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Abstract—The optimal performance-complexity tradeoff for
error-correcting codes at rates strictly below the Shannon limit
is a central question in coding theory. This paper proposes
a numerical approach for the minimization of decoding com-
plexity for long-block-length irregular low-density parity-check
(LDPC) codes. The proposed design methodology is applicable
to any binary-input memoryless symmetric channel and any
iterative message-passing decoding algorithm with a parallel-
update schedule. A key feature of the proposed optimization
method is a new complexity measure that incorporates both the
number of operations required to carry out a single decoding
iteration and the number of iterations required for convergence.
This paper shows that the proposed complexity measure can
be accurately estimated from a density-evolution and extrinsic-
information transfer chart analysis of the code. A sufficient
condition is presented for convexity of the complexity measure
in the variable edge-degree distribution; when it is not satisfied,
numerical experiments nevertheless suggest that the local min-
imum is unique. The results presented herein show that when
the decoding complexity is constrained, the complexity-optimized
codes significantly outperform threshold-optimized codes at long
block lengths, within the ensemble of irregular codes.

Index Terms—Convex optimization, extrinsic-information
transfer (EXIT) charts, decoding complexity, low-density parity-
check (LDPC) codes.

I. INTRODUCTION

THE design of high-performance irregular low-density
parity-check (LDPC) codes has been studied extensively

in the literature (e.g., [1]–[3]). At long block lengths, codes
derived from capacity-approaching degree distributions (so-
called threshold-optimized codes) provide excellent perfor-
mance, albeit with high decoding complexity. In particular,
to achieve the full potential of a threshold-optimized code,
an impractically large number of messages may need to be
passed in the iterative decoder. In this paper, we present a
design method to find irregular LDPC codes with an optimized
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performance-complexity tradeoff, thus permitting excellent
performance with reduced decoding complexity.

In designing threshold-optimized codes, decoding complex-
ity is not explicitly considered in the code design process.
However, if one wishes to design a practically decodable code,
it would be more natural to try to find the highest-rate code for
a certain affordable level of complexity on a given channel,
or the code with the minimum decoding complexity for a
required rate and a given channel condition, or the code with
the highest decoding threshold at a given rate and complexity.
Clearly, these design objectives better reflect the requirements
of practical communications systems.

A main challenge in incorporating complexity in code
design is that characterizing decoding complexity as a function
of code parameters may appear, at a first glance, to be a
difficult task. This is especially true for iterative decoding
systems in which decoding complexity depends not only on
the complexity of each iteration, but also on the number of
iterations required for convergence. The main idea of this
paper is that by using a uni-parametric representation of the
decoding trajectory [4], [5], the required number of iterations
in the iterative message-passing decoding of a long-block-
length LDPC code under the parallel-update schedule can be
accurately estimated. This allows one to define and to quantify
a measure of decoding complexity, which can then be used to
optimize the complexity-rate tradeoff for LDPC codes.

This paper uses a density evolution analysis of the LDPC
decoding process and adopts a uniparametric representation of
the decoding trajectory in terms of the evolution of message-
error rate, in a format similar to an extrinsic-information
transfer (EXIT) chart [4], [6], [7], except that message-error
rate is tracked instead of mutual information, and that no
Gaussian assumption is made. The use of probability-of-
error-based EXIT charts (which originated from the work of
Gallager [8]; see also [5]) offers two key advantages. First, the
uniparametric representation of the decoding trajectory allows
one to accurately estimate the number of iterations required to
reduce the bit-error rate (BER) from that given by the channel
to a desired target. Second, in terms of message error rate, one
can show that the decoding trajectory of an irregular LDPC
code can be expressed as a linear combination of trajectories
of elementary codes parameterized by their variable degrees.
These two facts allow one to define a measure that relates the
decoding complexity of an irregular LDPC code to its degree
distribution. The code design problem then reduces to the
shaping of the decoding trajectory for an optimal complexity-
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rate tradeoff. An optimization program that determines the
minimum-complexity degree distributions for a fixed code rate
and a target channel can then be formulated.

This paper shows that the optimization problem formulated
in this way is convex under a mild condition, which facil-
itates its numerical solution. Numerical code design exam-
ples suggest that complexity-optimized codes can significantly
outperform irregular threshold-optimized codes at long block
lengths.

The methodology proposed in this paper offers one of
the few instances of an iterative system in which analytic
tools are available not only for predicting the convergence
trajectory, but also for the tuning of system parameters for fast
convergence. The proposed code design method is applicable
to any binary-input memoryless symmetric (BMS) channel
and any iterative decoding algorithm with symmetric update
rules. These are the conditions required for the validity of
density evolution analysis [2].

A. Related Work

The performance-complexity tradeoff for error-correcting
codes has always been a central issue in coding theory [9]; in
the context of capacity-approaching codes, there exist several
information-theoretic results. For LDPC codes and irregular
repeat-accumulate (IRA) codes, Khandekar and McEliece [10]
conjectured that for symmetric channels with binary inputs,
the graphical complexity (i.e., the decoding complexity per
iteration) per information bit scales like log 1

𝜀 , and the number
of iterations scales like 1

𝜀 , where 𝜀 is the multiplicative gap
to capacity. In the special case of the binary erasure channel
(BEC), Sason and Wiechman [11] proved that the number
of iterations scales at least like 1

𝜀 for LDPC, systematic
IRA, non-systematic IRA, and systematic accumulate-repeat-
accumulate (ARA) codes. Furthermore, the graphical com-
plexity per information bit of LDPC and systematic IRA
codes has been shown to scale like log 1

𝜀 [12], [13], while
non-systematic IRA and systematic ARA codes can achieve
bounded graphical complexity per information bit [14], [15];
in practice, systematic ARA are preferable to non-systematic
IRA codes due to their lower error floors and systematic
encoding.

With respect to more practically-oriented studies of the
performance-complexity tradeoff, Richardson et al. [2] pro-
posed a numerical design procedure for irregular LDPC codes
involving an ad-hoc measure of the number of iterations. How-
ever, their motivation was in providing an efficient technique
for finding threshold-optimized codes. A decoding complexity
measure similar to ours is presented in [16], however, its
usefulness is limited to capacity-approaching codes over the
BEC; ours is more general, but reduces to their measure in the
case of capacity-approaching codes over the BEC. In a related
paper [17], we studied the optimization of decoding complex-
ity for LDPC codes under Gallager’s decoding Algorithm B
[8] over the binary symmetric channel. The results of [17] rely
on the one-dimensional nature of decoding Algorithm B; this
paper addresses the more general case.

