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Abstract—Convex optimization methods are widely used in the
design and analysis of communication systems and signal pro-
cessing algorithms. This tutorial surveys some of recent progress
in this area. The tutorial contains two parts. The first part
gives a survey of basic concepts and main techniques in convex
optimization. Special emphasis is placed on a class of conic op-
timization problems, including second-order cone programming
and semidefinite programming. The second half of the survey gives
several examples of the application of conic programming to com-
munication problems. We give an interpretation of Lagrangian
duality in a multiuser multi-antenna communication problem; we
illustrate the role of semidefinite relaxation in multiuser detection
problems; we review methods to formulate robust optimization
problems via second-order cone programming techniques.

Index Terms—Convex optimization, digital communications,
duality, second-order cone programming (SOCP), semidefinite
programming (SDP), signal processing.

I. INTRODUCTION

HE USE OF optimization methods is ubiquitous in com-

munications and signal processing. Many communication
problems can either be cast as or be converted into convex op-
timization problems, which greatly facilitate their analytic and
numerical solutions. This tutorial paper gives a survey of some
of recent progress in convex optimization techniques for digital
communications and signal processing applications.

Convex optimization refers to the minimization of a convex
objective function subject to convex constraints. Convex opti-
mization techniques are important in engineering applications
because a local optimum is also a global optimum in a convex
problem and a rigorous optimality condition and a duality theory
exist to verify the optimal solution. Consequently, when a design
problem is cast into a convex form, the structure of the optimal
solution, which often reveals design insights, can often be iden-
tified. Further, powerful numerical algorithms exist to solve for
the optimal solution of convex problems efficiently.
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There have been significant advances in the research in
convex optimization (e.g., interior-point method [1] and conic
optimization [2]) over the last two decades. The first part of
this tutorial provides an overview of these developments and
describes the basic optimization concepts, models and tools
that are most relevant to signal processing and communication
applications. The second half of this paper includes examples
illustrating Lagrangian duality, the method of relaxation, and
robust optimization techniques, which are useful in many
engineering applications. Open problems and future research
directions are also discussed.

II. CONVEX OPTIMIZATION

In order to recognize convex optimization problems in
engineering applications, one must first be familiar with the
basic concepts of convexity and the commonly used convex
optimization models. This section provides a concise review
of these optimization concepts and models including linear
programming, second-order cone programming, and semidef-
inite cone programming, all illustrated through concrete
examples. In addition, the Karush—Kuhn-Tucker optimality
conditions are reviewed and stated explicitly for each of the
convex optimization models, followed by a description of the
well-known interior-point algorithms and a brief discussion of
their worst-case complexity.

Here and throughout, vectors are in lower case letters, and
matrices are in capital case letters. The transpose is expressed
by (-)T; the conjugate transpose is expressed by (-)#; the trace
is expressed by tr(-). The set of n by n positive semidefinite
real symmetric matrices is denoted by S7; the set of n by n
positive semidefinite complex Hermitian matrices is denoted by
‘H'y. For two given matrices A and B, we use “A = B” to
indicate that A — B is positive semidefinite, and A ¢ B :=
> AijBij = tr(ABT) to denote the matrix inner product.
The Frobenius norm of A is denoted by ||A||r = /tr(AAT).
The Euclidean norm of a vector x € R™ is denoted as ||z||.

A. Basic Optimization Concepts

Convex Sets: A set S C R" is said to be convex if for any
two points z, y € S, the line segment joining x and y also lies
in S. Mathematically, it is defined by the following property:

bz +(1—-0)ye S, VOelo,1l]andz,y e S.

Many well-known sets are convex, for example, the unit ball
S ={xz | ||z|| < 1}. However, the unit sphere S = {z | ||z|| =

0733-8716/$20.00 © 2006 IEEE



LUO AND YU: AN INTRODUCTION TO CONVEX OPTIMIZATION FOR COMMUNICATIONS AND SIGNAL PROCESSING

1} is not convex since the line segment joining any two distinct
points is no longer on the unit sphere. In general, a convex set
must be a solid body, containing no holes, and always curve out-
ward. Other examples of convex sets include ellipsoids, hyper-
cubes, polyhedral sets, and so on. In the real line &, convex sets
correspond to intervals (open or closed). The most important
property about convex set is the fact that the intersection of any
number (possibly uncountable) of convex sets remains convex.
For example, the set S = {z | ||z|| < 1,2 > 0} is the intersec-
tion of the unit ball with the nonnegative orthant (R’ ), both of
which are convex. Thus, their intersection S is also convex. The
union of two convex sets is typically nonconvex.

Convex Cones: A convex cone K is a special type of convex
set which is closed under positive scaling: for each x € K and
each « > 0, ax € K. Convex cones arise in various forms in
engineering applications. The most common convex cones are
the following.

1) Nonnegative orthant R’ .

2) Second-order cone (also known as ice-cream cone)

K = S0C(n) = {(t,) [t > |||}

In practice, sometimes it is more convenient to
work with the so-called rotated second-order cone:
{(t,s,z) € R" | ts > ||z]|*,t > 0,s > 0}. This cone is
equivalent to the standard SOC(n + 1) via a simple linear
transformation.

3) Positive semidefinite matrix cone

K =8 ={X | X symmetric and X = 0}.

For any convex cone K, we can define its dual cone

*={x|(z,y) >0,Yy ek}

where (-, -) denotes the inner product operation. In other words,
the dual cone K* consists of all vectors y which forms a
nonobtuse angle with all vectors in K. We say K is self-dual
if L = K*. It can be shown that the nonnegative orthant cone,
the second-order cone and the symmetric positive semidefinite
matrix cone are all self-dual. Notice that for the second-order
cone, the inner product operation (-, -) is defined as

((t,2),(s,9)) = ts +aTy,
Y (t,z) and (s,y) with ¢t > ||z]| and s > [|y|| (1)
and for the positive semidefinite matrix cone

(X,Y)=XeY =) X,V

2%

Convex Functions: A function f(x) : " — R is said to be

convex if for any two points z, y € "

f0z+(1=0)y) <Of(x)+ (1—10)f(y),

Geometrically, this means that, when restricted over the line
segment joining x and y, the linear function joining (z, f(z))

Vo elo,1].
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and (y, f(y)) always dominates the function f. There are many
examples of convex functions, including the commonly seen
univariate functions |z|, e%, 22, as well as multivariate func-
tions a’x + b, ||Ax||?, where A, a, and b are given data ma-
trix/vector/constant. We say f is concave if — f is convex. The
entropy function — ) . x; log «; is a concave function over R} .
If f is continuously differentiable, then the convexity of f is

equivalent to

Fy) = f(@) + V(@) (y - @),

In other words, the first-order Taylor series expansion serves as
a global underestimator of f. Furthermore, if f is twice con-
tinuously differentiable, then the convexity of f is equivalent
to the positive semidefiniteness of its Hessian: V2f(x) = 0,
V x € R™. Thus, a linear function is always convex, while a
quadratic function 7 Pz + a®x + b is convex if and only if
P > 0. Notice that the linear plus the constant term a2 + b
does not have any bearing on the convexity (or the lack of) of f.
One can think of numerous examples of functions which are nei-
ther convex nor concave. For instance, the function 2 is convex
over [0, 00) and concave over the region (—oo, 0], but is neither
convex nor concave over R.

