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Abstract—This paper studies the capacity region of a K-
user cyclic Gaussian interference channel, where the kth user
interferes with only the (k− 1)th user (mod K) in the network.
Inspired by the work of Etkin, Tse and Wang, which derived
a capacity region outer bound for the two-user Gaussian inter-
ference channel and proved that a simple Han-Kobayashi power
splitting scheme can achieve to within one bit of the capacity
region for all values of channel parameters, this paper shows that
a similar strategy also achieves the capacity region for the K-user
cyclic interference channel to within a constant gap in the weak
interference regime. Specifically, a compact representation of
the Han-Kobayashi achievable rate region using Fourier-Motzkin
elimination is first derived, a capacity region outer bound is then
established. It is shown that the Etkin-Tse-Wang power splitting
strategy gives a constant gap of at most two bits (or one bit per
dimension) in the weak interference regime. Finally, the capacity
result of the K-user cyclic Gaussian interference channel in the
strong interference regime is also given.

I. INTRODUCTION

The interference channel models a communication scenario
where several mutually interfering transmitter-receiver pairs
share the same physical medium. The interference channel is
a useful model for practical wireless network. The capacity
region of the interference channel, however, has not been
completely characterized, even for the two-user Gaussian case.

The largest achievable rate region for the two-user interfer-
ence channel is due to a Han-Kobayashi strategy [1], where
each transmitter splits its transmit signal into a common and
a private part. The achievable rate region is the convex hull
of the union of achievable rates where each receiver decodes
the common messages from both transmitters plus the private
message intended for itself. Recently, Chong et al. [2] obtained
an equivalent achievable rate region but in a simpler form
by applying the Fourier-Motzkin algorithm together with a
time-sharing technique to the Han and Kobayashi’s original
rate region. The optimality of the Han-Kobayashi region for
the two-user Gaussian interference channel is still an open
problem in general, except in the strong interference regime
where transmission with common information only is shown
to achieve the capacity region [1], [3], [4], and in a noisy in-
terference regime where transmission with private information
only is shown to be sum-capacity achieving [5]–[7].

In a recent breakthrough, Etkin, Tse and Wang [8] showed
that the Han-Kobayashi scheme can in fact achieve to within
one bit of the capacity region for the two-user Gaussian
interference channel for all channel parameters. Their key

insight was that the interference-to-noise ratio (INR) of the
private message should be chosen to be as close to 1 as
possible in the Han-Kobayashi scheme. They also found a new
capacity region outer bound using a genie-aided technique.

The Etkin-Tse-Wang result applies only to the two-user
interference channel. Practical communication systems often
have more than two transmitter-receiver pairs, yet extending
the one-bit result of Etkin, Tse and Wang’s work to beyond
the two-user case is by no means trivial. This is because when
more than 2 users are involved, the Han-Kobayashi private-
common superposition coding strategy becomes exceedingly
complicated. It is conceivable that multiple common messages
may be needed at each transmitter, each intended to be
decoded by an arbitrary subset of receivers, thus making the
optimization of the resulting rate region difficult. Further,
superposition coding itself may not be adequate. Interference
alignment types of coding scheme [9] has been shown to be
able to enlarge the achievable rate region and to achieve to
within constant gap of many-to-one and one-to-many interfer-
ence channels [10].

In the context of K-user Gaussian interference channels,
sum-capacity results are available in the noisy interference
regime [5], [11]. Annapureddy et al. [5] obtained the sum
capacity for the symmetric three-user Gaussian interference
channel, the one-to-many and the many-to-one Gaussian in-
terference channels under the noisy interference criterion.
Shang et al. [11] studied the fully connected K-user Gaussian
interference channel and showed that treating interference
as noise at the receiver is sum-capacity achieving when the
transmit power and the cross channel gains are sufficiently
weak to satisfy a certain criterion. In addition, much work has
also been carried out on the generalized degrees of freedom
(as defined in [8]) of the K-user interference channel and its
variations [9], [12], [13].

Instead of treating the general K-user interference channel,
this paper focuses on a cyclic Gaussian interference channel
model, where the kth user interferes with only the (k − 1)th
user. In this case, each transmitter interferes with only one
other receiver, and each receiver suffers interference from
only one other transmitter, thereby avoiding the difficulties
mentioned earlier. For the K-user cyclic interference channel,
the Etkin, Tse and Wang’s coding strategy remains a natural
one. In our previous work [14], we showed that such a strategy
achieves the sum capacity for a symmetric channel to within
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Fig. 1. The circular array handoff model

two bits. The main objective of this paper is to show that
this strategy also achieves to within two bits of the capacity
region for the general cyclic interference channel in the weak
interference regime. This paper contains an outline of the main
results. Detailed proofs can be found in [15].