B. Outline of the Paper

The rest of this paper is organized as follows. In Section II,
we briefly review the background and terminology pertaining
to LDPC codes. In Section III, we present the new complexity
measure for the iterative decoding system, and formulate the
complexity optimization methodology. Numerically optimized
degree distributions and simulation results are presented in
Section IV, and conclusions are provided in Section V.

II. PRELIMINARIES

A. LDPC Codes

In this paper we consider the ensemble of irregular LDPC
codes [1], [2], characterized by a variable degree distribution
𝜆(𝑥) and a check degree distribution 𝜌(𝑥),

𝜆(𝑥) =
∑
𝑖≥2

𝜆𝑖𝑥
𝑖−1 and 𝜌(𝑥) =

∑
𝑗≥2

𝜌𝑗𝑥
𝑗−1

with 𝜆(1) = 𝜌(1) = 1. The rate of an LDPC code is related
to its degree distribution by

𝑅 = 1−
∑

𝑗
𝜌𝑗

𝑗∑
𝑖
𝜆𝑖

𝑖

. (1)

Due to their representation via sparse bipartite graphs,
LDPC codes are amenable to iterative decoding techniques.
Iterative decoding proceeds by successively passing messages
between variable nodes and check nodes, where the messages
represent ‘beliefs’—typically expressed as log-likelihood ra-
tios (LLRs)—about the values of the variable node connected
to a given edge. In a single decoding iteration, messages
𝑚𝑣→𝑐 are first sent (in parallel) from variable nodes to check
nodes. At each check node a check-update computation is
performed, generating messages 𝑚𝑐→𝑣 to be sent (in parallel)
from the check nodes to the variable nodes. Finally, at each
variable node, a variable-update computation is performed to
generate the messages for the next iteration. After sufficiently
many iterations have been performed, each variable node can
produce a decision about its corresponding variable. In the rest
of this paper, we assume that the check- and variable-node
updates are performed according to the sum-product algo-
rithm [18] with a parallel message-passing schedule, although
our technique is applicable to any symmetric update rules.
Note that even though one may reduce the decoding complex-
ity by employing simplified (sub-optimal) updates, our method
provides further complexity reduction by minimizing the total
number of messages passed.

For the sum-product algorithm, the update rule for an LLR
message at a variable-node 𝑣 is

𝑚𝑣→𝑐 = 𝑚0 +
∑

ℎ∈𝑛(𝑣)−{𝑐}
𝑚ℎ→𝑣, (2)

and the update rule at a check-node 𝑐 is

𝑚𝑐→𝑣 = 2tanh−1

⎛
⎝ ∏

𝑦∈𝑛(𝑐)−{𝑣}
tanh(𝑚𝑦→𝑐/2)

⎞
⎠ , (3)

where 𝑚0 is the channel message in LLR form, and 𝑛(𝑣)
represents the nodes connected directly to node 𝑣 by an edge.
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In a pair of landmark papers [2], [19], Richardson et al.
presented density evolution, a numerical tool to track the
density of messages passed during iterative decoding of LDPC
codes, under the parallel message-passing schedule. Given a
degree distribution pair (𝜆(𝑥), 𝜌(𝑥)) and a target channel, one
can use density evolution to determine the ‘threshold’ of the
code, where the threshold corresponds to the largest value of
the noise parameter such that the bit-error probability goes to
zero, under iterative decoding, as the block length tends to
infinity.

In one iteration of density evolution, the algorithm combines
the probability density function (pdf) of channel messages, the
pdf of messages sent from variable nodes to check nodes in
the previous iteration, and the degree distributions of the code,
and computes the pdf of the messages that will be sent from
variable nodes to check nodes in the current iteration. In other
words, one iteration of density evolution computes

𝒟(𝑘)
𝑣→𝑐 = Φ(𝒟(𝑘−1)

𝑣→𝑐 ,𝒟𝑐ℎ, 𝜆(𝑥), 𝜌(𝑥)), (4)

where 𝒟(𝑘)
𝑣→𝑐 represents the pdf of variable-node to check-node

messages at iteration 𝑘, and 𝒟𝑐ℎ represents the pdf of channel
messages.

B. EXIT Charts

EXIT charts, originally introduced by ten Brink in the
context of turbo codes [4], provide a graphical description
of density evolution. This is accomplished by tracking a
statistic of the variable-to-check message density 𝒟(𝑘)

𝑣→𝑐. Often
the mutual information between the message value and the
corresponding variable value is tracked in an EXIT chart. In
this paper, as in [5], [8], we track a different parameter of
the message distribution; namely, the probability that the log-
likelihood ratio (LLR) message has the incorrect sign. Roughly
speaking, this parameter measures the fraction of messages
in “error”. Although we do not track mutual information, we
nevertheless continue to refer to the parameterized trajectories
as “EXIT charts.” The use of EXIT charts is central to the
formulation of a threshold-optimization program, and later, a
complexity-minimization program. However, to minimize the
loss of information associated with a uni-parametric repre-
sentation of message densities, we use density evolution for
analysis; the EXIT charts serve only to provide a graphical
representation of the convergence trajectory.

For a given degree distribution pair and channel condition,
one can visualize the convergence behavior of the decoder
by performing 𝑁 iterations of density evolution, and plotting
the message error rate (i.e., the fraction of variable-to-check
messages 𝑚𝑣→𝑐 with the incorrect sign) at iteration 𝑘, 𝑘 ∈
{1, 2, ⋅ ⋅ ⋅ , 𝑁}, denoted as 𝑝(𝑘), versus the message error rate
at iteration 𝑘 − 1, i.e., 𝑝(𝑘−1). Specifically, let 𝒟𝑐ℎ be the
conditional pdf of the LLR at the output of the channel given
that 𝑥 = 1 is transmitted (we assume 0 → +1 and 1 → −1
for BPSK modulated signals), and let Pe(⋅) be a function that
returns the area under the error-tail of a pdf. Clearly,

𝑝(0) = Pe(𝒟𝑐ℎ)

is the bit error probability associated with uncoded communi-
cations. For 𝑘 ≥ 1, we perform density evolution via equation
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Fig. 1. Elementary EXIT charts, 𝜆(𝑥) = 0.1𝑥+0.3𝑥2 +0.1𝑥4 +0.2𝑥9 +
0.3𝑥19, 𝜌(𝑥) = 𝑥7.