The most important property about convex functions is the
fact that they are closed under summation, positive scaling, and
the pointwise maximum operations. In particular, if the {f;}’s
are convex, then so is max;{ f;(z)} (even though it is typically
nondifferentiable). A notable connection between convex set
and convex function is the fact that the level sets of any convex
function f(z) are always convex, i.e., {z | f(z) < c} is convex
for any ¢ € R. The converse is not true, however. For example,
the function f(z) = /|z| is nonconvex, but its level sets are
convex.

Convex Optimization Problems: Consider a generic opti-
mization problem (in the minimization form)

Vz,y € R™.

minimize  fo(x)
subject to fb(a:) 0,i=1,2,...,m,
hj(z)=0,j5=1,2,...,r,
z€S )

where fj is called the objective function (or cost function),
{fitir, and {h; } are called the inequality and equality
constraint functlons respectlvely, and S is called a constraint
set. In practice, S can be implicitly defined by an oracle such
as a user-supplied software. The optimization variable = € R"
is said to be feasible if z € S and it satisfies all the inequality
and equality constraints. A feasible solution z* is said to
be globally optimal if fo(2*) < fo(z) for all feasible z. In
contrast, a feasible vector Z is said to be locally optimal if there
exists some € > 0 such that fo(Z) < fo(x) for all feasible
satisfying ||z — Z|| < e.

The optimization problem (2) is said to be convex if 1) the
functions f; (¢ = 0,1,2,...m) are convex; 2) h;(z) are affine
functions (i.e., h; is of the form a} z + b; for some a; € R"
and b; € N); and 3) the set S is convex. Violating any one of the
three conditions will result in a nonconvex problem. Notice that
if we change “minimize” to “maximize” and change direction
of the inequalities from “f;(z) < 0” to “f;(x) > 0,” then (2) is
convex if and only if all f;(z) (¢ =0,1,2,...,m) are concave.
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For example, the following entropy maximization problem is
convex:

n
maximize E x; log x;
=1

n
subject to Y i =1,2; >0, i=1,2,...,n,
i=1

Ar=b,7=1,2,...,r

where the linear equalities Az =
moment matching constraints.

Let us now put in perspective the role of convexity in opti-
mization. It is well known that, for the problem of solving a
system of equations, linearity is the dividing line between the
“easy” and “difficult” problems.! Once a problem is formulated
as a solution to a system of linear equations, the problem is con-
sidered done since we can simply solve it either analytically or
using existing numerical softwares. In fact, there are many ef-
ficient and reliable softwares available for solving systems of
linear equations, but none for nonlinear equations. The lack of
high-quality softwares for solving nonlinear equations is merely
areflection of the fact that they are intrinsically difficult to solve.

In contrast, the dividing line between the “easy” and “diffi-
cult” problems in optimization is no longer linearity, but rather
convexity. Convex optimization problems are the largest sub-
class of optimization problems which are efficiently solvable,
whereas nonconvex optimization problems are generally diffi-
cult. The theory, algorithms and software tools for convex opti-
mization problems have advanced significantly over the last 50
years. There are now (freely downloadable) high-quality soft-
wares which can deliver accurate solutions efficiently and reli-
ably without the usual headaches of initialization, step-size se-
lection or the risk of getting trapped in a local minimum. Once
an engineering problem is formulated in a convex manner, it
is reasonable to consider it “solved” (or “game over”), at least
from a numerical perspective.

For any convex optimization problem, the set of global op-
timal solutions is always convex. Moreover, every local optimal
solution is also a global optimal solution, so there is no danger
of being stuck at a local solution. There are other benefits
associated with a convex optimization formulation. For one
thing, there exist highly efficient interior-point optimization
algorithms whose worst-case complexity (i.e., the total number
of arithmetic operations required to find an e-optimal solution)
grows gracefully as a polynomial function of the problem data
length and log 1/¢. In addition, there exists an extensive duality
theory for convex optimization problems, a consequence of
which is the existence of a computable mathematical certifi-
cate for infeasible convex optimization problems. As a result,
well-designed softwares for solving convex optimization prob-
lems typically return either an optimal solution, or a certificate
(in the form of a dual vector) that establishes the infeasibility
of the problem. The latter property is extremely valuable in
engineering design since it enables us to identify constraints
which are too restrictive.

b may represent the usual

IThese notions can be made precise using the computational complexity
theory; e.g., NP-hardness results.
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B. Lagrangian Duality and Karush—Kuhn—Tucker Condition

Consider the following (not necessarily convex) optimization
problem:
minimize  fo(z)
subject to  fi(z) <0, i = ,m,
hi(z)=0,j5=1,2,...,m,
€S 3)

Let p* denote the global minimum value of (3). For symmetry
reason, we will call (3) the primal optimization problem, and
call = the primal vector. Introducing dual variables A € R™ and
v € R", we can form the Lagrangian function

= folx +Z)‘fl —|—ZI/}LJ

The so-called dual function g()\ v) assomated with (3) is de-
fined as

L(z,\,v)

g\ v) = min L(z,\,v).
Notice that, as a pointwise minimum of a family of linear func-
tions (in (), v)), the dual function g(\,v) is always concave.
We will say (A, v) is dual feasible if A > 0 and g(\, v) is finite.
The well-known weak duality result says the following.
Proposition 1: For any primal feasible vector  and any dual
feasible vector (), v), there holds

fo(z) > g(\,v).

