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Abstract— The design and optimization of rateless codes for
Slepian-Wolf encoding are considered. Rateless codes are pro-
posed to address two shortcomings of currently available Slepian-
Wolf schemes: their fragility to changing source statistics, and
their inability to guarantee successful decoding for practical block
length. We propose a novel type of optimized rateless code, called
a Matrioshka code, to deal with the particular conditions of
Slepian-Wolf encoding.

I. INTRODUCTION

The elegant Slepian-Wolf theorem [1] demonstrates that
lossless encoding of two correlated sources is possible at a
rate equal to their joint entropy, even without communication
between the two encoders. Recent surge of interests in this
result is fueled in part by its relevance to the design of sensor
networks, and in part by the discovery of a practical method
known as distributed source coding using syndromes (DIS-
CUS) [2] that uses linear error-correcting codes to achieve the
joint entropy. The invention of DISCUS allows the excellent
performance of very powerful codes, such as LDPC codes, to
be exploited for Slepian-Wolf coding (for example, see [3]–
[6]).

Although DISCUS and LDPC codes have made great strides
towards the practical use of Slepian-Wolf coding, there remain
two serious obstacles to widespread adoption. First, Slepian-
Wolf coding is intended to be lossless, but for practical
block lengths, LDPC codes cannot guarantee arbitrarily low
probability of error. As a result, there is always a significant
probability that the Slepian-Wolf decoding will fail, which is
not acceptable. Second, a particular LDPC-based Slepian-Wolf
code is always designed at a fixed rate for a particular source
with a fixed correlation. When used with a different source,
the LDPC code will either fail (if the source requires a higher
rate) or will be inefficient (if the source requires a lower rate).

Analogous problems are found in channel coding, for which
one proposal has been rateless codes, in which the rate can be
adjusted on demand. In general for rateless codes, the encoder
transmits a partial codeword until the decoder has enough
information to decode, at which time an ACK message is sent;
in this sense, rateless codes are related to hybrid ARQ systems.
The first practical rateless code was the Luby Transform (LT)
code, which is similar to an LDPC code, and intended for the
binary erasure channel [7]. It can be shown that this code,
if properly implemented, is universal for the erasure channel,
i.e., it can achieve the capacity for any erasure probability.
More recently, the lower-complexity Raptor codes [8] were
introduced, and recent work has shown that these codes are
effective in channels with symmetric noise [9]–[11].

We are motivated by the success of rateless channel codes
and aim to design similar rateless Slepian-Wolf codes for
sources with varying correlation. Although conceptually sim-
ilar, rateless source coding and rateless channel coding are
very different from a code design point of view. In the channel
coding setting, coded bits are generated from the information
sequence and transmitted through the noisy channel. The
objective is to decode the information sequence based on
noise-corrupted coded bits. In the source coding setting, coded
bits are generated from the source, but transmitted noiselessly
to the decoder which also has a correlated sequence from
another encoder available to it. The objective is to recover the
source based on the coded bits and the correlated sequence. To
contrast the two problems, in the channel coding scenario, the
noise process corrupts the coded bits directly; in the source
coding scenario, the noise process corrupts the source bits,
resulting a different coding design problem.

The result in this paper is inspired by [12], which shows
that rateless Slepian-Wolf codes are fundamentally possible.
The setup of [12] is as follows: the Slepian-Wolf encoders
transmitted their information to the decoder until they had
either transmitted their entire codeword, or until they received
an ACK message from the decoder. The ACK message was
sent once the decoder had enough information to correctly
decode all the transmitted messages. Practically speaking, this
is a very appealing framework, as it essentially guarantees
successful decoding. Furthermore, assuming that the decoder
has access to much greater resources than the encoders,
such a simple “one-bit” feedback channel would be easy to
implement with little added complexity at the encoders.

The main contribution of this paper is a novel family of
layered LDPC-like codes that are capable of achieving the joint
entropy in the one-bit feedback setup described above. We call
such codes Matrioshka codes (since they can be thought of
as a set of LDPC codes that nest inside one another). These
codes function at multiple rates, and do not require a priori
knowledge of the channel. Furthermore, a given Matrioshka
code, which succeeds in a particular set of channels, is based
on a single LDPC degree sequence, making the code design
problem easier to handle.

The universal distributed source coding problem considered
in this paper is also related to the fountain-code-based uni-
versal single-source compressors proposed in [13]. However,
there are also clear differences. First, a crucial assumption
of [13] is that the encoder could verify, before transmitting,
whether the decoder could successfully decode. Since LT
codes are randomly generated, this assumption allows the



method in [13] to try several LT codes to find one that has
a small number of output bits. Furthermore, the authors did
not optimize the fountain code degree sequence. Instead, they
selected a degree sequence optimized for the binary erasure
channel. In this paper, as in [12], successful decoding is only
verified at the end of transmission, and the degree sequence is
carefully designed. Second, Matrioshka codes use an approach
that is different from LT or Raptor codes. As mentioned earlier,
LT-like codes are not suitable for the Slepian-Wolf problem,
as they are intended to produce a large number of coded
bits to be transmitted through a noisy channel. On the other
hand, in a Slepian-Wolf source coding problem, the encoder
transmits encoded source symbols through a noiseless channel.
Matrioshka codes explicitly avoid the use of LT codes.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the source model that is used throughout
the rest of the paper, and discuss Slepian-Wolf encoding. In
Section III, we discuss our method, and introduce Matrioshka
codes. In Section IV, we give preliminary results found by our
techniques.