(4), where 𝒟(0)
𝑣→𝑐 is initialized to the Dirac delta function at

zero, and we obtain

𝑝(𝑘) = Pe(𝒟(𝑘)
𝑣→𝑐),

the message error at iteration 𝑘. Plotting 𝑝(𝑘) versus 𝑝(𝑘−1)

gives the EXIT chart of the code for the assumed channel
condition. Equivalently, we can think of the EXIT chart as a
mapping

𝑝(𝑘) = 𝑓(𝑝𝑘−1), 𝑘 ∈ {1, 2, . . .}. (5)

Due to the random construction of the graph of an irregular
LDPC code, one can use the total probability theorem to
decompose the overall EXIT chart into a sum of elementary
EXIT charts [5], i.e.,

𝑓(𝑝) =
∑
𝑖

𝜆𝑖𝑓𝑖(𝑝, 𝜆), (6)

where 𝑓𝑖(𝑝, 𝜆) is the elementary EXIT chart associated with
degree-𝑖 variable nodes, and the check degree distribution is
fixed to an appropriate value. For the calculation of the 𝑖-th
elementary chart, we first compute

𝑞
(𝑘)
𝑖

△
= Pe(Φ(𝒟(𝑘−1)

𝑣→𝑐 ,𝒟𝑐ℎ, 𝑥
𝑖−1, 𝜌(𝑥))), 𝑘 ∈ {1, 2, . . .}

which is the error rate of the messages emanating from degree
𝑖 variable nodes after the 𝑘-th iteration, where 𝒟(𝑘−1)

𝑣→𝑐 is the
pdf of messages after 𝑘− 1 iterations of density evolution on
the code with degree distributions 𝜆(𝑥) and 𝜌(𝑥). The 𝑖-th
elementary EXIT function 𝑓𝑖 is then obtained by interpolating
a curve through the origin and the points (𝑝(𝑘−1), 𝑞

(𝑘)
𝑖 ), 𝑘 ≥

1. Fig.1 presents the elementary EXIT charts and the overall
EXIT chart for a particular irregular code, using sum-product
decoding over the AWGN channel.

Note that the elementary EXIT charts are in general a
function of 𝜆. This is because the densities that are passed
in iteration 𝑚 are influenced by 𝜆. However, if 𝜆 is perturbed
slightly, the elementary EXIT charts are effectively unchanged,
and thus for sufficiently small changes in 𝜆, we disregard
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the dependency of elementary EXIT charts on 𝜆.1 With this
assumption, (6) can be simplified to

𝑓(𝑝) =
∑
𝑖

𝜆𝑖𝑓𝑖(𝑝), (7)

therefore, the code-design problem becomes that of synthe-
sizing a suitable EXIT chart as a convex combination of a
number of pre-computed elementary EXIT charts. Finally, due
to the weak dependence of elementary EXIT charts on 𝜆, the
accuracy of the design method can be further improved by
updating the elementary EXIT charts whenever 𝜆 undergoes
a sufficiently large change.

C. Threshold Optimization

Traditionally, degree distributions have been designed to
achieve a desired rate, while maximizing the decoding thresh-
old. Equivalently, given a target channel condition, one can
determine the maximum rate code such that successful decod-
ing is possible. Indeed, for a fixed check degree, the latter is
obtained as the solution to the following linear optimization
program:

maximize
∑
𝑖

𝜆𝑖
𝑖

subject to
∑
𝑖

𝜆𝑖𝑓𝑖(𝑝) < 𝑝, 𝑝 ∈ (0,Pe(𝒟𝑐ℎ)]

∑
𝑖

𝜆𝑖 = 1

𝜆𝑖 ≥ 0 (8)

Here the central condition is the first constraint, namely that∑
𝑖 𝜆𝑖𝑓𝑖(𝑝) < 𝑝; this condition ensures an “open” EXIT chart

in which the decoder can make progress (decrease 𝑝) during
each iteration. One clearly observes the code-design problem
as “curve-shaping.”

III. COMPLEXITY-OPTIMIZED LDPC CODES

In this section, we formulate an optimization program that
finds the minimum-complexity code as a function of code rate
on a fixed channel. The key to this formulation is a measure
that accurately estimates the number of computations needed
to successfully decode an irregular LDPC code using the sum-
product algorithm. A binary-input additive white Gaussian
noise (AWGN) channel is assumed, although the proposed
optimization technique applies to any binary-input memoryless
symmetric channel.

A. Measure of Decoding Complexity

For a parallel message-passing decoder, the decoding com-
plexity of LDPC codes is proportional to the product of the
number of decoding iterations and the number of arithmetic
operations performed per iteration. The computational effort
(in computing (2) and (3)) per iteration is proportional to the

1Intuitively, this is justified by the accuracy of methods that assume a
Gaussian distribution for variable-node to check-node messages, which leads
to elementary EXIT charts that are independent of 𝜆; elementary EXIT
charts computed in this manner closely approximate elementary EXIT charts
computed by density evolution [5], [20].

number of edges 𝐸 in the graph of the code, while the number
of messages passed per iteration is easily seen to be 2𝐸. Thus,
as we argue below, the overall complexity is proportional to
the total number of messages passed in the iterative decoding
process.

To see that the complexity per iteration scales linearly with
𝐸, we may explicitly compute (for the sum-product algorithm)
the number of operations performed in one iteration; the
analysis of other update rules is similar. The variable-node
update for the sum-product algorithm (2) can be performed as
follows. At each variable node of degree 𝑑𝑣, we first compute
the sum of the 𝑑𝑣 extrinsic messages and the channel message;
this requires 𝑑𝑣 additions. To compute the output message
for some particular edge, we can then subtract the extrinsic
message received over the same edge from the computed
sum. Thus, computing the 𝑚 output messages requires 2𝑑𝑣
operations. Summing over all variable nodes, 𝑂(𝐸) operations
are required.

Similarly, to perform the check-update (3) at a check node
of degree 𝑑, we can first compute tanh(𝑚2 ) for each incoming
message 𝑚. Next, performing 𝑑 − 1 operations, we compute
the product of these terms. Finally, computing an output
requires dividing this quantity by the term associated with the
incoming message over the same edge, then taking 2tanh−1

of the resulting value. Thus, computing all the check-node
output messages for a check node of degree 𝑑 requires 𝑑− 1
multiplications, 𝑑 divisions, and 2𝑑 tanh/tanh−1 calculations.
Summing over all check nodes, 𝑂(𝐸) operations are needed
in total.