In other words, for any dual feasible vector (A, v/), the dual func-
tion value g(\, v) always serves as a lower bound on the primal
objective value fo(z). Notice that 2 and (A, ) are chosen in-
dependent from each other (so long as they are both feasible).
Thus, p* > g(A,v) for all dual feasible vector (A,r). The
largest lower bound for p* can be found by solving the following
dual optimization problem:

maximize g(A,v)
subject to A >0, v e R". 4)

Notice that the dual problem (4) is always convex regardless of

the convexity of the primal problem (3), since g(A, v) is con-

cave. Let us denote the maximum value of (4) by d*. Then, we

have p* > d*. Interestingly, for most convex optimization prob-

lems (satisfying some mild constraint qualification conditions,

such as the existence of a strict interior point), we actually have
* = d*. This is called strong duality.

In general, the dual function g(\, v) is difficult to compute.
However, for special classes of convex optimization problems
(see Section II-C), we can derive their duals explicitly. Below
is a simple example illustrating the concept of duality for linear
programming.

Example: Let us consider the following linear programming
problem:

minimize 21 + o
subject to 1 + 2x9 = 2,

(il?l,LI}Q)T S §R3_ (5)
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The primal optimal solution is unique and equal to (z,x3) =
(0,1), withp* = 2} +2% = 1. The Lagrangian function is given
by L(z,v) = 21 + 22 + (2 — 1 — 2x2), and the dual function
is given by

min
(z1,22)T ER

=2v +

g(v) = , {1 + 22+ v(2 — 1 — 222)}

+

min  {(1-v)z; + (1 — 2v)zs}

(z1,22)T €RT
)20, if v < %
—00,

otherwise
Thus, the dual linear program can be written as

maximize 2v

DN | =

subject to v <
Clearly, the dual optimal solution is given by v* = 1/2 and the
dual optimal objective value is d* = 1. Thus, we have in this
case p* = d*. Inlight of Proposition 1, the dual optimal solution

v* = 1/2 serves as a certificate for the primal optimality of

(27, 23).

Next, we present a local optimality condition for the opti-
mization problem (3). For ease of exposition, let us assume
S = R. Then, a necessary condition for z* to be a local op-
timal solution of (3) is that there exists some (A*, v*) such that

filz*) <0, Vi=1,2,...,m 6)
hj(z*)=0, Vji=12,...,r @)
A* >0, 8)
Aefi(z*) =0, Vi=1,2,...,m )

and

Vio(®) + D NV fi(x*)+ Y viVhi(z*) =0.  (10)
i=1 j=1

Collectively, the conditions (6)—(10) are called the Karush—
Kuhn-Tucker (KKT) condition for optimality. Notice that the
first two conditions (6) and (7) represent primal feasibility
of z*, condition (8) represents dual feasibility, condition (9)
signifies the complementary slackness for the primal and dual
inequality constraint pairs: f;(z) < 0 and \; > 0, while the
last condition (10) is equivalent to V, L(z*, A*,v*) = 0.

For the above linear programming example, we can easily
check that the vector (27, 25) = (0, 1) and the Lagrangian mul-
tipliers (A, A5, v*) = (1/2,0, 1/2) satisfy the above KKT con-
dition. Moreover, they are the unique solution of (6)—(10). Thus,
(z7,2%) = (0,1) is the unique primal optimal solution for (5).

In general, the KKT condition is necessary but not sufficient
for optimality. However, for convex optimization problems (and
under mild constraint qualification conditions), the KKT condi-
tion is also sufficient. If the constraints in (3) are absent, the cor-
responding KKT condition simply reduces to the well-known
stationarity condition for unconstrained optimization problem:
V fo(z*) = 0. That is, an unconstrained local minimum must
be attained at a stationary point (at which the gradient of f, van-
ishes). However, in the presence of constraints, local optimal so-
lution of (3) is no longer attained at a stationary point; instead,
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it is attained at a KKT point z*, which, together with some dual
feasible vector (A*, v*), satisfies the KKT condition (6)—(10).

Detecting Infeasibility: Efficient detection of infeasibility
is essential in engineering design applications. However, the
problem of detecting and removing the incompatible con-
straints is NP-hard in general, especially if the constraints are
nonconvex. However, for convex constraints, we can make use
of duality theory to prove inconsistency. Let us consider the
following example.

Example: Determine if the following linear system is
feasible:

.Z‘1+.Z‘2S1
!13'1—[13'25 -1
—LElf — 1.

Let us multiply the last inequality by 2 and add it to the first
and the second inequalities. The resulting inequality is 0 < —1,
which is a contradiction. This shows that the above linear system
is infeasible.

In general, a linear system of inequalities

Az <b (11)

is infeasible if and only if there exists some A > 0, such that

MNAa=0, MNb<o. (12)
Clearly, the existence of a such A serves as a certificate for the
incompatibility of the linear inequalities in (11). What is inter-
esting (and nontrivial) is the fact that the converse is also true.
That is, if the system (11) is infeasible, then there always exists
a mathematical certificate A satisfying (12). Results of this kind
are called the theorems of alternatives, and are related to the
well-known Farkas’ lemma for the linear feasibility problem.

The above result can also be extended to the nonlinear con-
text. For instance, consider a system of convex (possibly non-
linear) inequality system

f1($)<07f2<x)<07"'7fm($><0' (13)
Then, either (13) is feasible or there exists some nonzero A > 0

satisfying

g(A) = igf {Afil@) + Aafo(@) + -+ A f2)} 2 0. (14)

Exactly one of the above two conditions holds true. The exis-
tence of a nonzero A > 0 satisfying (14) proves the infeasibility
of (13). Such a X serves as a certificate of infeasibility. Modern
softwares (e.g., SeDuMi [3]) for solving convex optimization
problems either generate an optimal solution or a certificate
showing infeasibility. In contrast, softwares for nonconvex op-
timization problems cannot detect infeasibility. They typically
fail to converge when the underlying problem is infeasible, ei-
ther due to data overflow or because the maximum number of
iterations is exceeded.
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C. Linear Conic Optimization Models

We now review several commonly used convex optimization
models in engineering design applications. Consider a primal-
dual pair of optimization problems

minimize C e X
subjectto AX =b, X eK (15)
and
maximize bly
subject to A*y4+S=C, SeK* (16)

where A is a linear operator mapping an Euclidean space onto
another Euclidean space, A* denotes the adjoint of A, K sig-
nifies a pointed, closed convex cone, and K* is its dual cone.
Recall that C' ¢ X denotes matrix inner product. The problems
(15) and (16) are known as linear conic programming. They in-
clude many well-known special cases listed next.