II. MODEL

Let x ∈ {0, 1}n and y ∈ {0, 1}n represent binary sources
observed at different Slepian-Wolf encoders (expressed as row
vectors), where xi and xj (resp., yi and yj) are independent
for all i 6= j. We assume that the source is memoryless, and
that the marginal distributions are equiprobable, i.e., p(xi) =
p(yi) = 1/2 for all xi, yi. Furthermore, we suppose that there
exists a Bernoulli random sequence z ∈ {0, 1}n such that
yi = xi ⊕ zi for all i. It is easy to see that this source is
characterized by a single parameter, p, where p := Pr(Zi = 1).
For this source, the corners of the Slepian-Wolf rate region
occur at

(H(X),H(Y |X)) = (1,H(Z)), and
(H(X|Y ),H(Y )) = (H(Z), 1);

where H(Z) is the entropy of the difference sequence z. Simi-
larly to the corresponding channel, a pair of correlated sources
with these properties are referred to as a binary symmetric
source, and p is referred to as the crossover probability of the
source.

Slepian-Wolf encoding of a source is accomplished most
simply at a corner point, using the DISCUS technique [2].
For example, to encode a source at a corner point with rates
(H(X|Y ),H(Y )), the encoder corresponding to source y
encodes its source independently at a rate of H(Y ), meaning
that the decoder can recover y without knowing anything about
x. Now, we have y available to the decoder, and under our
source assumption, we know that yi = xi ⊕ zi for all i, so
recovering x is equivalent to the channel-coding problem of
recovering transmitted x in the presence of noise z. For a
linear code C with parity-check matrix H, the sequence x
is in a coset code C(x) in which all the codewords have the
syndrome s = Hx. If s is sent to the decoder, then the decoder
can decode the “observation” y with respect to the coset code
C(x), which recovers x.
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Fig. 1. LDPC-based Slepian-Wolf decoders at a corner point (top), and a
non-corner point (bottom).

An LDPC code is a good choice for the linear code,
since capacity-approaching channel codes are also entropy-
approaching source codes. The factor graph for an LDPC-
based Slepian-Wolf decoder is given in Fig. 1. For traditional
LDPC-based Slepian-Wolf encoders, the rate is fixed at design
time, and even for the same rate, the LDPC codes are generally
optimized for particular source statistics. Thus, an encoder
applied to a source other than the design source will usually be
inefficient or useless. Our objective, which will be expanded
upon in the next section, is to obtain a family of LDPC
codes that are simple to optimize and that retain their good
performance as the source statistics change.

III. MULTI-RATE SLEPIAN-WOLF CODES

A. At a corner point: General remarks

We consider the case of encoding and decoding at a corner
point for a binary symmetric source, where the component
sources are labelled x and y. In this case, since the two sources
are related by yi = xi ⊕ zi, y acts like an observation of x
through a binary symmetric channel with noise sequence z.
We assume that y is available at the decoder before any of the
encoded bits for x are transmitted.

Encoding. As in Fig. 1, the source y is known at the
decoder, while x is encoded as the syndrome of an LDPC code.
Let sj

1 := {s1, s2, . . . , sj} represent the syndrome vector for
the source x. Then sj

1 is the string generated by the encoder for
x. As noted previously, the source y is encoded independently
of x and transmitted to the receiver at rate 1 (which, as we
have assumed, is the entropy of y).

Decoding. After sj
1 has been received, the decoder knows

that the source string x is in a coset of the original LDPC
code with sj

1 as the syndrome of the coset, and that y is an
observation of this codeword through binary symmetric noise.
The decoding problem is equivalent to syndrome decoding for
LDPC codes, and has been discussed in [6], [13]. The sum-
product algorithm may be used, with one simple modification:
at any check node with odd parity, all outgoing messages are
multiplied by -1. It is straightforward to show that decoding
performance of a coset of an LDPC code is equivalent to the
decoding performance of the original (zero-syndrome) LDPC
code.



B. Revealing sources: Definition and coding

We seek an LDPC code whose rate can be modified for
different sources without damaging its ability to decode at
a rate close to the source’s entropy. Toward this end, we
consider a related, but different, Slepian-Wolf coding problem:
the design of a single, universal code for a class of sources
with different source statistics, but with the same joint entropy.
In particular, consider a revealing source, where xi and yi are
source symbols with the following properties:

• With probability b, yi = xi ⊕ zi, where zi is a Bernoulli
random variable with crossover probability p;

• With probability 1 − b, yi = xi (i.e., the symbol is
revealed); and

• The decoder knows whether the symbol is revealed or
not.