The cyclic interference channel model is motivated by the
so-called modified Wyner model, which describes the soft
handoff scenario of a cellular network [16]. The original
Wyner model [17] assumes that all cells are arranged in a
linear array with the base-stations located at the center of
each cell, and where intercell interference comes from only
the two adjacent cells. In the modified Wyner model [16]
cells are arranged in a circular array as shown in Fig. 1.
The mobile terminals are located along the circular array.
If one assumes that the mobiles always communicate with
the intended base-station to its left (or right), while only
suffering from interference due to the base-station to its right
(or left), one arrives at the K-user cyclic Gaussian interference
channel studied in this paper. The modified Wyner model has
been extensively studied in the literature [16], [18], [19], but
often either with interference treated as noise or with the
assumption of full base station cooperation. This paper studies
the modified Wyner model without base station cooperation, in
which case the soft handoff problem becomes that of a cyclic
interference channel.

The main results of this paper are as follows. For the K-user
cyclic Gaussian interference channel in the weak interference
regime, one can achieve to within two bits of the capacity re-
gion using the Etkin, Tse and Wang’s power splitting scheme.
The capacity region in the strong interference regime is also
given. It is shown that transmission with common message
only achieves the capacity region.

A key part of the development involves a Fourier-Motzkin
elimination procedure on the achievable rate region of the K-
user cyclic interference channel. To deal with the large number
of inequality constraints, an induction proof needs to be used.
It is shown that as compared to the two-user case, where the
rate region is defined by constraints on the individual rate Ri,
the sum rate R1 + R2, and the sum rate plus an individual
rate 2Ri + Rj (i ̸= j), the achievable rate region for the K-
user cyclic interference channel is defined by an additional
set of constraints on the sum rate of any arbitrary l adjacent
users, where 2 ≤ l < K. These four types of rate constraints
completely characterize the Han-Kobayashi region for the K-

Fig. 2. Cyclic Gaussian interference channel

user cyclic interference channel. They give rise to a total of
K2 + 1 constraints.

II. CHANNEL MODEL

The K-user cyclic Gaussian interference channel is first
introduced in [14]. It consists of K transmitter-receiver pairs
as shown in Fig. 2. Each transmitter communicates with its
intended receiver while causing interference to only one neigh-
boring receiver. Each receiver receives a signal intended for it
and an interference signal from only one neighboring sender
plus the additive white Gaussian noise (AWGN). As shown in
Fig. 2, X1, X2, · · ·XK and Y1, Y2, · · ·YK are complex-valued
input and output signals, respectively, and Zi ∼ CN (0, σ2)
is the independent and identically distributed (i.i.d) circularly
symmetric Gaussian noise at receiver i. The input-output
model can be written as

Y1 = h1,1X1 + h2,1X2 + Z1,

Y2 = h2,2X2 + h3,2X3 + Z2,

...
YK = hK,KXK + h1,KX1 + ZK , (1)

where each Xi has a power constraint Pi associated with it,
i.e., E

[
|Xi|2

]
≤ Pi. Here, hi,j is the complex-valued channel

gain from transmitter i to receiver j.
The encoding-decoding procedure is described as follows.

Transmitter i maps a message mi ∈ {1, 2, · · · , 2nRi} into
an n-length codeword Xn

i that belongs to a codebook Cn
i ,

i.e. Xn
i = fn

i (mi), where fn
i (.) represents the encoding

function of user i, i = 1, 2, · · · ,K. Codeword Xn
i is then

sent to receiver i within a block of n time instances. From the
received sequence Y n

i , receiver i obtains an estimate m̂i of
the transmit message mi using a decoding function gni (.), i.e.
m̂i = gni (Y

n
i ). The average probability of error is defined as

Pn
e = E [Pr(∪(m̂i ̸= mi))]. A rate tuple (R1, R2, · · · , RK) is

said to be achievable if for an ϵ > 0, there exists a family
of codebooks Cn

i , encoding functions fn
i (.), and decoding

functions gni (.), i = 1, 2, · · · ,K, such that Pn
e < ϵ for a

sufficiently large n. The capacity region is the collection of
all achievable rate tuples.