Linear Programming (LP) K = R : In this case, the linear
conic optimization problem reduces to

minimize ¢
subjectto Ax=b, >0 17
and its dual becomes
maximize by
subject to ATy+s=r¢, s> 0. (18)
The optimality condition is given by
Az =b,2>0, ATy+s=¢, s>0, 27s=0.
Second-Order Cone Programming K = T[], SOC(n,):
Let # = (&1,%9,...,3,)T with & = (t;,z)7 €
SOC(n;) (namely, t; > ||z;]|). Similarly, we denote
5 = (51,89,...,8,)T with 5, = (71,5)T € SOC(ny).
The data vector ¢ = (¢1,¢a,...,¢)7 with & € R™, and the

data matrix A € R™X(m1++n4) T this case, the linear conic
optimization problem (15) reduces to

minimize ¢L &
subject to  AZ = b, #; € SOC(n;), Vi (19)
and its dual becomes
maximize b7y
subject to ATy 45 =¢, 5 € SOC(n;), Vi. (20)

In practice, the second-order cone programming (SOCP) con-

straints usually take the form of ||A’z + V'|| < ¢/, which can be

easily mapped to the form in (19). The optimality condition for

(19) is given by

i'5=0

T, 5; € SOC(n;), Yi. (21)
Semidefinite Programming (SDP) K = S or (H'{): In this

case, the linear conic optimization problem reduces to

minimize CeX
subject to A;eX=b;, 1=1,2,...,m, X>0 (22)
and its dual becomes
maximize by
subject to Y Aly;+5=0C, § = 0. (23)

i=1
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In practice, linear matrix inequalities of the form Ay +
>y = 0 can be easily mapped to the form in (23). The
optimality condition is given by

A; e X =b;, X =0,
> Alyi+S=C, S=0, XeS=0. (24)

=1

D. Interior-Point Methods for Linear Conic Optimization

We now discuss numerical algorithms for solving linear conic
optimization problems. For ease of exposition, we will focus on
the SDP case with K = S%. The other cases can be treated
similarly (in fact, they are special cases of SDP).

Assume that the feasible regions of the SDP pair (15) and (16)
have nonempty interiors. Then, we can define the central path
of (15) and (16) as {(X (p), S(u))} satisfying

Ay(p) +S(p) =C
AX(p) =b
X(W)S(p) =pl (25)

where p is a positive parameter. By driving 4 — 0 and under
mild assumptions, the central path converges to an optimal
primal-dual solution pair for (15) and (16). Notice that the cen-
tral path condition (25) is exactly the necessary and sufficient
optimality condition for the following convex problem:

minimize C e X — plogdet(X)

subject to AX =0b, X € SY. (26)
In other words, the points on the central path corresponds to the
optimal solution of (26) and the associated optimal dual solu-
tion. Here, the function — log det(X) is called the barrier func-
tion for the positive semidefinite matrix cone S.

Many interior-point algorithms follow (approximately) the
central path to achieve optimality. As a result, the iterates are
required to remain in a neighborhood of the central path which
can be defined as

N) ={(X,y,9) | AX =b, A'y+S=C, X =0,
X.SI S’YX.S}~ 27
F n

n
With this definition, a generic interior-point path-following al-
gorithm can be stated as follows.

S=o0, || xY2sx1?%

Generic Path-Following Algorithm

1) Given a strictly feasible primal-dual pair
(X049 8% € N(y) with0 < v < 1. Set
k=20
2) Let X = X*, y=9* S =5%and i, = X ¢ S/n.
3) Compute a search direction (AX*, Ay* AS*) and
the largest step 5 such that (X + t*AXF* ¢ +
tFAyF S +tFASF) € N(7). Set X<+l = X + tFAXE,
yk+1 — y+tkAyk, Sk+1 — S-i—tkASk.
4) Set k = k + 1 and return to 2) until convergence.
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21~ N(O, 0'2)
hi }—’ Y1
U
' Z9 ~ N(O, 0.2)
Uz
hil C) Y2

min 3, [[w;|?
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B —| hy oo |

min 37, E[#]]

Fig. 1. Uplink-downlink beamforming duality can be interpreted as a Lagrangian duality in convex optimization.

There are many choices for the search direction
(AX, Ay, AS). For example, we can take it as the solution of
the following linear system of equations:

A Ay +AS=C—-85 - A"y
AAX =b

Hp(AXS + XAS) = pul — Hp(XS) (28)

where P is a nonsingular matrix and

Hp(U) = % (Pup—+ (PUP ).

Different choices of P lead to different search directions.
For example, P = I corresponds to the so-called Alizadeh—
Haeberly—Overton (AHO) direction [2].

The standard analysis of path-following interior-point
methods shows that a total of O(+/nlog 11o/€) main iterations
are required to reduce the duality gap X e S to less than e. Each
main iteration involves solving the linear system of (28) whose
size depends on the underlying cone K. If K = R7 (linear
programming), the linear system is of size O(n), implying each
main iteration has an arithmetic complexity of O(n?). In the
case where K = [[;_, SOC(n;) (SOCP), the linear system
(28) will have size O(>; n;), so the complexity of solving
(28) is O((>_;n;)?). For the SDP case where K = S7, the
size of the linear system (28) is O(n?), so the amount of work
required to solve (28) is O(n®). Combining the estimates of
the number of main iterations with the complexity estimate per
each iteration yields the overall complexity of interior-point
methods. In general, the computational effort required to solve
SDP is more than that of SOCP, which in turn is more than that
of LP. However, the expressive powers of these optimization
models rank in the reverse order.

The brief overview here is by no means exhaustive. Several
important classes of convex problems, such as geometric pro-
gramming [4], have not been included. The readers are referred
to many excellent texts (e.g., [5]) in this area.

III. CONIC PROGRAMMING FOR MULTIUSER BEAMFORMING

The rest of this paper treats several applications of convex
optimization in communications and signal processing to

illustrate the concepts covered so far. Communication prob-
lems often involve the optimization of some design objective,
such as transmit power or the detection probability of error,
subject to resource constraints, such as bandwidth and power.
Traditional optimization methods in communications focus on
analytic or adaptive solutions to the problem—as in minimum
mean-squared error (MMSE) equalizer design. The MMSE
problem is essentially a convex quadratic program (QP). This
section focuses on the application of modern techniques such
as linear conic programming.

A. Downlink Beamforming Problem as SDP and SOCP

A key step in the application of convex optimization
techniques in engineering problems is the formulation of
the problem in a convex form. This can be nontrivial. This
section illustrates this step using an example from wireless
communications.

Consider a transmitter beamforming problem for a wireless
downlink channel in which the base station is equipped with
multiple antennas and each remote user is equipped with a single
antenna, as shown in Fig. 1. The channel is modeled as

yi=hBo+2, i=1,....K (29)
where x € C™ represents the transmit signal, kY € C" are
channel vectors assumed to be known to all the transmitter and
the receivers, and z;’s are the independent identically distributed
(i.i.d.) additive complex Gaussian noises with variance o? /2 on
each of its real and imaginary components. For now, we restrict
our attention to the single-receive-antenna case in which y;’s are
complex scalars.

