

always guaranteed to converge to a set of aligned beamformers

that achieve the requisite number of DoF. Third, constructive

approaches to design aligned beamformers such as subspace

alignment chains [10] are not yet available for a broad class

of (G,K,M,N) networks. Thus, iterative algorithms for de-

signing aligned beamformers are very much of interest to the

research community.

Several iterative algorithms are available to design beam-

formers for interference alignment [3]–[9]. In [3], an itera-

tive algorithm for the MIMO interference channel based on

minimizing the sum of interference power at all the receivers

is proposed, and this algorithm is extended to MIMO cel-

lular networks in [5]. While the algorithms of [3] and [5]

are known to converge, they typically need several thousand

iterations (although, the per-iteration complexity is low as

they only require computing a small number of eigenvalue

decompositions per iteration). In [6], a rank constrained rank

minimization framework for finding linear beamformers for

interference alignment is proposed. Rank is approximated using

the nuclear norm, which is suited for inducing sparsity. In

[8], [9], [11] a reweighted nuclear norm approach to finding

aligned beamformers is proposed where the rank of a certain

interference matrix is minimized. Due to the nuclear norm

approximation, the algorithms of [6], [8], [9], [11] involve

solving a series of semidefinite programs. These algorithms are

more computationally intensive than the algorithms of [3], [5],

but they require fewer iterations.

In this work, we develop a computationally efficient itera-

tive algorithm for designing aligned beamformers for MIMO

cellular/interference networks. We focus on linear interference

alignment without symbol extensions and assume the channels

to be generic. Using an alternate set of conditions for inter-

ference alignment developed in [11], we cast the problem of

finding aligned beamformers as a rank minimization problem

subject to linear constraints. Using this framework, we develop

an iterative weighted-Frobenius-norm minimization algorithm

to obtain a set of aligned beamformers. A crucial aspect of this

algorithm is a novel reweighting method that takes advantage

of the knowledge of the achievable DoF of the network to

steer the optimization procedure away from undesirable local

optimum solutions. This algorithm is inspired by a similar

framework developed for rank minimization in the context of

the matrix completion problem [12]. Every iteration of this

new algorithm only requires solving an unconstrained quadratic



program, which are computationally easy to do. Further, unlike

existing algorithms, this algorithm does not require alternately

optimizing transmit and receive beamformers as the only vari-

ables of optimization are transmit beamformers in the uplink.

II. SYSTEM MODEL

Consider the uplink of a cellular network consisting of G

interfering cells with K users per cell. Each user is assumed to

have M antennas and each BS is assumed to have N antennas.

Let the channel from the kth user in the gth cell to the ith

base station (BS) be denoted as the N×M matrix H(gk,i). We

assume all channels to be generic. All channels are assumed to

be known perfectly and available at a central location. In the

uplink, let xgk denote the M × 1 signal vector transmitted by

the kth user in the gth cell. This transmit signal vector is formed

using a M × dgk linear transmit beamforming matrix Vgk and

received using a N × dgk receive beamforming matrix Ugk,

where dgk represents the number of transmitted data streams

of the kth user in the gth cell. The received signal after being

processed by the receive beamforming matrix Ugk at the gth

BS can be written as

UH
gkyg =

G∑

i=1

K∑

j=1

UH
gkH(ij,g)Vijsij +UH

gkng, (1)

where sij is the dij × 1 symbol vector transmitted by the jth

user in ith cell and ng is the N×1 vector representing circular

symmetric additive white Gaussian noise ∼ N (0, I). While the

framework developed in this paper is applicable for any set of

dgks that constitute a proper and feasible system, we restrict

our focus to the symmetric case where dgk = d ∀g, k. The
downlink received signal is defined similarly.

We denote the space occupied by interference at the gth BS

as the column span of a matrix Rg formed using the column

vectors from the set {H(ij,g)vijl : i ∈ {1, 2, . . . , G}, j ∈
{1, 2, . . . ,K}, l ∈ {1, 2, . . . , d}, i 6= g}, where we use the

notation vijl to denote the lth beamformer associated with the

jth user in the ith cell.