Define the signal-to-noise and interference-to-noise ratios
for each user as follows1:

SNRi =
|hi,i|2Pi

σ2
, INRi =

|hi,i−1|2Pi

σ2
, i = 1, 2, · · · ,K.

(2)
The K-user cyclic Gaussian interference channel is said to be
in the weak interference regime if

INRi ≤ SNRi, ∀i = 1, 2, · · · ,K. (3)

and the strong interference regime if

INRi ≥ SNRi, ∀i = 1, 2, · · · ,K. (4)

Otherwise, it is said to be in the mixed interference regime,
which has 2K − 2 possible combinations.

Throughout this paper, modulo arithmetic is implicitly used
on the user indices, e.g., K+1 = 1 and 1−1 = K. Note that
when K = 2, the cyclic channel reduces to the conventional
two-user interference channel.

III. WITHIN TWO BITS OF THE CAPACITY REGION IN THE
WEAK INTERFERENCE REGIME

In the two-user case, the shape of the Han-Kobayashi
achievable rate region is the union of polyhedrons (each
corresponding to a fixed input distribution) with boundaries
defined by rate constraints on R1, R2, R1 + R2, and on
2R1 + R2 and 2R2 + R1, respectively. To extend Etkin, Tse
and Wang’s result to the general case, one needs to find a
similar rate region characterization for the general K-user
cyclic interference channel first.

A key feature of the cyclic Gaussian interference channel
model is that each transmitter sends signal to its intended
receiver while causing interference to only one of its neigh-
boring receivers; meanwhile, each receiver receives the in-
tended signal plus the interfering signal from only one of its
neighboring transmitters. Using this fact and with the help
of Fourier-Motzkin elimination algorithm, we show in this
section that the achievable rate region of the K-user cyclic
Gaussian interference channel is the union of polyhedrons with
boundaries defined by rate constraints on the individual rates
Ri, the sum rate Rsum, the sum rate plus an individual rate
Rsum + Ri (i = 1, 2, · · · ,K), and the sum rate for arbitrary
l adjacent users (2 ≤ l < K). This last rate constraint on
arbitrary l adjacent users’ rates is new as compared with the
two-user case.

The preceding characterization together with outer bounds
to be proved later in the section allow us to show that the
capacity region of the K-user cyclic Gaussian interference
channel can be achieved to within a constant gap using the
Etkin, Tse and Wang’s power-splitting strategy in the weak
interference regime. However, instead of the one-bit result
as obtained for the two-user interference channel [8], this
section shows that without time-sharing, one can achieve to
within two bits of the capacity region for the K-user cyclic

1Note that the definition of INR is slightly different from that of Etkin, Tse
and Wang [8].

Gaussian interference channel in the weak interference regime.
The strong interference regime is treated in the next section.

A. Achievable Rate Region

Theorem 1. Let P denote the set of probability distributions
P (·) that factor as

P (q, w1, x1, w2, x2, · · · , wK , xK) =

p(q)p(x1, w1|q)p(x2, w2|q) · · · p(xK , wK |q).(5)

For a fixed P ∈ P , let R(K)
HK (P ) be the set of all rate tuples

(R1, R2, · · · , RK) satisfying

0 ≤ Ri ≤ min{di, ai + ei−1}, (6)
m+l−1∑
j=m

Rj ≤ min

gm +
m+l−2∑
j=m+1

ej + am+l−1,

m+l−2∑
j=m−1

ej + am+l−1

 , (7)

Rsum =
K∑
j=1

Rj ≤ min


K∑
j=1

ej , r1, r2, · · · , rK

 , (8)

K∑
j=1

Rj +Ri ≤ ai + gi +

K∑
j=1,j ̸=i

ej , (9)

where ai, di, ei, gi and ri are defined as follows:

ai = I(Yi;Xi|Wi,Wi+1, Q), (10)
di = I(Yi;Xi|Wi+1, Q), (11)
ei = I(Yi;Wi+1, Xi|Wi, Q), (12)
gi = I(Yi;Wi+1, Xi|Q), (13)

ri = ai−1 + gi +

K∑
j=1,j ̸=i,i−1

ej , (14)

and the range of indices are i,m = 1, 2, · · · ,K in (6) and
(9), l = 2, 3, · · · ,K − 1 in (7). Define

R(K)
HK =

∪
P∈P

R(K)
HK (P ). (15)

Then R(K)
HK is an achievable rate region for the K-user cyclic

interference channel.