In a beamforming design, the transmit signal is of the form
T = Z7K=1 v;w;, where v; is a complex scalar denoting the
information signal for user ¢, and w; € C™ is the beamforming
vector for user 7. Without loss of generality, let E|v;|?> = 1. The
received signals are y; = hLH(Zf(=1 viwj)+z,i=1,---, K.
The signal-to-interference-and-noise ratio (SINR) for each user
is expressed as

2
H
|hi wz|

Dz |hf{wj|2 +02

SINR; = (30)
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An important class of optimal downlink beamforming problem
involves finding a set of w;’s that minimizes the total transmit
power, while satisfying a given set of SINR constraints -y;

K
> llwsll?
j=1

i Wi

zb¢Jhﬁwﬂ2+U2

€29

minimize

2

subject to >y, Vi. (32)

For simplicity, we make the assumption that the set of ~; is
feasible.

As stated in (32), the SINR constraint is not convex. How-
ever, this seemingly nonconvex problem has many of the fea-
tures of convex problems. For example, as shown in [6]-[9],
this downlink problem can be solved in an iterative fashion via
a so-called uplink-downlink duality. Further, it turns out that
the above problem can be relaxed [10] or transformed [11] into
a convex optimization problem. This section gives an overview
of the approaches in [10] and [11] to illustrate the application of
convex optimization. In the next section, we take advantage of
the convex formulation and illustrate an engineering interpreta-
tion of Lagrangian duality in this setting.

One approach to solving the beamforming problem is based
ona reformulation of (31) in terms of new matrix variables B; =
wl 2110]. Clearly, B; is a positive semidefinite matrix. Define

H;, = hJLZ . The optimization problem (31), in terms of B;,
then becomes the following SDP

K
minimize Z tr(B

=1
subject to tr(HiBi) — Y Ztl‘(HLB]) Z 7i02

J#

B; = 0, B;iscomplex Hermitian.  (33)
However, the original problem (31) requires the optimal solu-
tion w;w! to be rank-1, which is not guaranteed a priori in the
above formulatlon. In effect, the above formulation relaxes the
rank-1 constraint. For this reason, (33) is referred to as a SDP
relaxation.

Surprisingly, as shown by Bengtsson and Ottersten [10], the
above SDP relaxation is guaranteed to have at least one op-
timal solution which is rank one. This unexpected property lends
tremendous power of convex optimization to this apparently
nonconvex problem. In Section IV-B, we will return to SDP re-
laxation and consider a closely related multicast problem for
which this property does not hold.

The fundamental reason that the SDP relaxation is optimal
for the above problem is that this problem can be reformulated
as a convex problem. This is shown in [11] using SOCP. Ob-
serve that an arbitrary phase rotation can be added to the beam-
forming vectors without affecting the SINR. Thus, ~wj, can
be chosen to be real without the loss of generality, Now, let
W = [wy,...,wk]. The SINR constraints become

(-2t

2
Vi,

(34)

a
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Because th wy, can be assumed to be real, we may take the
square root of the above equation. The constraint becomes a
second-order cone constraint, which is convex. The optimiza-
tion problem now becomes

minimize T

1
subject to 4 /1 + —hf{wi > ‘
Yi
K
S lwill <=
j=1

which is in the form of a second-order cone program (19).

hfqWH7 v
o

(35)

B. Uplink-Downlink Duality via Lagrangian Duality

In engineering design, one is often interested in not only the
numerical solution to the problem, but also the structure of the
optimal solution. When a problem is formulated as a convex op-
timization problem, exploring its dual often reveals such struc-
tures. In this section, we illustrate this point by showing that the
Lagrangian dual of the SOCP problem [11] has an engineering
interpretation, which is known as uplink-downlink [6], [7], [9],
[12], [13].

Several different versions of uplink-downlink duality have
been developed in the literature. In the beamforming context,
uplink-downlink duality refers to the fact that the minimum
power needed to achieve a certain set of SINR targets in a
downlink multiple-input-multiple-output (MIMO) channel is
the same as the minimum power needed to achieve the same set
of SINR targets in the uplink channel, where the uplink channel
is derived by reversing the input and the output of the downlink
[6]-[9], [14]. A very similar uplink-downlink duality can be
derived from an information theory point of view. As shown
in [12], [13], [15], and [16], the capacity region of a downlink
broadcast channel is identical to the capacity region of an
uplink channel with the same sum power constraint. These two
duality results can be unified via Lagrangian duality in convex
optimization, first shown in [17]. The following outlines the
main steps.

We begin the development by writing down the Lagrangian
of the downlink beamforming problem (31)2:

-t 3

2

U)w

2
iwjl -

J#i

K
T
T+ Ajhihl -

JFi

hJL W;. (36)

2Technically, we should take the dual of (35), as an optimization problem may,
in genera,l be written in different forms, each of which may lead to a different
dual. In this case, the duals of (31) and (35) turn out to be the same.
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The dual objective is

g(A\i) = min L(w;, A;).

w;

(37)

Itis easy to see thatif I+, AjhihE —(Xi/vi)hih isnota
positive semidefinite matrix, then there exists a set of w; which
would make g(\;) = —oco. As A; should be chosen to maximize
g();), the second term in (36) leads to a positive semidefinite
constraint in the dual problem. In particular, the Lagrangian dual
problem is

K
maximize E o2
=1

K
subject to Y Ajhihl 41 z(p%) NihihE . (38)
j=1 ‘

Interestingly, the above dual problem can be shown to corre-
spond to an uplink problem with ); as the (scaled) uplink power,

h; as the uplink channel, and -; as the SINR constraint.
The uplink channel is depicted in Fig. 1. The sum power min-
imization problem for the uplink channel can be formulated as

K
minimize E Pi
i=1

~H 2

Pi

subject to >v (39

j#i Pi |“A’fth|2 + o2,
where the optimization is over the uplink power p; and the re-
ceiver beamforming vectors w;. Clearly, the optimal w; is just
the MMSE filter w; = (Zszl pihjh +02I)~1h;. Substituting
the MMSE filter into the constraints of (39) and after a matrix
manipulation, it is possible to show that the uplink problem is
equivalent to

K
minimize E Pi
i=1

K
1

subject to ijhjth + a2l j<1 +—>pihihf{. (40)
Yi

j=1

Identifying p; = \;02, we see that (40) is identical to (38),
except that the maximization and the minimization are reversed
and the SINR constraints are also reversed. In a downlink beam-
forming problem, the SINR constraints are always met with
equality. Thus, the maximization problem (38) and the mini-
mization problem (40), in fact, give the same solution. Finally,
because strong duality holds for this problem, the primal and
the dual problem must have the same solution. It is interesting
to note that the dual variables of the downlink problem have
the interpretation of being the uplink power scaled by the noise
variance.