III. RANK MINIMIZATION APPROACH

The conditions for linear interference alignment when sym-

bol extensions over time or frequency are not allowed can be

stated as follows [13]:

UH
gkHij,gVij = 0 ∀ (i, j) 6= (g, k) (2)

rank(UH
gkHgk,gVgk) = d ∀ (g, k). (3)

Counting the number of equations and variables involved in

the conditions gives a preliminary check on the feasibility of

satisfying (2) and (3). When the number of variables exceed

the number of equations, the system is said to be proper. A

(G,K,M,N) network where d DoF/user are desired is proper

if (M + N) ≥ (GK + 1)d [5], [13]. While not all proper

systems are feasible [10], improper systems have been shown to

be almost surely infeasible [14]. In this paper, we only consider

proper systems that are known to be feasible. As stated earlier,

feasibility of certain proper systems can be established through

certain non-constructive techniques in algebraic geometry.

We briefly state an alternative reformulation of the conditions

for interference alignment introduced in [11]. Conditions (2)

and (3) can be alternately stated as

rank(Rg) ≤ N −Kd ∀ g, (4)

rank(Vgk) = d ∀ g, k. (5)

This reformulation follows from the fact that when inter-

ference spans no more than N − Kd dimensions, generic

channels ensure that the intersection between useful signal

subspace (span({H(gk,g)Vgk}Kk=1)) and interference subspace

(span(Rg)) is almost surely zero dimensional. This allows us to

replace (2) with a rank constraint on the interference subspace

(4), which ensures that sufficient dimensions are available at

each BS for the desired signals. In addition, since generic

channel matrices are almost full rank, condition (3) is satisfied

as long as rank(Vgk) = d. This gives rise to condition (5) in

the reformulation. Once a set of transmit precoders {Vgk} that

satisfy the above conditions are designed, designing the receive

filters is then straightforward. We collectively refer to the set

of {Vgk} as V.

Since we need to design transmit beamformers that satisfy

conditions (4) and (5), it is natural to pose the problem of

finding these beamformers as a feasibility problem, as given

below:
minimize 1

subject to rank(Rg) ≤ N −Kd ∀ g,

rank(Vgk) = d ∀ (g, k).

(6)

While the rank constraint onVgk is easily handled by imposing

the condition Vgk(1 : d, 1 : d) = I ∀ g, k, handling the

rank constraint on Rg is not straightforward. In this paper

we eventually use a surrogate function to approximate the

rank function. However, before doing so, we first propose a

rank minimization reformulation of the above problem. This is

because it is easier to handle the rank function in the objective

rather than in a constraint.

IV. MIN-MAX RANK FORMULATION

To overcome the difficulty of handling rank constraints, we

reformulate the feasibility problem as a minimax optimization

problem where we minimize the maximum rank of the matrices

R1, R2,. . .,RG. The minimax optimization problem can be

stated as

min
V

max
g∈{1,2,...,G}

rank(Rg)

subject to Vgk(1 : d, 1 : d) = I ∀ (g, k)

Ag(V) = Rg ∀ g, ,

where Ag(V) = (Rg) captures the linear relationship between

V and Rg. Since we assume the given system to be proper and

feasible, it is clear that the global optimum of this optimization

problem is no more than N − Kd. Further, it can be seen

that any set of beamformers in the domain of this optimization

problem that ensures the objective is no more than N − Kd

constitutes a set of aligned solutions. In order to apply standard

optimization techniques to solve this optimization problem,

we first approximate rank using a surrogate function. Several



surrogate functions that are well suited for rank minimization

problems are known, and they include functions such as nuclear

norm (convex envelope of rank), Schatten-p function [12], [15],

log(det(·)) and −tr(inv(·)) [16]–[18]. While nuclear norm,

log(det(·)) and −tr(inv(·)) approximations lead to solving

a sequence of semidefinite programs, Schatten-p function re-

quires solving a series of quadratic programs where a weighted

Frobenius norm is iteratively minimized.