The overall complexity for decoding one codeword is there-
fore proportional to 𝑁𝐸, where 𝑁 is the number of decoding
iterations. Since each codeword encodes 𝑅𝑛 information bits,
where 𝑅 is the code rate and 𝑛 is the block length, the
decoding complexity per information bit is then 𝑂

(
𝑁𝐸
𝑅𝑛

)
.

Now, using the fact that 𝑛 = 𝐸
∑ 𝜆𝑖

𝑖 and using the expression
(1), which relates 𝑅 with 𝜆𝑖 and 𝜌𝑖, we obtain the following
expression for the decoding complexity 𝐾

𝐾 = 𝑁
𝐸

𝑅𝑛
= 𝑁

1

𝑅
∑ 𝜆𝑖

𝑖

= 𝑁
1−𝑅

𝑅
∑ 𝜌𝑖

𝑖

. (9)

In the rest of this section, we formulate the complexity-rate
tradeoff problem as that of minimizing 𝐾 for a fixed 𝑅. Fur-
thermore, since the average check node degree can be shown
to be 𝑑𝑐 =

(∑
𝑖
𝜌𝑖

𝑖

)−1
, minimizing the decoding complexity

becomes equivalent to minimizing 𝑁𝑑𝑐, and the search for
complexity-minimized codes involves an investigation of the
tradeoff between average check node degree and the number
of decoding iterations.

B. Characterizing the Number of Decoding Iterations

The main idea of this paper is that the total number of
decoding iterations can be accurately estimated based on the
shape of the EXIT chart 𝑓(𝑝). Further, this characterization
of complexity can be expressed as a differentiable function
of code parameters (i.e., 𝜆𝑖), which allows one to use a
continuous optimization approach for finding good codes with
reduced decoding complexities.

From the definition of EXIT charts, it is clear that com-
puting the decoding trajectory for a given code is equivalent
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Fig. 2. The iterative decoding process can be represented by an iterative
function evaluation of the EXIT chart, i.e, 𝑝(𝑘) = 𝑓(𝑝(𝑘−1)). Further, 𝑝(𝑘)

and 𝑝(𝑘−1) are related by the local slope 𝛼𝑘 = 𝑝(𝑘+1)

𝑝(𝑘) .

to an iterative function evaluation of 𝑓(𝑝). Given some initial
message error rate 𝑝0 > 0 and a target message error rate
𝑝𝑡 < 𝑝0, let 𝑝(0) = 𝑝0. The iterative decoding process
is represented by (5), i.e., 𝑝(𝑘) = 𝑓(𝑝(𝑘−1)) for 𝑘 ∈ ℕ.
Convergence to 𝑝𝑡 implies the existence of some 𝑗 ∈ ℕ such
that 𝑝(𝑗) = 𝑓(𝑝(𝑗−1)) ≤ 𝑝𝑡. The required number of iterations
for convergence, 𝑁 , is defined to be the minimum such 𝑗.
Note that the number of required iterations is determined by
the shape of 𝑓(𝑝) alone.

Note that a sufficient condition for convergence to 𝑝𝑡 is that
𝑓(𝑝) < 𝑝, ∀𝑝 ∈ [𝑝𝑡, 𝑝0], since this implies that the output of
an iteration is strictly less than its input, and that the recursion
has no fixed points in the interval of interest.

The following definition plays an important role in the
characterization of the required number of iterations for con-
vergence. Define the local slope of 𝑓(⋅) at 𝑝(𝑘) to be

𝛼𝑘 =
𝑓(𝑝(𝑘))

𝑝(𝑘)
. (10)

Since 𝑝(1) = 𝑓(𝑝(0)), 𝑝(2) = 𝑓(𝑝(1)), ⋅ ⋅ ⋅ , 𝑝(𝑁) = 𝑓(𝑝(𝑁−1)),
where 𝑝(𝑁) ≤ 𝑝𝑡 and 𝑝(𝑁−1) > 𝑝𝑡, we have

𝑝(𝑁) = 𝛼𝑁−1𝛼𝑁−2 ⋅ ⋅ ⋅𝛼1𝛼0𝑝0. (11)

Note that the value of 𝛼𝑘 is equal to the slope of the line
passing through the origin and the point (𝑝(𝑘), 𝑓(𝑝(𝑘))). This
is illustrated in Fig. 2.

We first consider the case of determining the required
number of iterations for convergence for an EXIT function that
is a straight line passing through the origin, i.e., 𝑓(𝑝) = 𝛼𝑝,
𝛼 < 1. In this simplest case, (11) reduces to 𝑝(𝑁) = 𝛼𝑁𝑝0.
The number of iterations required to go from 𝑝0 to 𝑝𝑡 can then
be computed exactly:

𝑁 =

⌈
ln(𝑝𝑡)− ln(𝑝0)

ln(𝛼)

⌉
. (12)

The main idea for extending the above formula to nonlinear
𝑓(𝑝) is to momentarily ignore the fact that 𝑁 has to be an
integer, and to compute the incremental increase in 𝑁 as
a function of the incremental change in 𝑝𝑡. The key is to

TABLE I
ESTIMATES FOR THE NUMBER OF ITERATIONS, 𝑝𝑡 = 10−6 , 𝑝0 = 1

𝑓(𝑝) Actual Estimated

0.4𝑝+ 0.45𝑝2 − 1.05𝑝3 + 0.2𝑝4 + 0.2𝑝5 + 0.4𝑝6 16 15.4

0.7𝑝 + 0.2𝑝2 + 0.40𝑝3 − 0.4𝑝6 60 59.1

0.5𝑝 − 0.45𝑝2 + 0.5𝑝4 + 0.4𝑝6 21 19.6

recognize from (11) that the required number of iterations is
a function of local slopes only. When 𝑓(𝑝) is nonlinear, the
nonuniform local slopes can be used as weighting factors in
an accurate estimate of 𝑁 .

