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Abstract—This paper proposes an efficient two-stage beam-
forming and scheduling algorithm for the limited-feedback coop-
erative multi-point (CoMP) systems. The system includes multiple
base-stations cooperatively transmitting data to a pool of users,
which share a rate-limited feedback channel for sending back
the channel state information (CSI). The feedback mechanism is
divided into two stages that are used separately for scheduling
and beamforming. In the first stage, the users report their best
channel gain from all the base-station antennas and the base-
stations schedule the best user for each of their antennas. The
scheduled users are then polled in the second stage to feedback
their quantized channel vectors. The paper proposes an analytical
framework to derive the bit allocation between the two feedback
stages and the bit allocation for quantizing each user’s CSI.
For a total number of feedback bits B, it is shown that the
number of bits assigned to the second feedback stage should
scale as logB. Furthermore, in quantizing channel vectors from
different base-stations, each user should allocate its feedback
budget in proportion to the logarithm of the corresponding
channel gains. These bit allocation are then used to show that the
overall system performance scales double-logarithmically with B
and logarithmically with the transmit SNR. The paper further
presents several numerical results to show that, in comparison
with other beamforming-scheduling algorithms in the literature,
the proposed scheme provides a consistent improvement in
downlink sum rate and network utility. Such improvements, in
particular, are achieved in spite of a significant reduction in the
beamforming-scheduling computational complexity, which makes
the proposed scheme an attractive solution for practical system
implementations.

I. INTRODUCTION

The performance of cooperative cellular communication
systems is highly dependent on the amount of channel state
information (CSI) available at the base-stations. Whether the
base-stations cooperate on a beamforming and interference
management level or a full-cooperative joint transmission
level, also referred to as network multiple-input multiple-
output (MIMO) systems, a certain degree of network-wide
CSI feedback is necessary for any efficient beamforming-
scheduling algorithm to operate [1].

Unfortunately, the feasibility of CSI estimation and feed-
back is limited in practice either by the limited feedback
capacity or the intrinsic delay associated with feedback leading
to outdated CSI [2], [3]. Although some innovative techniques
are developed to take advantage of the outdated CSI, as in [4],
such methods face significant practical challenges.

This paper studies the performance of network MIMO
systems and addresses the CSI feedback issues by assum-
ing a limit on the total number of available feedback bits
throughout the network. In particular, we propose an efficient
beamforming-scheduling algorithm by partitioning the feed-
back process into two stages that are separately utilized for
scheduling and beamforming purposes. The paper develops an
analytical framework to optimize the feedback bit allocation
between the two stages and also the bit allocation associated
with quantizing direct vs. interfering channels. The latter
problem can be considered as an extension of the work in
[5], which considers a single-user per-cell model.

As the comparison benchmark, the paper considers a single-
stage zero-forcing beamforming scheme with greedy user
selection, where the number of users participating in CSI
feedback is optimized [6]. In comparison with this scheme,
the two-stage feedback mechanism is shown to considerably
improve the downlink sum rate and the individual per-user
average rates for a majority of the users in the network. More
importantly, these improvements are shown to be achievable
with a significantly reduced beamforming-scheduling compu-
tational complexity, which makes the proposed scheme an
attractive solution for practical implementations.

II. SYSTEM MODEL

The system model consists of I base-stations each with
M antennas and a total of J single-antenna users uniformly
distributed within the network boundaries. All the users within
the network share a common CSI feedback channel with a total
capacity of B bits per fading block.

Let us define I def
= {1, 2, · · · , I} and J def

= {1, 2, · · · , J}
as the index sets for the base-stations and users. The channel
vector from BS i to user j, denoted by gij∈CM , is defined as

gij =
√
αijhij , (1)

where hij∈CM has i.i.d. CN (0, 1) entries and models the
Rayleigh fading component and

√
αij =

G0

1 + (dij/δ)ζ
(2)

denotes the path-loss component [2]. Here, dij is the distance
between BS i and user j, G0 is the transmission gain, δ is
the 3dB breakpoint distance, and ζ is the path-loss exponent.