With computational complexity in mind and drawing in-

spiration from the reweighted Frobenius norm minimization

approach developed in [12] for the affine-constrained rank

minimization problem, we approximate rank using a series of

weighted Frobenius norms. Note that the square of the Frobe-

nius norm of a matrix X is given by ‖X‖2F = tr(XHX) =
∑

σ2
r , where σrs are the singular values of X. The weighted

Frobenius norm is given by ‖X(W1/2)H‖F , where we have

implicitly assumed that X has more rows than columns and W

is a positive definite weighting matrix. For certain choices of

W, the square of the weighted Frobenius norm can be thought

of as a weighted sum of the singular values of XHX i.e,
∑

αrσ
2
r . The choice of weighting matrices plays a crucial role

in the effectiveness of the overall algorithm and is discussed in

further detail in the next section. For a given set of weighting

matrices, approximating rank using the weighted Frobenius

norm leads to the following optimization problem:

min
V

max
g∈{1,2,...,G}

‖Rg((Wg)
1/2)H‖2F

subject to Vgk(1 : d, 1 : d) = I ∀ (g, k)

Ag(V) = (Rg) ∀g.

(7)

Note that we implicitly assume that Rg has more rows than

columns, if not we simply replace Rg with RH
g in the above

formulation and all subsequent steps. We assume this to ensure

that the number of singular values of Wg and Rg are the

same. Note that (7) is a convex optimization problem that

can be transformed to a convex minimization problem through

the use of dual variables, which can then be optimized using

techniques such as the subgradient method. Since sub-gradient

techniques are known to be slow to converge, we instead solve

the following quadratic program

minimize
V

G∑

g=1

‖Rg((Wg)
1/2)H‖2F

subject to: Vgk(1 : d, 1 : d) = I ∀ (g, k)

Ag(V) = Rg ∀ g.

(8)

where we have replaced the maximum of a set of weighted

Frobenius norms with their sum. Note that in the above

quadratic program, Rg is just an auxiliary variable that can be

easily eliminated and that the second set of linear constraints

are straightforward to satisfy. We are thus left with a simple

unconstrained quadratic program that can be optimized by

solving a system of linear equations. However, replacing the

min-max optimization problem with a min-sum optimization

problem significantly alters the problem landscape and the

ability of this reformulation to recover the desired set of

beamformers depends heavily on how the weighting matrices

are chosen. Nevertheless, by taking advantage of the knowledge

of the achievable DoF in the network, this min-sum formulation

can be effectively used to solve the min-max problem.

A. Choice of Weighting Matrices

Solving affine-constrained rank minimization by iteratively

solving a series of quadratic programs that minimize a weighted

Frobenius norm is first discussed in [15], where the rank of a

matrix X is approximated using the Schatten-p function given

by tr(XHX+γI)p/2 for 0 < p ≤ 1. Noting that the derivative

of the Schatten-p function is given by pX(XHX+ γI)p/2−1,

it is shown that the KKT conditions of the resulting affine-

constrained optimization problem can be satisfied by iteratively

solving a sequence of weighted-Frobenius-norm minimization

problems. Mathematically, the affine-constrained rank mini-

mization problem

minimize rank(X)

subject to A(X) = b,
(9)

is solved by iteratively solving the following optimization

problem:

minimize tr(WsX
HX) = ‖X(Ws)

1/2‖2F
subject to A(X) = b,

(10)

where the weights Ws are updated using the update rule

Ws+1 = ((Xs)
H(Xs) + γs+1I)

p
2−1

where the optimal X

obtained after the sth iteration is denoted as Xs and γs+1 is the

regularization parameter used in updating the (s+1)th weight.

When 0 < p ≤ 1, the iterations of such a procedure are shown

to converge. Further, the same iterative procedure can also be

applied and shown to converge when p = 0, where the weight

update rule is justified by showing that it solves a fixed point

equation emerging from the KKT conditions that result when

rank of X is approximated as log(det(XHX+ γI)).
In this paper, we set p to be zero and adopt the weight

update rule given above with a few important modifications.