Proof: The achievable rate region can be proved by the
Fourier-Motzkin algorithm together with an induction step.
The proof follows the Kobayashi and Han’s strategy [20]
of eliminating a common message at each step. Details are
available in [15].

In the above achievable rate region, (6) is the constraint on
the achievable rate of an individual user, (7) is the constraint on
the achievable sum rate for any l adjacent users (2 ≤ l < K),
(8) is the constraint on the achievable sum rate of all K users,
and (9) is the constraint on the achievable sum rate for all K
users plus a repeated user.

From (6) to (9), there are a total of K+K(K−2)+1+K =
K2 + 1 constraints. Together they describe the shape of the



achievable rate region under a fixed input distribution. The
quadratic growth in the number of constraints as a function
of K makes the Fourier-Motzkin elimination of the Han-
Kobayashi region quite complex. An induction needs to be
used to deal with the large number of the constraints.

As an example, for the two-user Gaussian interference
channel, there are 22 + 1 = 5 rate constraints, corresponding
to that of R1, R2, R1+R2, 2R1+R2 and 2R2+R1, as in [1],
[2], [8], [20]. Specifically, substituting K = 2 in Theorem 1
gives us the following achievable rate region:

0 ≤ R1 ≤ min{d1, a1 + e2}, (16)
0 ≤ R2 ≤ min{d2, a2 + e1}, (17)

R1 +R2 ≤ min{e1 + e2, a1 + g2, a2 + g1}, (18)
2R1 +R2 ≤ a1 + g1 + e2, (19)
2R2 +R1 ≤ a2 + g2 + e1, (20)

which is exactly the Theorem D of [20].

B. Capacity Region Outer Bound

Theorem 2. For the K-user cyclic Gaussian interference
channel in the weak interference regime, the capacity region is
included in the following set of rate tuples (R1, R2, · · · , RK):

Ri ≤ λi, (21)
m+l−1∑
j=m

Rj ≤ min

γm +
m+l−2∑
j=m+1

αj + βm+l−1,

µm +

m+l−2∑
j=m

αj + βm+l−1

 ,(22)

K∑
j=1

Rj ≤ min


K∑
j=1

αj , ρ1, ρ2, · · · , ρK

 , (23)

K∑
j=1

Rj +Ri ≤ βi + γi +
K∑

j=1,j ̸=i

αj , (24)

where the ranges of the indices i, m, l are as defined in
Theorem 1, and

αi = log

(
1 + INRi+1 +

SNRi

1 + INRi

)
, (25)

βi = log

(
1 + SNRi

1 + INRi

)
, (26)

γi = log (1 + INRi+1 + SNRi) , (27)
λi = log(1 + SNRi), (28)
µi = log(1 + INRi), (29)

ρi = βi−1 + γi +
K∑

j=1,j ̸=i,i−1

αj . (30)

Proof: Genie-aided bounding techniques are used to prove
the theorem. See [15] for details.

C. Capacity Region to Within Two Bits

Theorem 3. For the K-user cyclic Gaussian interference
channel in the weak interference regime, the fixed Etkin, Tse
and Wang’s power-splitting strategy achieves to within two
bits of the capacity region2.

Proof: Applying the Etkin, Tse and Wang’s power-
splitting strategy (i.e., INRip = min(INRi, 1)) to Theorem 1,
parameters ai, di, ei, gi can be easily calculated as follows:

ai = log (2 + SNRip)− 1, (31)
di = log (2 + SNRi)− 1, (32)
ei = log (1 + INRi+1 + SNRip)− 1, (33)
gi = log (1 + INRi+1 + SNRi)− 1. (34)

To prove that the achievable rate region described by the
above ai, di, ei, gi is within two bits of the outer bound in
Theorem 2, we need to show that each of the rate constraints
in (6)-(9) is within two bits of their corresponding outer bound
in (21)-(24), i.e., the following inequalities hold for all i, m,
l in the ranges defined in Theorem 1:

δRi < 2, (35)
δRm+···+Rm+l−1

< 2l, (36)
δRsum < 2K, (37)

δRsum+Ri < 2(K + 1), (38)

where δ(·) is the difference between the achievable rate in
Theorem 1 and its corresponding outer bound in Theorem 2.
A complete proof can be found in [15] .

IV. CAPACITY REGION IN THE STRONG INTERFERENCE
REGIME

The results so far in the paper pertain only to the weak
interference regime, where SNRi ≥ INRi, ∀i. In the strong
interference regime, where SNRi ≤ INRi, ∀i, the capacity
result in [1] [4] for the two-user Gaussian interference channel
can be easily extended to the K-user cyclic case.