Finally, the collective channel vector of user j from all base-
stations is denoted by g

j
∈CMI :

g
j
=
[
gT1j ,g

T
2j , · · · ,gTIj

]T
. (3)

The system is assumed to operate in the network MIMO
mode, which with a collective number of MI antennas, can
support MI users in the downlink. The exact method of
choosing those users depends on the scheduling algorithm and
is described in the next section. Let us denote the scheduling
function by π(·) : M× I → J and the scheduled users by
π(mi), where the double index mi belongs to M× I and
M def

= {1, 2, · · · ,M}. With this notation, the received signal-
to-interference-plus-noise ratio (SINR) at user π(mi) can be
expressed as SINRπ(mi) = Nπ(mi)

/
Dπ(mi), where

Nπ(mi)
def
= ρ

∣∣∣∣∣∑
k∈I

g†kπ(mi)vkπ(mi)

∣∣∣∣∣
2

(4)

Dπ(mi)
def
= ρ

∑
j 6=π(mi)

∣∣∣∣∣∑
k∈I

g†kπ(mi)vkj

∣∣∣∣∣
2

+ 1. (5)

Here, ρ def
= P

MI , P is the transmit power at each BS, and vkj
is the beamforming vector used at BS k ∈ I to transmit the
data corresponding to user j ∈ J . With these notations, the
downlink sum rate of the network is given by

R =MIE[log(1 + SINRπ(mi))]. (6)

This sum-rate expression is not so amenable to analysis. For
convenience, this paper uses a modified performance measure,
referred to as the virtual sum rate. This approach is partly
justified in [7]. If we define virtual SINR as

S̃INR =
E
[
Nπ(mi)

]
E
[
Dπ(mi)

] , (7)

the virtual sum rate is defined as

R̃ =MI log(1 + S̃INR)]. (8)

The next section describes the proposed two-stage beam-
forming and scheduling algorithm.

III. TWO-STAGE CSI FEEDBACK MECHANISM

The feedback mechanism is shown in Fig. 1. Prior to the CSI
feedback, the base-stations transmit pilot signals that allow the
users estimate their channels from all base-stations. All the
users in the network share a common feedback channel with
a capacity of B bits per fading block. The feedback process
is divided into two stages, which consume B1 and B2 bits
such that B1 + B2 = B. These stages are separately used
for scheduling and beamforming purposes as described in the
following.

A. Scheduling Process

In the first feedback stage, each user estimates its channel
from each antenna of each BS and feeds back log(MI) bits as
the index of the antenna with the highest channel gain along
with the gain itself. Each base-station then chooses the user
with the highest gain feedback for each of its antennas.
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Fig. 1. Two-stage feedback mechanism.

Given B1 feedback bits in the first stage, the total number
of users that can participate in this process is given by

U =
B1

log(MI)
, (9)

which are randomly chosen from the pool of J users in the
network ensuring that each cell gets an equal share. Denote
the set of such users by U . Let gij,m denote the m’th entry of
the channel vector gij , i.e., the scalar channel from the m’th
antenna of BS i to user j. The user scheduled for the m’th
antenna of BS i is therefore determined as follows:

π(mi) = argmax
j∈U
|gij,m| . (10)

We denote the set of MI scheduled users by U?⊆U . Clearly
|U?| =MI .

After completing the scheduling process, the MI scheduled
users are polled by the base-stations to explicitly quantize and
feedback their CSI in the second stage. This information is
then used for calculating the downlink beams.