Note that when weights are updated using the update rule

Wg(s+1) = ((Rg(s))
H(Rg(s)) + γs+1I)

−1, the weighting

matrices can be interpreted to be weighting the singular values

of the matrix (Rg(s))
HRg(s). To see this, let the singular value

decomposition of Rg(s) be given by Pg(s)Σg(s)Q
H
g(s), then

Wg(s+1) = (Qg(s))(Σ
2
g(s) + γs+1I)

−1(Qg(s))
H . Thus, the

weighting matrix Wg(s+1) imposes a penalty that is inversely

proportional to the square of the magnitude of each non-zero

singular value of Rg(s). Since small, non-zero singular values

are heavily penalized, the iterative procedure is incentivized to

reduce them to zero, thus reducing the rank of Rg(s).

The formulation in (8) does not incorporate any informa-

tion on the expected rank of the interference matrices and a

direct application of the weighting procedure outlined above

is unlikely to generate the requisite number of interference-

free dimensions due to the presence of many local minima.

Further the formulation in (8) is not inherently inclined to

generate the same number of interference free dimensions at

each BSs, thereby leading to scenarios where we have more



than necessary number of interference free dimensions at some

BSs and insufficient interference-free dimensions at other BSs.

The key observation of this paper is that we can modify the

weight update rule to take advantage of the fact that we know

how many DoF are achievable per user in the network and to

ensure that we obtain the requisite number of interference-free

dimensions at each BS in a balanced manner.

Since we are looking for transmit beamformers that en-

sure rank(Rg) ≤ N − Kd ∀ g, we require z =
min(Kd, (GKd − N)) singular values of Rg to be zero.

To avoid local minima where rank of Rg is not sufficiently

minimized, we couple the penalties associated with each of

the z smallest singular values of R1,R2,. . .,RG. Let {σgr :
r = 1, 2, . . . ,min ((G − 1)Kd,N)} be the set of singu-

lar values of Rg obtained after the sth iteration, ordered

in the descending order i.e., σgr ≥ σg(r+1). Further, let

σ2
min = ming,r σ

2
gr and define the diagonal matrix Dg(s) =

diag([σ2
g1, σ

2
g2, . . . , σ

2
g(N−Kd), σ

2
min, σ

2
min, . . . , σ

2
min

︸ ︷︷ ︸

z times

]). We set

the weights for the (s + 1)th iteration to be Wg(s+1) =
(Qg(s)Dg(s)(Qg(s))

H + γs+1I)
−1. Such an update equally

penalizes each of the z smallest singular values of Ri, thereby

encouraging the algorithm to seek aligned beamformers where

all z smallest singular values can be simultaneously set to

zero. The proposed iterative procedure can be summarized as

follows:

1) Initialize Wg(1) = I ∀g, set γ = γ1, s = 1.
2) Iterate over s:

a) Solve (8) using weights Wg(s) and denote the

optimal interference matrices as Rgopt.

b) Compute the reduced SVD of Rgopt, and denote it

as Pg(s)Σg(s)(Qg(s))
H .

c) Set σ2
min = ming,r σ

2
gr , where σgr are the singular

values of Rg(s) arranged in descending order.

d) Set Dg(s) = diag([σ2
g1, . . . , σ

2
g(N−Kd),

σ2
min, . . . , σ

2
min

︸ ︷︷ ︸

z times

]).

e) Update γ.

f) Update Wg(s+1) = (Qg(s)Dg(s)(Qg(s))
H + γI)−1.

g) Return to Step (2a) if s < itermax.

The parameter γ acts as a regularization constant that makes

sure the weighting matrices are positive definite. Further, γ

determines the penalty imposed on small non-zero singular

values. Typically, γ is adaptively reduced with each iteration

to prevent the algorithm from prematurely converging to local

minima that do not completely align interference. As suggested

in [12], we set γ in the kth iteration to be γk = 1
(1+δ)k

, where

δ is a small positive constant.

When weights are updated according to the original update

rule given in [12], the algorithm can be shown to be converge.