Theorem 4. For the K-user cyclic Gaussian interference
channel in the strong interference regime, the capacity region
is given by the set of (R1, R2, · · · , RK) such that{

Ri ≤ log(1 + SNRi)
Ri +Ri+1 ≤ log(1 + SNRi + INRi+1),

(39)

for i = 1, 2, · · · ,K. In the very strong interference regime
where INRi ≥ (1 + SNRi−1)SNRi,∀i, the capacity region is
the set of (R1, R2, · · · , RK) with

Ri ≤ log(1 + SNRi), i = 1, 2, · · · ,K. (40)

Proof: Achievability: It is easy to see that (39) is in fact
the intersection of the capacity regions of K multiple-access

2If a rate pair (R1, R2, · · · , RK) is achievable and (R1 + k,R2 +
k, · · · , RK + k) is outside the capacity region, then (R1, R2, · · · , RK)
is said to be within k bits of the capacity region.



channels:
K∩
i=1

(Ri, Ri+1)

∣∣∣∣∣∣
Ri ≤ log(1 + SNRi)
Ri+1 ≤ log(1 + INRi+1)
Ri +Ri+1 ≤ log(1 + SNRi + INRi+1).

 .

(41)
Each of these regions corresponds to that of a multiple-access
channel with Wn

i and Wn
i+1 as inputs and Y n

i as output
(with Un

i = Un
i+1 = ∅). Therefore, the rate region (39) can

be achieved by setting all the input signals to be common
messages. This completes the achievability part.

Converse: The converse proof follows the iead of [4]. The
key ingredient is to show that for a genie-aided Gaussian inter-
ference channel to be defined later, in the strong interference
regime, whenever a rate tuple (R1, R2, · · · , RK) is achievable,
i.e., Xn

i is decodable at receiver i, Xn
i must also be decodable

at Y n
i−1, i = 1, 2, · · · ,K.

The genie-aided Gaussian interference channel is defined
by the Gaussian interference channel (see Fig. 2) with genie
Xn

i+2 given to receiver i. The capacity region of the K-user
cyclic Gaussian interference channel must be resided in that
of the genie-aided one.

Assume that a rate tuple (R1, R2, · · · , RK) is achievable
for the K-user cyclic Gaussian interference channel. In this
case, after Xn

i is decoded, with the knowledge of the genie
Xn

i+2, receiver i can construct the following signal:

Ỹ n
i =

hi+1,i+1

hi+1,i
(Y n

i − hi,iX
n
i ) + hi+2,i+1X

n
i+2

= hi+1,i+1X
n
i+1 + hi+2,i+1X

n
i+2 +

hi+1,i+1

hi+1,i
Zn
i ,

which contains the signal component of Y n
i+1 but with less

amount of noise since |hi+1,i| ≥ |hi+1,i+1| in the strong inter-
ference regime. Now, since Xn

i+1 is decodable at receiver i+1,
it must also be decodable at receiver i using the constructed
Ỹ n
i . Therefore, Xn

i and Xn
i+1 are both decodable at receiver

i. As a result, the achievable rate region of (Ri, Ri+1) is
bounded by the capacity region of the multiple-access channel
(Xn

i , X
n
i+1, Y

n
i ), which is shown in (41). Since (41) reduces to

(39) in the strong interference regime, we have shown that (39)
is an outer bound of the K-user cyclic Gaussian interference
channel in the strong interference regime. This completes the
converse proof.

In the very strong interference regime where INRi ≥ (1 +
SNRi−1)SNRi,∀i, it is easy to verify that the second constraint
in (39) is no longer active. This results in the capacity region
(40).

V. CONCLUDING REMARKS

This paper studies the capacities and the coding strategies
for the K-user cyclic Gaussian interference channel in the
weak and the strong interference regimes. An achievable rate
region based on the Han-Kobayashi power splitting strategy
is first derived; a corresponding capacity region outer bound
is then obtained using genie-aided bounding techniques. This
paper shows that in the weak interference regime, the Etkin,
Tse and Wang’s power-splitting strategy achieves to within two

bits of the capacity region. The capacity result for the K-user
cyclic Gaussian interference channel in the strong interference
regime is a straightforward extension of the corresponding
two-user case. However, in the mixed interference regime,
although the constant gap result may well continue to hold,
the proof becomes considerably more complicated, as different
mixed scenarios need to be enumerated and the corresponding
outer bounds derived.
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