B. Beamforming Process

Given B2 bits in the second stage, each of the MI scheduled
users receives a share of

b
def
=

B2

MI
(11)

bits for quantizing its channel vectors from all base-stations.
Consider an arbitrary user j ∈ U?. Let Ckj denote the
codebook used for quantizing the channel direction ĝkj =
gkj/‖gkj‖ from BS k to user j and let bkj be the correspond-
ing number of quantization bits: bkj

def
= log |Ckj|, which should

satisfy ∑
k∈I

bkj = b. (12)

Also let ukj denote the quantized direction corresponding to
ĝkj :

ukj
def
= arg max

w∈Ckj

∣∣w†ĝkj∣∣ . (13)

With this notation, the quantized version of the overall channel
vector g

j
, denoted by g̃

j
, is formed as follows:

g̃
j

def
=
[
g̃T1j , g̃

T
2j , · · · , g̃TIj

]T
, (14)

where
g̃kj

def
= rkje

iθkjukj , (15)

and rkj
def
= ‖gkj‖ cosφkj , φkj

def
= ∠(ĝkj ,ukj), and θkj

def
=

phase(ĝ†kjukj).
Considering the definition of the quantized channel in (14),

it is easy to verify that as the codebook sizes increase and φkj’s
diminish to zero, g̃

j
approaches the actual channel g

j
. As it

should be clear, the mere feedback of the channel directions



ĝkj is not sufficient by itself. The users should also feedback
the magnitude and phase information, rkj and θkj , so that
the base-stations can form the quantized vector g̃

j
. These

magnitude and phase information are scalar variables and
can be quantized and reconstructed using a few quantization
bits. We therefore assume that this information is unquantized
and focus on the quantization bit allocation for the channel
directions ĝkj .

Having the quantized information at the base-stations, the
unit-norm downlink beams vj’s for the scheduled users j ∈ U?
are formed as the zero-forcing directions for the quantized
channel vectors g̃

j
. If we write

vj =
[
vT1j ,v

T
2j , · · · ,vTIj

]T
, (16)

then vkj will denote the beam used at base-station k for
transmitting user j’s data.

Consider a user s ∈ U? among the scheduled users. Due to
the CSI imperfection, the designed zero-forcing beams cannot
completely cancel out the multi-user interference. User s will
therefore experience an interference from the signals intended
for users j 6= s. By applying the zero-forcing principle and
after some calculations, one can bound such interference in
the average sense as follows:

E

∣∣∣∣∣∑
k∈I

g†ksvkj

∣∣∣∣∣
2
 ≤ E

[∑
k∈I

‖gks‖2 sin2 φks

]
(17)

≤ E

[∑
k∈I

‖gks‖2 2−bks/(M−1)
]
, (18)

where in driving (18), we have used the bound for the
quantization error with respect to the quantization codebook
size, as described in [8]. The bound in (18) is used in the next
section to analyze and optimize the system performance.

IV. SYSTEM ANALYSIS

As mentioned in Section II, we use virtual rate defined in
(8) as the metric for system analysis. To this end, we start by
approximating and bounding the expressions for Nπ(mi) and
Dπ(mi) defined in (4) and (5).

First, we mention without proof that the scheduling rule
in (10) guarantees the scheduled users’ channels to be al-
most orthogonal in CMI . Assuming sufficiently accurate CSI
feedback, the corresponding zero-forcing beams are therefore
expected to be almost aligned with the users’ channels. We
can therefore use the following approximation for Nπ(mi):

Nπ(mi)=ρ

∣∣∣∣∣∑
k∈I

g†kπ(mi)vkπ(mi)

∣∣∣∣∣
2

=ρ
∣∣∣g†
π(mi)

vπ(mi)

∣∣∣2 (19)

≈ρ
∥∥∥g

π(mi)

∥∥∥2 =∑
k∈I

∥∥gkπ(mi)∥∥2 . (20)

Therefore,

E
[
Nπ(mi)

]
≈ ρ

∑
k∈I

E
[
λkπ(mi)

]
, (21)

where
λkπ(mi)

def
=
∥∥gkπ(mi)∥∥2 . (22)

Also, considering (18) and (5) and summing over MI − 1
scheduled indices j 6= π(mi), we have

E
[
Dπ(mi)

]
< 1+ρMIE

[∑
k∈I

∥∥gkπ(mi)∥∥2 2−bkπ(mi)/(M−1)

]
.