For the weight update rule proposed in this paper, no such

convergence guarantees exist. Hence, we run the proposed

algorithm for a fixed number of iterations (itermax). Once the

transmit beamformers in the uplink are designed, the receiver

beamformers at the gth BS to recover the data streams of

the kth user can be chosen to be the left-singular vectors
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Fig. 1. Interference-free dimensions as a function of iterations for a (4, 1, 2, 3)
network with 1 data stream per user.

corresponding to the d smallest singular values of the matrix

Rg augmented with the interfering vectors from other users in

the same cell.

V. SIMULATION RESULTS

In order to test our algorithm, we first consider a (4, 1, 2, 3)
interference channel with one data stream per user. This system

is known to be a proper and feasible system [13]. For perfect

interference alignment, we need interfering vectors to occupy

two or fewer dimensions at every receiver. Note that this system

is on the proper-improper boundary and has no redundant vari-

ables. We compare the proposed iterative weighted-Frobenius-

norm minimization (IWFNM) algorithm with the interference

leakage minimization (ILM) algorithm proposed in [3]. One

iteration of ILM requires computing (G(K + 1)) eigenvalue

decompositions to update the transmit and receive beamform-

ers. One iteration of IWFNM requires solving an unconstrained

quadratic program involving GK(M − d)d variables and G

singular value decompositions to compute the weighting ma-

trices. The convex optimization problem in (8) can be solved

analytically, or by using CVX, a package for specifying and

solving convex programs [19], [20]. The algorithms are tested

over 200 channel realizations with channel coefficients drawn

i.i.d from CN (0, 2). The algorithms are run for a fixed number

of iterations, and the interference-free dimensions at BS g are

counted as the number of singular values of UH
gkHgk,gVgk >

10−2 for all g while subtracting the number of singu-

lar values of UH
gk[Rg,H(g1,g)Vg1, . . . ,H(g(k−1),g)Vg(k−1),

H(g(k+1),g)Vg(k+1), . . . ,H(gK,g)VgK ] > 10−5.

The simulation results are plotted in Fig. 1, where the

number of interference-free dimensions for the overall network

averaged over all the channel realizations are plotted as a

function of the number of iterations. We opt to show the

number of interference-free dimensions rather than system-

level performance metrics such as sum-rate because the former

is more directly related to the optimization objective of this
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Fig. 2. Interference-free dimensions as a function of iterations for a (3, 2, 2, 5)
network with 1 data stream per user.

paper. For IWFNM, the parameter δ was varied from 0.1 to

0.3. It can be seen that for most channel instances the IWFNM

algorithm is able to construct four interference free dimensions

within a few hundred iterations. Further, when compared to

ILM, IWFNM shows faster convergence, requiring hundreds

of fewer iterations to generate the same number of interference

free dimensions. Also note that the parameter δ has only a

negligible impact on the performance of the algorithm.

In Fig. 2 we consider the (3, 2, 2, 5) cellular network with the

goal of achieving 1 DoF/user. This system is also on the proper-

improper boundary and is known to be feasible. Once again we

see that although IWFNM shows better performance than ILM,

converging to beamformers that perfectly align interference at

all terminals (6 in this network) takes significantly more number

of iterations. Even after about 1000 iterations, in only 25−30%
of the channel instances is the interference completely aligned.

Drawing upon insights from compressed sensing, as both

ILM and IWFNM approximate rank as a weighted ℓ2 norm

rather than using the ℓ1 norm, it is not surprising that ILM and

IWFNM take several hundred iterations to converge to aligned

solutions. While the use of weighted ℓ1 norm is better suited to

generate a sparse set of singular values, such an approximation

leads to semidefinite programs that are significantly more

complex to solve [8], [9], [11]. This poses an interesting trade-

off between complexity per iteration and the total number of

iterations that is difficult to resolve except through simulations.

VI. CONCLUSION

In this paper we propose an iterative weighted-Frobenius-

norm minimization algorithm to design beamformers for linear

interference alignment in MIMO cellular networks. Each it-

eration of this algorithm requires solving a simple quadratic

program that minimizes the weighted Frobenius norm of an

interference matrix. A novel weight update rule is proposed

that steers the algorithm towards aligned solutions and thereby

generating the requisite number of interference free dimensions.

The algorithm shows improved convergence when compared to

algorithms of similar complexity such as interference leakage

minimization.
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