Fix some 𝑤 ∈ [𝑝𝑡, 𝑝0]. Assume that 𝛼(𝑝) = 𝑓(𝑝)
𝑝 is constant

for 𝑝 ∈ [𝑤 −Δ𝑤,𝑤], with Δ𝑤 > 0 being sufficiently small.
Returning to the linear case, and considering 𝑁 to be a non-
integer quantity, the incremental change in 𝑁 as a function
of an incremental change in 𝑝𝑡 can be obtained by taking the
derivative of 𝑁 with respect to 𝑝𝑡:

𝑑𝑁

𝑑𝑝
=

1

𝑝 ln(𝛼(𝑝))
. (13)

Therefore, the required number of iterations to progress from
𝑤 to 𝑤 −Δ𝑤 is Δ𝑁(𝑤) = −Δ𝑤

𝑤 ln(𝛼(𝑤)) . Thus, to estimate the
total number of iterations from 𝑝0 to 𝑝𝑡, we may integrate (13)
and obtain

𝑁 ≈
∫ 𝑝0

𝑝𝑡

𝑑𝑝

𝑝 ln
(

𝑝
𝑓(𝑝)

) . (14)

Despite making various “continuous approximations” in its
derivation, this formula provides a surprisingly accurate es-
timate of the required number of function evaluations, as
exemplified in Table I for a set of polynomials that closely
approximate the shape of typical EXIT charts. We note that
while it is possible to generate functions for which the
measure is arbitrarily inaccurate, for the class of EXIT-chart-
like functions, such pathological cases do not arise.

Of course, to obtain 𝑓(𝑝) one must perform density evo-
lution, from which one could directly obtain the required
number of iterations to achieve a target error rate. Thus
the value of the measure lies not so much in its ability to
accurately predict the number of iterations but rather as an
objective function for an optimization program that seeks to
determine an 𝑓(𝑝) =

∑
𝑖 𝜆𝑖𝑓𝑖(𝑝) that minimizes 𝑁 , subject to

a rate constraint. This is facilitated by the fact that the above
expression for 𝑁 is differentiable with respect to the design
parameters 𝜆𝑖. More importantly, under a mild condition, (14)
can be shown to be a convex function of 𝜆𝑖.

Theorem 1: Let 𝑓(𝑝) =
∑

𝑖 𝜆𝑖𝑓𝑖(𝑝), where 𝑓(𝑝) < 𝑝.
The function

∫ 𝑝0

𝑝𝑡

𝑑𝑝

𝑝 ln( 𝑝
𝑓(𝑝) )

is convex in 𝜆𝑖 in the region

{𝜆𝑖 ∣ 𝑓(𝑝) ≥ 𝑒−2𝑝}.
Proof: Convexity of the integrand is sufficient for convex-

ity of the integral, since the sum of convex functions is convex.
Further, to show convexity of the integrand as a function of
𝜆𝑖, it follows directly from the definition of convexity that
one need only show convexity along all lines in 𝜆-space that
intersect its domain [21]; a function restricted to a line is
univariate in 𝑡 ∈ ℝ, and thus the convexity of the integrand
(on its domain, {𝑡 ∈ ℝ ∣∑𝑖(𝑡𝛾𝑖 + 𝜓𝑖)𝑓𝑖(𝑝) < 𝑝}) can be
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verified directly by taking its second derivative. The integrand,
restricted to the line, is of the form:

𝑔(𝑡) =
1/𝑝

Φ− ln(𝑡Γ +Ψ)
(15)

where Φ = ln(𝑝), Γ =
∑

𝑖 𝛾𝑖𝑓𝑖(𝑝) and Ψ =
∑

𝑖 𝜓𝑖𝑓𝑖(𝑝).
Using the fact that Φ > ln(𝑡Γ + Ψ) on the domain of 𝑔(𝑡),
a direct computation reveals that the second derivative with
respect to 𝑡 is always positive if Φ− ln(𝑡Γ + Ψ) ≤ 2, which
is equivalent to 𝑓(𝑝) ≥ 𝑒−2𝑝.

Note that Theorem 1 provides a sufficient condition for con-
vexity; only when the condition is violated for all 𝑝 ∈ [𝑝𝑡, 𝑝0],
does it imply that the optimization program is nonconvex.

C. Optimization Program Formulation

We are now ready to formulate the problem of minimizing
the decoding complexity of a code subject to a rate constraint.
The optimization variables are the variable degree distribution
parameters 𝜆𝑖. Implicitly, we must have

∑
𝑖 𝜆𝑖 = 1 and 𝜆𝑖 ≥

0. It is easy to see from (1) that if the check-degree distribution
𝜌𝑖 is assumed to be fixed, the code rate is simply a function
of 𝜆𝑖. More specifically, the rate constraint becomes a linear
constraint: ∑

𝑖

𝜆𝑖/𝑖 ≥ 1

1−𝑅0

∑
𝑗

𝜌𝑗/𝑗. (16)

Clearly, the above constraint would be met with equality for
the minimal complexity code. In this case, the complexity
measure 𝐾 is then directly proportional to the number of
iterations 𝑁 .

The idea is now to start with some initial �̄�, compute its
associated EXIT functions 𝑓𝑖(𝑝), and update 𝜆 by solving the
following optimization problem:

minimize

(
1−𝑅0

𝑅0

∑
𝑖 𝜌𝑖/𝑖

)∫ 𝑝0

𝑝𝑡

𝑑𝑝

𝑝 ln
(

𝑝∑
𝑖 𝜆𝑖𝑓𝑖(𝑝)

)

subject to
∑
𝑖

𝜆𝑖/𝑖 ≥ 1

1−𝑅0

∑
𝑖

𝜌𝑖/𝑖

∑
𝑖

𝜆𝑖 = 1

𝜆𝑖 ≥ 0

∣∣𝜆− �̄�∣∣∞ < 𝜖 (17)

Here, 𝜌𝑖 is fixed, 𝑅0 is the fixed target rate, and 𝜖 is the
maximum permissible change in any component of 𝜆, which
is set to a small number to ensure that the elementary EXIT
charts 𝑓𝑖(𝑝) remain accurate.

In practice, the above optimization problem is solved re-
peatedly, with �̄� updated in each step. The initial �̄� can be
set to be the variable degree distribution of the threshold-
optimized code for some target channel condition. Such a
distribution can be obtained by solving (8). Next, we set 𝑅0

to be the target rate (which must be lower than the rate of the
threshold-optimized code), and solve the optimization problem
to obtain a minimal complexity code. However, because of
the 𝜖 constraint, the achievable complexity reduction in one
iteration is typically limited. To further reduce complexity,
we set �̄� to the most recently computed 𝜆, and repeat the

optimization procedure using the updated elementary EXIT
charts. This iterative process should be repeated until the
complexity reduction from one iteration to the next falls below
some threshold value.

D. Design Notes

While the preceding optimization program forms the core of
our design procedure, several further comments are in order.