(23)
Combining (21) and (23), we achieve the following lower

bound for the virtual SINR:

S̃INR ≥
ρ
∑
k∈I E

[
λkπ(mi)

]
1 + ρMIE

[∑
k∈I λkπ(mi)2

−bkπ(mi)/(M−1)
] . (24)

Our objective is to maximize the virtual SINR lower bound
in (24). To this end, we need to optimize a two-level bit
allocation:

1) CSI quantization bit allocation problem: optimizing
the number of quantization bits bkπ(mi) as a function
of channel gains

∥∥gkπ(mi)∥∥ subject to the constraint∑
k∈I bkπ(mi) = b = B2/(MI).

2) Beamforming-scheduling bit allocation problem: opti-
mizing the bit allocation between the two feedback
stages subject to the constraint B1 +B2 = B.

A. CSI Quantization Bit Allocation

The bit allocation problem is stated as minimization of the
residual interference in the denominator of (24):

min
bkπ(mi)

1≤k≤I

∑
k∈I

λkπ(mi)2
−bkπ(mi)/(M−1) (25)

s.t.
∑
k∈I

bkπ(mi) = b, bkπ(mi) ≥ b0, (26)

where b0
def
= logM is the minimum number of bits required

for quantizing an M -dimensional channel vector. This problem
has a waterfilling-type solution as follows:

bkπ(mi) = b0 + (M − 1)

(
log

λkπ(mi)

µ

)+

, (27)

where µ > 0 is such that
∑
k∈I bkπ(mi) = b. The bit allocation

rule in (27) shows that the scheduled user π(mi) should
allocate its CSI quantization bits in proportion to the logarithm
of the channel gains λkπ(mi).

If B2 and therefore b are large enough, this bit allocation
can be approximated as follows:

bkπ(mi) ≈
b

I
+ (M − 1) log

λkπ(mi)

G
(
λkπ(mi)

∣∣
k∈I

) , (28)

where G
(
λkπ(mi)

∣∣
k∈I

)
is the geometric mean of{

λkπ(mi)
}
k∈I . By substituting this back in the objective

function in (25), we obtain the following residual interference:∑
k∈I

λkπ(mi)2
−bkπ(mi)/(M−1) = IG

(
λkπ(mi)

∣∣
k∈I

)
2−b/(M−1)I .

(29)
Now, we are ready to bound the virtual SINR using the

optimal bit allocations. By substituting the minimized residual
interference in (29) in the denominator of the virtual SINR



lower bound in (24), the denominator will satisfy

1 + ρMI2E
[
G
(
λkπ(mi)

∣∣
k∈I

)]
2−b/(M−1)I (30)

≤ 1 + ρMI2G
(
E
[
λkπ(mi)

] ∣∣
k∈I

)
2−b/(M−1)I , (31)

where we have used the Jensen’s inequality and the concavity
of the geometric mean with respect to its arguments. If we
define

βki
def
= E

[
λkπ(mi)

]
, (32)

and combine (31) and (24), we obtain the following lower
bound for the virtual SINR:

S̃INR ≥
ρ
∑
k∈I βki

1 + ρMI2βi 2
−b/(M−1)I

, (33)

where βi
def
= G

(
βki
∣∣
k∈I

)
for notation convenience. This

bound is used in the next subsection to optimize the
beamforming-scheduling bit allocation.

B. Beamforming-Scheduling Bit Allocation

First, we note that

λkπ(mi) =
∥∥gkπ(mi)∥∥2 ≥ ∣∣gkπ(mi),m∣∣2 . (34)

Therefore, βki = E
[
λkπ(mi)

]
≥ χki, where χki

def
=

E
[∣∣gkπ(mi),m∣∣2]. Considering this notation and noting that

the lower bound in (33) is monotonic in βki, we have

S̃INR ≥
ρ
∑
k∈I χki

1 + ρMI2χi 2
−b/(M−1)I , (35)

where χi is the geometric mean of {χki}k∈I . Finally, accord-
ing to the scheduling rule in (10), we have χii ≥ χki, ∀k ∈ I.
Therefore, χi ≤ χii and clearly