As mentioned earlier, this uplink-downlink duality has been
derived earlier in the literature [6]-[9], [14]. This section
reinterprets this duality as an example of Lagrangian duality
to illustrate the use of convex optimization. The duality can be
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further enhanced if we also take different base-station antenna
constraints into consideration. This is explored in the recent
work [17]. Duality is useful because the uplink problem is
easier to solve. For example, an iterative optimization of p; and
w; leads to the optimal solution for the downlink [6], [7], [9].
Algorithms based on convex optimization have been considered
in [11] and [17].

C. Capacity Region Duality

Instead of considering a power minimization problem subject
to SINR constraints, in many applications, it is useful to con-
sider the reverse problem of maximizing a rate region, subject
to a power constraint. Under many practical coding and modula-
tion schemes, the SINR can be directly related to the achievable
rate using an SNR-gap approximation: R = log(1 + SINR/T"),
where T is the gap to capacity, which is always greater than 1.
The SINR duality stated in the previous section directly leads
to a rate-region duality as well. The argument follows from the
fact that since the minimum transmit power for each fixed set
of SINRs is the same for both uplink and downlink, the set of
achievable SINR regions under a fixed power must also be the
same in both uplink and downlink. Therefore, the rate regions
must be the same.

This argument can be further generalized to a downlink
channel with multiple receive antennas for each user, and
it directly leads to the information theoretical duality of the
multiple-access channel and the broadcast channel [12], [13] by
letting I' = 1 and by using interference subtraction techniques.
Interference can be directly subtracted in the multiple-access
channel at the receiver, and can be presubtracted at the trans-
mitter in the broadcast channel. The previous proof of this
capacity region uplink-downlink duality relies on an intricate
transmit covariance matrix transformation. The Lagrangian
approach shows an alternative way of deriving the same thing.

For completeness, the most general capacity region duality
[12], [13] is stated as follows. Consider a MIMO downlink
channel where each user is equipped with multiple antennas

vi=Hx+z, 1=1,...,K 41

where H;’s are now matrices and y;’s complex vectors. The
capacity region of the downlink channel can be found by solving
the following weighted rate-sum optimization problem:

‘Hk (Zle Si) HE + I‘

AGEDIES

K
maximize . log
2l

K
subject to Ztr(Si) <pr, S;=0
=1

(42)

where pr is the total power constraint. The optimal weighted
rate-sum turns out to be exactly the same as the optimal
weighted rate-sum of a dual multiple-access channel under the
same total power constraint

K
g=Y Hfii+2. (43)
i=1
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The capacity region for the multiple-access channel may be ex-
pressed as

K ‘Zf:l HngiHi+I‘
maximize Z 1 log P —
k=1 ‘Zi:l HESH; + I’
K
subject to Y tr(Si) < pr, Si = 0. (44)
=1

Here, S; and S’,L- are the transmit covariance matrices for user 7 in
the downlink and in the uplink, respectively; all noise vectors are
assumed to be i.i.d. with unit variance; pq > po > ... > pug >
0 are weights characterizing different boundary points of the
capacity region. Again, this duality is useful because the mul-
tiple-access channel problem (44) is convex, while the broad-
cast channel problem (42) is not. This fact has been exploited
in [18] and [19] for efficient computation of the sum capacity.
The authors are not yet aware of a direct Lagrangian duality re-
lation between (42) and (44), except for the sum capacity case
for which a Lagrangian interpretation has been given in [20]. It
would be interesting to see whether it is possible to find a way
to do so for the entire capacity region.

D. Open Problems

Optimization is expected to play an increasingly important
role in multiuser MIMO system design. As the previous sections
illustrate, for both the uplink and downlink scenarios, the ca-
pacity maximization problem (subject to power constraint) and
the power minimization problem (subject to SINR constraints)
can both be formulated as a convex optimization problem. Thus,
both problems can be considered as solved. However, the SINR-
constrained power minimization solution is applicable only to
the single-remote-antenna case. When the remote users have
multiple antennas as well, it can be shown that a duality still
exists, but an optimal solution is still lacking.

An important but difficult problem in this area is that of the
interference channel, where multiple transmitters and multiple
receivers interfere with each other in a shared medium. Even
for the single-antenna case, the rate maximization problem is
not yet amendable to a convex formulation. The fundamental
problem is that the achievable rate expression

iGlii
R =log (1 + p;)

45
piGiji+ o? @

where [G;;] is the channel coupling matrix, is not a concave
function of p;. (Nevertheless, a network duality result is still
available [21].) Recent progress has been made in this area for
both wireline [22]-[24] and wireless applications [25]. Further
progress is still needed.

IV. SDP RELAXATIONS FOR NONCONVEX PROBLEMS

Convex optimization can also play an important role in
inherently nonconvex problems. In this case, the method of
relaxation can produce excellent results. This section gives two
such examples and discusses open issues and future directions
in this area.
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A. Multiuser Detection

Consider a detection and estimation problem in the receiver
processing of a MIMO channel

y=+/p/nHs+ z

where p is the (normalized) average SNR at each receive an-
tenna, H € C™*™ denotes the (known) channel matrix, y €
C™ is the received channel output, s is the transmitted infor-
mation binary symbol vector from the signal constellation set
{—1,1}™, and z denotes the additive white Gaussian channel
noise with unit variance. The capacity of this MIMO channel is
known to be proportional to the number of transmit antennas.
To reap the benefits brought by the MIMO channel, one must
develop an efficient detection algorithm for such a system.
Central to the MIMO maximum-likelihood (ML) channel de-
tection is the following constrained optimization problem:

(46)

ly — /p/nHs|?

where s is the unknown (to be determined) transmitted binary
information vector.

A popular method to solve (47) is with the sphere decoder
[26]. This method, while enjoying a good practical complexity/
performance tradeoff for small system size and high SNR, is
known to have exponential average-case complexity for each
fixed SNR value [27]. Below, we describe a semidefinite pro-
gramming relaxation method, which provides an effective poly-
nomial-time approach for this problem.