1) Convexity and Optimality: Each iteration of the design
procedure consists of finding the minimum-complexity code
whose degree distribution deviates from the initial condition
�̄� by at most 𝜖, by solving the optimization problem (17).
This is done for a fixed channel condition and a given
target rate 𝑅0. Note that the constraints of (17) are linear.
Thus, when the objective function of (17) is indeed convex,
the optimization problem (17) belongs to a class of convex
optimization problems for which the globally optimal solution
can be efficiently found using standard convex optimization
techniques [21]. However, from Theorem 1, we only know
that convexity holds when {𝜆𝑖 ∣ 𝑓(𝑝) ≥ 𝑒−2𝑝}.

In some cases, we can argue that the sufficient condition
for convexity necessarily holds, and thus by Theorem 1
the problem is convex. First, observe that for all cases of
interest, when the sufficient condition for convexity condition
is violated, it is violated near the origin of an EXIT chart.
The convexity condition imposes a minimum slope for 𝑓(𝑝)
near the origin, analogous to the usual stability condition [19],
which constrains the slope near the origin to be less than 1.
Under the assumption that an EXIT chart that violates the
convexity condition necessarily violates the condition near the
origin, one can determine the rate 𝑅𝑐 such that an EXIT chart
associated with a code of rate greater than 𝑅𝑐 must have a
slope greater than 1

𝑒2 at 𝑝 = 0. If the desired rate of the
complexity-minimized code is greater than 𝑅𝑐, it is sufficient
to limit the optimization to the convex region, and a globally
optimal solution for (17) can be efficiently found; if the desired
rate is less than 𝑅𝑐, then we solve the optimization problem
without the {𝜆𝑖 ∣ 𝑓(𝑝) ≥ 𝑒−2𝑝} constraint, but we are only
guaranteed to find a local optimum. As a specific illustra-
tion of the preceding, consider the special case of capacity-
approaching codes, where the flatness condition [22] implies2

that the slope of the EXIT chart approaches 1 (which is clearly
greater than 1

𝑒2 ) as 𝑝 tends to zero, therefore the problem of
finding capacity-approaching complexity-minimized codes is
convex; this agrees with the results of [16], which proved the
convexity as the gap to capacity goes to zero.

Finally, even when the sufficient condition for convexity
is not satisfied, we observed experimentally that regardless
of the initial variable degree distribution, the solution of
the optimization program converges to a unique distribution
(for some fixed target rate, channel condition, and check
degree distribution), and thus in practice it seems a globally
optimal solution can always be found efficiently. Coupled with
the accuracy of our measure, this suggests that solving our
optimization program yields a near-minimal-complexity code
in an efficient manner.

2Strictly speaking, this result is proved for the BEC, but a similar obser-
vation holds for more general channels
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2) Setting a Target Message Error Rate: The proposed
design procedure involves tracking the evolution of the average
message error rate over all variable nodes. In practice, we are
not directly interested in achieving a target message-error rate
𝑝𝑡, but rather a target bit-error rate 𝑝𝑏 over the information
bits of the code. In the following, we relate 𝑝𝑏 with 𝑝𝑡 and
give guidelines as to how to set 𝑝𝑡 in practice.

First, the message error rates at different variable nodes are
different and they depend on the variable degrees. Further,
when a decoder completes its alloted quantity of iterations,
making a decision at each variable node involves combining
the channel message and all 𝑑 check-to-variable messages.
Note that this is equivalent to the extrinsic message error rate
for a degree 𝑑 + 1 variable node, which is different from
that of the outgoing message of a degree 𝑑 variable node,
(which involves a channel message and 𝑑−1 check-to-variable
messages.)

To compute the message error rate of variable nodes of dif-
ferent degrees, it is necessary to compute the node-perspective
(rather than edge-perspective) variable degree distribution:

Λ(𝑥) =

𝑑𝑣∑
𝑖=2

Λ𝑖𝑥
𝑖, (18)

where

Λ𝑖 =
𝜆𝑖

𝑖∑𝑑𝑣

𝑗=2
𝜆𝑗

𝑗

. (19)

Furthermore, in a systematic realization of an LDPC code,
one can assign information bits to high-degree variable nodes
and parity-check bits to low-degree variable nodes. In the
case of threshold-optimized codes, this is without loss in
performance [23, Theorem 1]. Thus, we define a node-
perspective variable degree distribution over the information
bits as follows. Let 𝑘 be such that

∑𝑑𝑣

𝑖=𝑘 Λ𝑖 ≥ 𝑅0 and∑𝑑𝑣

𝑖=𝑘+1 Λ𝑖 < 𝑅0, where 𝑅0 is the target rate. The degree
distribution Γ(𝑥) over the information bits is:

Γ(𝑥) =

𝑑𝑣∑
𝑖=𝑘

Γ𝑖𝑥
𝑖, (20)

where

Γ𝑘 = 1−
∑𝑑𝑣

𝑗=𝑘+1 Γ𝑗

𝑅0
, and Γ𝑗 =

Λ𝑗

𝑅0
for 𝑖 > 𝑘. (21)

Finally, for a given code and channel condition, the bit-error
rate over the information bits 𝑝𝑏, and the average message-
error rate 𝑝𝑡 can be related as follows:

𝑝𝑏 = BER(𝑝𝑡) =

𝑑𝑣∑
𝑖=𝑘

Γ𝑖𝑓𝑖+1(𝑝𝑡), (22)

The above relation allows one to determine the appropriate
𝑝𝑡 in code design, for a given target 𝑝𝑏. In each iteration
of the optimization procedure, 𝑝𝑡 can be computed based on
the target 𝑝𝑏 and the 𝜆(𝑥) in the current iteration. Note that
equation (22) can be easily solved numerically, as BER(𝑝𝑡)
is a strictly increasing function of 𝑝𝑡.

Channel

Input to next iteration

Output of previous iteration

Input to next iteration

Output of previous iteration

Fig. 3. Depth-one decoding trees: The (variable-perspective) EXIT charts
in Section II correspond to the left-hand tree, whereas the right-hand tree
corresponds to check-perspective EXIT charts.

3) Optimizing the Check-Degree Distribution: The pro-
posed optimization program assumes a fixed check-degree
distribution 𝜌(𝑥). Thus, finding the minimal complexity code
requires an optimization over the choice of check degree
distribution.