∑
k∈I χki ≥ χii. Combining

these with the expression in (35), we obtain a more simplified
lower bound for the virtual SINR:

S̃INR ≥ ρχii
1 + ρMI2χii 2−b/(M−1)I

. (36)

We can now maximize the lower bound in (36) with respect
to the beamforming-scheduling bit allocation subject to the
constraint B1 +B2 = B. For this purpose, we go back to the
scheduling rule in (10) and note that∣∣giπ(mi),m∣∣ = max

j∈U
|gij,m| , (37)

where U is the set of users participating in the first feedback
stage with |U| = B1/ log(MI). If we define Ui as the subset
of users in U that reside in cell i then clearly∣∣giπ(mi),m∣∣ ≥ max

j∈Ui
|gij,m| ≥

√
αdmax

j∈Ui
|hij,m| , (38)

where √
αd =

G0

1 + (C/δ)ζ
(39)

is the highest path-loss possible within the boundaries of cell
i, where C is the cell radius. By taking the expectation of the
both sides of (38), we obtain

χii = E
[∣∣giπ(mi),m∣∣2] ≥ αdE [max

j∈Ui
|hij,m|2

]
(40)

(a)
≈ αd ln |Ui|

(b)
= αd ln

B1

I log(MI)
, (41)

where the equality in (b) uses the fact that |Ui| = |U|/I
and the approximation in (a) uses the result in [9] regarding
the behavior of the maximum of multiple exponential random
variables.

Finally, noting that the lower bound in (36) is monotonic
in χii and using (41) and (11), we obtain the following lower
bound on the virtual SINR in terms of B1 and B2:

S̃INR ≥
ραd ln

(
B1

I log(MI)

)
1 + ρMI2αd ln

(
B1

I log(MI)

)
2
− B2
M(M−1)I2

. (42)

We can now directly maximize the SINR lower bound subject
to B1 + B2 = B. By doing so, one arrives at the following
equations for the optimal values of B1 and B2:{

ραd ln 2
M−1 B1(lnB1 − κ)2 = 2

B2
M(M−1)I2

B1 +B2 = B
(43)

where κ = ln(I log(MI)).
We can further simplify the bit allocation results by assum-

ing an asymptotic regime where B →∞. by doing so, we get
the following asymptotic bit allocations:

B1
.
= B (44)

B2
.
=M(M − 1)I2 log(ραdB), (45)

where the notation x
.
= y means limB→∞ x/y = 1. These

results show that as the total feedback rate increases, higher
percentage of bits should be used for the scheduling stage.
In particular, the ratio B2/B behaves logB/B as B → ∞.
Finally, by substituting the asymptotic bit allocations in the
lower bound in (42) and the virtual rate expression in (8), we
obtain

R̃
.
=MI log(ραd) +MI log logB, (46)

which suggests that both multi-user multiplexing and multi-
user diversity gains are realized.

To summarize:
1) We derived the CSI bit allocation rules in (27) and (28),

which show that each scheduled user should allocate its
feedback bit budget in proportion to the logarithm of the
channel gains from base-stations.

2) We also derived asymptotic beamforming-scheduling bit
allocation laws in (44) and (45) showing that the fraction
of bits assigned to beamforming feedback stage scales
as logB/B.

3) Finally, we used the optimized bit allocations to show
that the overall system performance scales double-
logarithmically with B as B →∞.

In spite of the simplifications and approximate bounds used
in the derivation process, simulation results in the next sec-
tion show that these scaling laws give remarkably accurate
predictions of the optimal bit allocations.

V. NUMERICAL RESULTS

Throughout the simulations, we assume a cell radius of
C = 0.5km, a 3dB breakpoint distance of δ = 0.1km, path-
loss exponent ζ = 3.8, a transmission gain of G0 = 20dB,
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Fig. 2. CSI quantization bit allocation: optimal vs. equal bit allocation for
I = 2 and 4 cells, SNR = 15dB, and 300 users per cell.

and M = 4 antennas per base-station. The number of cells,
the number of users per cell, and the transmission SNR vary
throughout the simulations and are specified separately for
each simulation result1.