For simplicity, consider the case m = n and H, s and z are
real; the extension to the general case is relatively simple. First,
we rewrite the log-likelihood function as

min

47
ze{—1,1}m™ “7)

fur =

ly = Vp/n Hs|* = tr(Qua™)

where matrix Q € R™TUX(+1) and vector z € R"*! are
defined as

o= /M HTH  —\/p/n HTy} oo {s] 48)
—Vp/ny"H lylI? ’ 1

Let X = zzT and notice that X > 0, X;; = 1 and

rank(X) = 1 if and only if X = =T for some = with

x; = 1. By rewriting (47) in terms of X and relaxing the
rank-1 constraint, we arrive at a SDP relaxation for (47)

tr(QX),
X0, X;; =1, Vi.

fspp := min

s.t. (49)

Once the optimal solution X,p¢ of (49) is computed, we use the
following randomized procedure to generate a feasible rank-1
solution ZspR.

1) Compute the largest eigenvalue of X,,,,; and the associated

eigenvector v = (v1,v2, ..., Vni1)?.
2) Generate L i.i.d. binary vector samples Ty, £ = 1,..., L,
whose ithentry (i = 1,...,n+1) follows the distribution:

Pr{z;, = +1} =(1+v;)/2

Pr{z; = -1} =(1 —v;)/2. (50)
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Fig. 2. BER as a function of SNR for different detectors. Simulation parame-
ters: BPSK modulation n = 10.

3) Pick Z := arg miny f?Qi[ and assign fspr := 27Q%
and set Zspr (the quasi-ML estimate) to be the first n-en-
tries of  multiplied by its last entry (to correct the sign).

Due to the diagonal structure of the constraints, the SDP
(49) can be efficiently solved with a worst-case complexity
of O(n®?®) (rather than O(n%3) for a general SDP). The
complexity of the randomization procedure is negligible.
(Theoretically, L should be chosen as a polynomial of n, but
practically is usually set to 10-30.) So the overall complexity
of SDP detector is O(n>5).

Compared with the existing polynomial-time linear subop-
timal MIMO detectors, the above SDP detector performs sur-
prisingly well, offering an excellent performance-complexity
tradeoff in practical SNR ranges; see Fig. 2. Moreover, com-
pared with the sphere decoder which has exponential average-
case complexity, the polynomial-time SDP detector runs faster
when the problem size becomes large and SNR is low (e.g.,
p = 10dB and n > 45).

An interesting research direction is to investigate the average-
case performance of SDP relaxation for large systems. In par-
ticular, it is interesting to see if the gap in bit-error rate (BER)
between the ML curve and the SDP curve in Fig. 2 remains
bounded for large n. An affirmative answer to this question
could lead to the first polynomial-time quasi-ML detector which
is guaranteed to offer a bounded SNR loss for large systems.
Some encouraging results in this direction can be found in [28],
where a probabilistic analysis of the SDP relaxation method has
been given for a standard Rayleigh flat-fading MIMO channel
model under additive Gaussian noise model. In particular, it
has been shown that for any fixed p > 0, the average ratio
fspr/ fuL remains bounded by a positive constant (depending
on p) for all n > 0.

B. Multicast Beamforming

We now return to the multiuser transmit beamforming
problem of Section III-A, but consider a broadcast application
[29] in which a transmitter utilizes an array of n transmitting
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antennas to simultaneously broadcast common information to
m radio receivers, with each receiver i € {1,...,m} equipped
with |I;| receiving antennas. Let hy, £ € I;, denote the n X 1
complex channel vector modeling propagation loss and phase
shift from the transmitting antennas to the /th receiving an-
tenna of receiver 7. Assume that the transmitter uses a single
beamforming vector w to transmit common information to all
receivers and each receiver performs optimal matched filtering
and maximum-ratio combining. Then, the constraint

> [hfwf” > 1

lel;

models the requirement that the total received signal power at re-
ceiver ¢ must be above a given threshold (normalized to 1). This
is equivalent to the SNR constraint considered in Section III-A
(but without interference). To minimize the total transmit power
subject to individual SNR requirements (one per each receiver),
we are led to the following nonconvex QP

]l

wt Hyw > 1,

Vgp = Min

s.t. 1=1,2,...,m (51
where H; := )_,c; heh'. Unlike the independent-information
problem considered in Section III-A, the above problem has no
known convex reformulation.

Let B = ww™. The SDP relaxation of (51) is

Usdp := min  tr(B)
st. tr(H;B)>1, i=1,...,m,
B>0, Biscomplex Hermitian. (52)

Since we assume H; # 0 for all 4, it is easily checked that (52)
has an optimal solution, which we denote by B*.
Upon obtaining an optimal solution B* of (52), we construct
a feasible solution of (51) using the following randomized
procedure.
1) Generate a random vector £ € C" from the complex-
valued normal distribution N.(0, B*).

2) Letw*(€) = ¢/ min /¢HHE.

Experimentally, this relaxation approach works very well. For

example, in experiments with measured digital subscriber line
channel data [29], vqp/Vsap = 1 in over 50% of instances. We
also observed that semidefinite relaxation can almost double the
minimum received signal power relative to no precoding.
Recent theoretical analysis in [30] shows that the worst-case
performance ratio vqp, /vsap can be bounded as follows:

m Vgp
27r2(2 + 7r/2)2 -

< 8m.
Usdp

In other words, the worst-case performance ratio deteriorates
linearly with the number of users in the system. For the problem
of transmit beamforming for broadcasting with single receiving
antenna per subscriber node, simulations have confirmed the
above worst-case analysis of the performance ratio v, / Vsdp}
see Fig. 3. Interestingly, when matrices H; and the vector z are
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H=randn(4,8)+j*randn(4,8)
1.8 T T T T T

outcomes
mean 4

ubqgp/sdp
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Fig. 3. Upper bound on v,/ Usap for m = 8, n = 4, over 300 realizations of
complex Gaussian i.i.d. channel vector entries.

required to be real-valued, then the above approximation ratio
becomes quadratic in m [30].

C. Future Research

An interesting future direction is to generalize the above for-
mulation to a situation of 1 < G < M multicast groups,
{G1,...,Gg}, where Gj, is the index set for receivers partic-
ipating in multicast group k, and k¥ € {1,...,G}. Common
information is transmitted to members within each group; in-
dependent information is transmitted to different groups. As-
sume that G, NGy = 0, £ # k, UrGr = {1,..., M}. Denote
G = |Grl. Ljiey Gi = M.