For threshold-optimized codes, there exists convincing ev-
idence that it suffices to consider only check-degree distri-
butions whose degrees are concentrated on two consecutive
values [20], [24]. That is to say, if the average check node
degree is chosen to be 𝑛 ≤ 𝑑𝑐 < 𝑛+1, where 𝑛 is an integer,
then non-zero weights exist only on degree-𝑛 and degree-𝑛+1
check-nodes, and 𝜌𝑛 satisfies

1

𝑑𝑐
=
𝜌𝑛
𝑛
+
1− 𝜌𝑛
𝑛+ 1

. (23)

For complexity-minimized codes, it is possible to use a
procedure similar to the proposed complexity-optimization
program to provide further evidence in favor of concentrated
check distributions. The idea is to fix a target rate 𝑅0 and to
fix 𝜆(𝑥), and to show that the complexity-minimizing 𝜌(𝑥) has
a concentrated distribution. Note that fixing 𝑅0 and 𝜆(𝑥), the
average check-degree is fixed, therefore minimizing the com-
plexity is equivalent to minimizing the number of decoding
iterations. It is possible to use an approach analogous to that
outlined in Section II-B to define a check-perspective EXIT
chart (i.e., one that tracks the message error rate of check-
to-variable messages, see Fig. 3). One can then express the
decoding complexity as a function of 𝜌(𝑥) and the elementary
check-perspective EXIT charts, and a suitable optimization
program can be formulated to find the complexity-minimizing
check-degree distribution. In all investigated cases, we found
that the resulting check-degree distribution was indeed con-
centrated on two consecutive degrees.

Finally, in many cases it suffices to consider only regular
check degrees, i.e. 𝜌𝑛 = 1 for some 𝑛, with negligible perfor-
mance degradation. Note that with regular check degrees, the
capacity of the BEC can be achieved [22], and for the Gaussian
channel, performance very close to the Shannon limit has also
been reported [5].

IV. CODE DESIGN AND SIMULATION RESULTS

Given a target rate and a target decoding complexity,
the best code is the one which permits successful decoding
(with the target complexity) on the worst channel. In other
words, it is the highest threshold code that satisfies the
design specifications. In this section, we illustrate how to
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find such codes using the optimization program presented in
Section III, and compare their performance, via simulation,
to traditional threshold-optimized codes, which were designed
using LdpcOpt [25]. A binary-input AWGN channel with
noise variance 𝜎2 and a target 𝑝𝑏 = 10−6 are assumed, and
the sum-product algorithm is used at the decoder.

A. Design Example

To illustrate our optimization method, we design codes of
rate one-half for different target decoding complexities, with
a maximum variable node degree of 30.3

First, from the given specifications, the threshold-optimized
code can be found by well-known methods [1]–[3]. Using
LdpcOpt, the threshold-optimized code 𝒞𝑇 has decoding
threshold 𝜎 = 0.9713, 𝜌(𝑥) = 𝑥8, and

𝜆(𝑥) = 0.21236𝑥+ 0.19853𝑥2 + 0.00838𝑥4

+0.07469𝑥5 + 0.01424𝑥6 + 0.16652𝑥7

+0.00912𝑥8 + 0.02002𝑥9 + 0.00025𝑥19

+0.29589𝑥29.

Note that finding the threshold-optimized code implicitly
involves a search over 𝜌(𝑥).

For 𝜌(𝑥) = 𝑥8 and any 𝜎 < 0.9713, we can solve our
optimization program (17) to find the minimal complexity
code of rate one-half; that is, the optimization yields a unique
complexity-minimized code for each channel condition. In
essence, we obtain a curve of the optimized complexity vs.
the channel condition. Now, as discussed in Section III, mini-
mizing the decoding complexity at a fixed channel condition is
equivalent to minimizing 𝑁𝑑𝑐, and therefore involves a search
over the average check degree. Thus, in a manner analogous
to the case of 𝜌(𝑥) = 𝑥8, we compute the 𝐾 vs. 𝜎 curve for
various 𝑑𝑐 (from an appropriately chosen set, centered about
𝑑𝑐 = 9), and plot the curves on a single graph. The resulting
graph is illustrated in Fig. 4, where check distributions of the
form 𝜌(𝑥) = 𝑥𝑑𝑐−1 are considered. Note that a slightly more
refined result is possible if one considers check distributions
concentrated on consecutive degrees.

Now, for a target decoding complexity, it is straightforward
to use Fig. 4 to determine the parameters of the best code.
This is accomplished by finding the largest 𝜎 at which one
of the curves achieves the target complexity, and finding
the complexity-minimized code for the corresponding check
degree and noise variance. We present below the resulting
codes for three target complexities.
For 𝐾 = 150, we have 𝑑𝑐 = 6 and 𝜎 = 0.855, and the
resulting code 𝒞150 has

𝜆(𝑥) = 0.02799𝑥+ 0.94752𝑥2 + 0.02449𝑥6.

For 𝐾 = 400, we have 𝑑𝑐 = 8 and 𝜎 = 0.913, and the
resulting code 𝒞400 has

𝜆(𝑥) = 0.10733𝑥+ 0.50459𝑥2 + 0.07627𝑥12

+0.31181𝑥13.

3This is sufficient such that threshold-optimized codes approach the BI-
AWGN capacity to within 0.07dB.
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Fig. 4. Minimum decoding complexity as a function of channel condition,
for various check degrees, with 𝑅 = 0.5 and maximum variable degree 30.

For 𝐾 = 800, we have 𝑑𝑐 = 8 and 𝜎 = 0.939, and the
resulting code 𝒞800 has

𝜆(𝑥) = 0.16627𝑥+ 0.40111𝑥2 + 0.08803𝑥10 + 0.17446𝑥11

+0.17013𝑥15.

B. Simulation Results

We compare the performance of the complexity-minimized
codes with that of threshold-optimized codes. For each degree
distribution, we design a parity-check matrix of length 𝑛 =
105. We ensure that the corresponding graph does not have
any cycles of length 4, but the matrix is otherwise randomly
constructed. We note that for short-block-lengths, graph-
structure optimization via progressive-edge-growth [26], and
its variants (see [27] and references therein), significantly
improve performance. However, for long-block-lengths, these
algorithms are computationally intensive, and their benefits are
reduced.

The complexity-minimized codes are evaluated for their
target decoding complexities, while the performance of the
threshold-optimized codes are presented for a range of decod-
ing complexities. The bit-error-rates (BER), computed over the
information bits of the code, as a function of signal-to-noise
(SNR) ratio, are plotted.