We start with the CSI quantization bit allocation problem
discussed in Section IV-A. Fig. 2 compares the downlink
sum rate per cell as a function of total number of feedback
bits per cell, when we use the optimal CSI quantization bit
allocation rule in (27) vs. the case where one allocates equal
number of bits for quantizing vector channels from different
base-stations. As the figure shows, in comparison to equal bit
allocation, optimal bit allocation provides significant gains in
the sum rate. Furthermore, the gain in sum rate increases with
the number of cells.

The next simulation result corresponds to the beamforming-
scheduling bit allocation problem addressed in Section IV-B.
In this regard, Fig. 3 plots the optimal percentage of bits that
should be allocated to the second feedback stage, i.e. B2/B,
and compares it with the analytic bit allocation result in (45).
As the figure verifies, the ratio B2/B behaves as logB/B as
B increases.

Next, we address the system performance in terms of
the downlink sum rate. Fig. 4 compares the performance of
the proposed two-stage feedback mechanism (with optimized
bit allocations) with the performance of the ZFBF scheme
with greedy user selection (with optimized number of users
participating in the feedback process). The figure shows a
significant improvement in the downlink sum rate. The reason
is that the two-stage scheme allows more users to participate
in the feedback process and is therefore much more efficient
in finding users with better channel conditions, which in this
case are the users closer to the base-stations.

In order to obtain a more balanced comparison between
the two schemes, Fig. 5 compares the performances when

1By transmission SNR, we mean the transmission power per BS denoted
by P in earlier sections.
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Fig. 3. Beamforming-scheduling bit allocation: percentage of bits assigned to
the beamforming feedback stage, i.e. B2/B, for I = 2 cells, SNR = 15dB,
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Fig. 4. Two-stage beamforming-scheduling algorithm vs. ZFBF with greedy
user selection for I = 2 cells, SNR = 15dB, and 300 users per cell.

one implements a proportional fairness scheduler (PFS) on
top of the two algorithms in order to ensure fairness among
users. The PFS scheduler uses a logarithmic network utility
function instead of sum rate as the scheduling criterion. As the
figure shows, the two-stage approach still shows a considerable
improvement in the downlink sum rate. Further results, not
presented here due to space limits, show that the two-stage
scheme also outperforms the one-stage ZFBF approach in
terms of the PFS network utility.

In order to obtain a better understanding of the system
performance, Fig. 6 plots the cumulative distribution function
(CDF) for the downlink average rates per user in the presence
of PFS. The figure shows that the two-stage scheme signifi-
cantly improves the individual rates for a majority of users (in
this case the higher 80%) at the expense of a decreased rate
for a fraction of users (lower 20%).

It is important to note that all the rate improvements
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offered by the two-stage scheme are achieved in spite of
its significantly lower computational complexity. To see this,
Fig. 7 compares standard CPU times required for performing
scheduling computations for the two-stage scheme and the
one-stage ZFBF scheme. As the figure verifies, the two-stage
scheme is 8− 10 times faster in making scheduling decisions.

VI. CONCLUSIONS

This paper proposes an efficient two-stage beamforming
and scheduling algorithm for limited-feedback cooperative
cellular communication systems. It is shown that the number
of bits assigned to the beamforming feedback stage should
scale logarithmically with the total number of feedback bits.
Furthermore, in quantizing CSI from different base-stations,
each user should allocate its feedback bit budget in proportion
to the logarithm of the corresponding channel gains. The
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Fig. 7. Typical CPU time required for scheduling users with proportional
fairness: I = 2 cells, SNR = 15dB, and 300 users per cell.

bit allocation results are then used to show that the overall
system performance scales double-logarithmically with the
total feedback rate and logarithmically with the transmit SNR.
The paper further presents several numerical results to show
that the proposed scheme, in comparison to other available
feedback mechanisms, improves both the downlink sum rate
and the network utility. These advantages are achieved in
spite of a significant reduction in the scheduling computational
complexity, which makes the proposed scheme an attractive
solution for practical system implementations.
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