Let w;, € C" denote the beamforming weight vector ap-
plied to the n transmitting antenna elements to transmit mul-
ticast stream k. The signal transmitted by the antenna array
is equal to ZkG:1 wh sy, where sy, is the information-bearing
signal directed to multicast group k. This setup includes the
case of broadcasting G = 1 (51) and the case of individual
transmissions G = M (31) as special cases. If s;’s are i.i.d.
with zero-mean and unit variance, then the total transmit power
is equal to ZkG=1 |lwg||?. The joint design of transmit beam-
formers subject to received SINR constraints can be posed as
follows:

min

{weeCr i,

G
D ll?
k=1

|w}?h5|2
Dirk |7“”fj[h"f|2 + 07
VieG, Yee{l,...,G}.

s.t. >y

(53)

It can be seen that this problem is exactly the kind of nonconvex
QPs considered in (51) except that here H; is no longer positive
semidefinite. Simulation results show that the corresponding
SDP relaxation (52) still provides an excellent solution for this
multigroup multicast beamforming problem.

The beamforming problem (53) is NP-hard in general (even
the single group case (51) is NP-hard); see [29]. However,
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there are several special cases of (53) which are polyno-
mial-time solvable. For example, as discussed in Section III-A,
the SDP relaxation of (53) is exact when |G| = 1 for all k
(i.e., each group has exactly one user); so this is a polyno-
mial-time solvable case. Another efficiently solvable case is
when the channel vectors h,’s have the Vandermonde structure
[1 €% ei20r ... i(n=1)0:]" a5 in the case of a uniform linear
transmitting antenna array. In this case, the SDP relaxation
of (53) is again tight. It would be interesting to analyze the
worst-case performance of the SDP relaxation algorithm of the
general homogeneous? nonconcave (and nonconvex) QP.

V. ROBUST OPTIMIZATION

Robust optimization models in mathematical programming
have received much attention recently; see, e.g., [31]-[33]. In
this section, we briefly review some of these models and their
extensions.

Consider a convex optimization of the form

Jfo(z)
subject to  fi(z) <0, i=1,2,....m

minimize

(54)

where each f; is convex. In many engineering design applica-
tions, the data defining the constraint and the objective func-
tions may be inexact, corrupted by noise, or may fluctuate with
time around a nominal value. In such cases, the traditional op-
timization approach simply solves (54) by using the nominal
value of the data. However, an optimal solution for the nom-
inal formulation (54) may yield poor performance or become
infeasible when each f; is perturbed in the actual design. A
more appropriate design approach is to seek a high-quality so-
lution which can remain feasible and deliver high-quality per-
formance in all possible realizations of unknown perturbations.
This principle was formulated rigorously in [31]-[33]. Specifi-
cally, we consider a family of perturbed functions parameterized
by 6 : fi(x;6), with 6 taken from an uncertainty set A. Then, a
robustly feasible solution x is the one that satisfies

fi(z;8) <0, V&€ Aorequivalently max fi(z;6) <.
€

Thus, a robustly feasible solution z is, in a sense, strongly fea-
sible, since it is required to satisfy all slightly perturbed ver-
sion of the nominal constraint. The robust optimal solution can
now be defined as a robust feasible solution which minimizes
the worst-case objective value max fo(z; 6). This gives rise to

the following formulation:
minimize  maxsea fo(x;0)
subject to  fi(2;6)<0, V6eA, i=1,2,...,m. (55)

Let us assume the perturbation vector 6 enters the objective
and the constraint functions f; in such a way that preserves con-
vexity, i.e., each f;(z;8) remains a convex function for each
6 € A. In this case, the robust counterpart (55) of the original
(nominal case) convex problem (54) remains convex since its
constraints are convex (for each ¢ and §) and the objective func-
tion maxsea fo(x;9) is also convex.

3A QP is homogeneous if it does not have linear terms. A homogeneous QP
always has an SDP relaxation.
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Much of the research in robust optimization focuses on
finding a finite representation of the feasible region of (55)
which is defined in terms of infinitely many constraints (one for
each 6 € A). Assume that the uncertainty parameter 6 can be
partitioned as § = (8o, 61,02 ...,8,,)7 and that the uncertainty
set has a Cartesian product structure A = Ag X Ay X -+ X A,
with §; € A;. Moreover, assume that ¢ enters f;(x; ) in an
affine manner. Under these assumptions, it is possible to char-
acterize the robust feasible set of many well-known classes of
optimization problems in a finite way. For instance, consider
the robust linear programming model proposed by Ben-Tal and
Nemirovskii [32]

max (c+ Ac)lz
[ Acl|<eo
subject to  (a; + Aai)Ta: > (b; + Ab;),
for all ||(Aa;, Ab)|| < €, Vi

minimize

(56)

where each ¢; > 0 is a prespecified scalar. In the above
formulation, we have §; = (Aa;,Ab;)) and A; =
{(Aa;, Ab;) | ||(Aa;, Ab;)|| < €}. The main observation
is that the robust constraint

?

(a; + Aa;))Tx > (b; + Ab;), for all ||(Aa;, Ab)|| < €

is equivalent to the following second-order cone constraint

alz —b; > e\/1+ ||z

In this way, the robust linear program (56) is reformulated as an
equivalent SOCP

minimize ¢

subject to @]z —b; > e;\/1+ ||z[|?,

o+ ellz]) <t

References [31]-[33] have shown that the robust counterpart
of some other well-known convex optimization problems can
also be reformulated in a finite way as a conic optimization
problem, often as an SOCP or SDP.

As an application example, we consider the robust beam-
forming problem of finding a w € C™ such that

wf Rw

lafw| > 1,

minimize

subject to forall|a—a| <e (57)

where a is the nominal steering vector, R is the sample correla-
tion matrix, and € represents the error size in the estimation of
steering vector a. As it stands, the above robust beamforming
formulation has an infinitely many nonconvex quadratic con-
straints. Interestingly, by exploiting the phase ambiguity in w
and using the same transformation outlined above, we can show
[34] that (57) is equivalent to the following convex optimization
problem (SOCP):

minimize w® Rw

subject to  aflw > 1+ ¢||wl|, Im(afw) =0

which can be solved efficiently with O(n3-3) complexity.
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VI. CONCLUDING REMARKS

Convex optimization provides a powerful set of tools for the
design and analysis of communication systems and signal pro-
cessing algorithms. Convex optimization techniques are useful
both in obtaining structural insights to the optimal solution, as
well as in providing provably optimal numerical solutions to the
problem efficiently. This tutorial contains only a small sample of
recent applications of convex optimization in communications
and signal processing. Future applications of these techniques
will likely yield many more interesting results.
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