While it is traditional to discuss the coding gain (in dB)
of one coding scheme relative to another, we prefer to eval-
uate the complexity-reduction afforded by our complexity-
minimized codes. Fig. 5 shows the BER curves for 𝒞150, 𝒞400
and 𝒞800, as well as 𝒞𝑇 . Each of the complexity-optimized
codes is evaluated for its target decoding complexity, while
the performance of the threshold-optimized code is presented
for a range of decoding iterations. For 𝑁 decoding iterations,
the decoding complexity of the threshold-optimized code is
𝐾 = 9𝑁 .

For a BER 𝑝𝑏 = 10−6, 𝒞𝑇 requires 𝑁 to be slightly
greater than 30, which translates to a decoding complexity
𝐾 = 270, whereas 𝒞150 achieves the target with 𝐾 = 150;
thus, the complexity-optimized code provides a 44% reduction
in decoding complexity at the same SNR.
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Fig. 5. Performance of 𝒞150, 𝒞400 , 𝒞800 , each evaluated for its target
decoding complexity, and 𝒞𝑇 for various numbers of decoding iterations.
𝑅 = 0.5. Blocklength 𝑛 = 105. Note that for 𝒞𝑇 with 𝑁 decoding iterations,
𝐾 = 9𝑁 .

Of course, as we increase the decoding complexity, the SNR
to achieve the target BER will decrease. Relative to 𝒞400,
which achieves 𝑝𝑏 = 10−6 at 𝐸𝑏/𝑁0 = 0.84dB, 𝒞𝑇 requires
𝑁 to be slightly greater than 75, which translates to a decoding
complexity 𝐾 = 675; in this case, the complexity-optimized
code provides a 41% reduction in decoding complexity at the
same SNR.

Relative to 𝒞800, which achieves 𝑝𝑏 = 10−6 at 𝐸𝑏/𝑁0 =
0.69dB, 𝒞𝑇 requires 𝑁 to be greater than 200, which trans-
lates to a decoding complexity 𝐾 = 1800; in this case,
the complexity-optimized code provides more than a 56%
reduction in decoding complexity at the same SNR.

Finally, since the check degree distribution of a complexity-
minimized code is a function of its target decoding complexity,
we investigated the performance of threshold-optimized codes
with reduced check degrees, and found that reducing the check
degree of threshold-optimized codes (from 𝑑𝑐 = 9, which
maximizes the threshold) does not improve their performance-
complexity tradeoff. This justifies the comparison of our codes
to 𝒞𝑇 .

C. EXIT Chart Interpretation of the Results

To further explain the observed results, Fig. 6 shows the
EXIT charts of the threshold-optimized code and the 𝐾 = 150
complexity-optimized code, for 𝜎 = 0.9. The behavior of the
EXIT charts near the origin on a log-scale is plotted in Fig. 7.
For a target message error rate 𝑝𝑡 = 10−4, 𝒞150 requires 35
decoding iterations (𝐾 = 280), while 𝒞𝑇 requires 63 decoding
iterations (𝐾 = 567); this translates to a reduction in decoding
complexity of approximately 50%.

An important observation is that the complexity-optimized
code has a more closed EXIT chart in the earlier iterations
and a more open EXIT chart at the later iterations. It is
shown in [28] that, for a wide class of decoding algorithms,
when the EXIT chart of two codes 𝑓𝒞𝐴(𝑝) and 𝑓𝒞𝐵 (𝑝) satisfy
𝑓𝒞𝐴(𝑝) ≤ 𝑓𝒞𝐵 (𝑝) , ∀𝑝 ∈ (0, 𝑝0], then 𝒞𝐵 has a higher rate than
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Fig. 6. EXIT charts for 𝒞150 and 𝒞𝑇 on AWGN channel, 𝜎 = 0.9, in linear
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Fig. 7. EXIT charts for 𝒞150 and 𝒞𝑇 on AWGN channel, 𝜎 = 0.9, in log
scale.

𝒞𝐴 (for the BEC, this also follows from [29]). In this example,
since both codes have the same rate, one EXIT chart cannot
dominate the other one everywhere, but the optimization pro-
gram carefully trades the area underneath the EXIT chart for
the complexity. Furthermore, for the complexity-minimized
codes, the delayed appearance of the waterfall region is due
to the fact that their EXIT charts are initially less open than
the EXIT chart of the threshold-optimized code. On the other
hand, the openness of the complexity-minimized EXIT charts
near the origin, translates to the steeper waterfalls in the
above figures. These effects can be attributed to the decreased
fraction of degree-two nodes in the complexity-minimized
codes. It is well known that the minimum distance [30] and the
size of the smallest stopping set [31] are strongly dependent on
the fraction of degree-two nodes; therefore, it is not surprising
that the complexity-minimized codes do not appear to suffer
from error floors, even when the number of decoding iterations
is small.
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D. Discussion

The effectiveness of our design methodology stems from the
accuracy of our measure of complexity, but it also rests upon
the accuracy of density evolution analysis. At short-block-
lengths, where the performance of irregular LDPC codes are
sensitive to the structure of the parity-check matrix, and the
underlying assumptions for density evolution are not valid, our
complexity-optimized codes provide very similar performance
to threshold-optimized codes. We note that it may be possible
to further improve upon our results (both at short and long
block lengths) by optimizing over a more general ensemble of
LDPC codes. Specifically, multi-edge type LDPC codes [32]
generalize the irregular ensemble to include various edge
types, thus providing greater control over graph structure;
most importantly, this structure translates to short block length
performance that more closely approaches the asymptotic pre-
dictions of density evolution. Similarly, ARA codes generally
provide improved short block length performance, relative to
an LDPC code of the same threshold. However, in order to
apply our complexity-minimization method to either family
of codes, an EXIT chart-based design procedure would be
required; to our knowledge, no EXIT chart-based design
procedure has been developed for either family of codes.

V. CONCLUDING REMARKS

This paper presents a methodology for the design of irreg-
ular LDPC codes with an optimized complexity-rate tradeoff.
Our methodology is based on a new measure of complexity,
which accurately models the required number of iterations for
convergence in the iterative decoding process, and a novel
formulation of a complexity-minimization problem. A suffi-
cient condition for convexity of the complexity-optimization
problem in the variable edge-degree distribution is presented;
when it is not satisfied, numerical experiments nevertheless
suggest that the local minimum is unique. The effectiveness
of our design methodology stems from the accuracy of our
measure of complexity, but also rests upon the accuracy of
density evolution analysis. When the block lengths of the
codes are long enough such that density evolution provides
an accurate prediction of decoding trajectory, our complexity-
minimized codes provide a superior performance-complexity
tradeoff as compared to threshold-optimized codes, within the
ensemble of irregular codes.
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