In this section, we will show that an LDPC code that works
well for the revealing source can be used to construct a multi-
rate Slepian-Wolf code.

The set of revealing sources are parameterized by the pair
(b, p). and it is easy to show that the conditional entropy of a
source with these parameters is given by

H(Y |X) = bH(p), (1)

where H(p) is the binary entropy function. Consider the set
SH of revealing sources, defined as

SH = {(b, p) : bH(p) = H},

that is, the set of all sources with conditional entropy equal
to H . For the family SH , there is one source where b = 1
(i.e., none of the symbols are revealed). We define p∗ as
the corresponding crossover probability, so (1, p∗) ∈ SH , and
H(p∗) = H . Some useful properties of revealing sources are
given as follows:

• (H, 1/2) ∈ SH ;
• For all (b, p) ∈ SH , p∗ ≤ p ≤ 1/2 and H ≤ b ≤ 1; and
• For any p where p∗ ≤ p ≤ 1/2, (H/H(p), p) ∈ SH .
The key observation of this paper is the following. Suppose

that it is possible to design an LDPC code with rate R > H
and degree sequence (λ, ρ) that decodes successfully for every
source in the family SH . Then this single LDPC code must
contain subcodes that would decode successfully for binary
symmetric channels with every crossover probability p > p∗.
The reason is as follows. In decoding an LDPC code of length
n for a source with b < 1, we expect a fraction n(1 − b)
of symbols to be revealed. Symbols that are revealed are
perfectly known at the encoder can be removed from the
LDPC decoder’s factor graph, with no effect on sum-product
decoding (in fact, this is one step in sum-product decoding for
an LDPC code in the erasure channel). Thus, we are left with
a shorter (and higher-rate) LDPC code, having nb variables.
If the LDPC code of length n successfully decodes in the
revealing source with parameters (b, p), this shorter LDPC
code must also decode successfully in the binary symmetric
source with crossover probability p, where p > p∗. This is

Fig. 2. LDPC codes in a revealing source. Top: The full code, when b = 1.
Middle: b < 1, and the last four symbols are revealed. Bottom: The code
when the last four symbols are removed, which can be used for inversion
probability p.

illustrated in Fig. 2. Thus, the problem of finding a universal
code is reduced to the design of a single degree sequence.

Since the rate of the original LDPC code is R, the rate of
the shorter code is R/b. For an LDPC code with rate R, define

α := R/H

as the gap to the entropy, where α ≥ 1 for any code that
decodes successfully. From (1) and the definition of SH , we
have that H = H(p∗) = bH(p). Thus, R = αH(p∗), and
R/b = αbH(p)/b = αH(p). Thus, the gap to entropy is the
same for both codes.

C. Layered codes

The previous section on revealing sources took a single
LDPC code and broke it into a family of codes that could
be used with sources having many crossover probabilities. In
this section, we show how to layer these codes to obtain a
multi-rate code for Slepian-Wolf encoding.

Suppose we have a source with two possible crossover prob-
abilities: p1 and p2, where p2 > p1 without loss of generality.
Our strategy, inspired by [12], is to transmit parity checks
initially under the assumption that the crossover probability is
p1. If no acknowledgment is received, we will continue trans-
mitting parity checks under the assumption that the crossover
probability is p2, since that is the only alternative. We ignore
the possibility of decoding errors.

Letting H = H(p1), the family SH contains the sources
(1, p1) and (H/H(p2), p2). Our approach is to transmit a
code that decodes successfully for all members of SH . If no
acknowledgment is received, we select 1 − H/H(p2) (i.e.,
1−b) source symbols and form parity checks using a code that



Fig. 3. Two concatenated LDPC codes. Top: New parity checks succeed
with crossover probability p2. Bottom: When the new checks are decoded,
enough symbols are revealed in the original code to permit decoding.

decodes successfully for a source with crossover probability
p2, which can be obtained using the method in the previous
section. At the decoder, we have two codes protecting the
same symbols. The decoding strategy is serial: we decode the
second code (which succeeds at crossover probability p2) first,
which reveals the 1−H/H(p2) symbols to which it is attached,
and then decode the first code. Since the first code succeeds for
any revealing source in SH , and since (H/H(p2), p2) ∈ SH ,
decoding is successful. This approach is illustrated in Fig. 3.

We now consider the efficiency of this scheme. Once again,
let R1 = αH(p1) for the initial code. Since the second code
comes from the same family, its rate is R2 = αH(p2), as
argued in the previous section. For an LDPC source code, rate
is given by the ratio of parity checks to variables, so letting
mi and ni represent the number of parity checks and variables
in the ith code, respectively, we have αH(p1) = m1/n1 and
αH(p2) = m2/n2. The overall rate of the concatenated code
is given by Rc = (m1 + m2)/n1, since all the parity checks
of both codes are transmitted. Thus,

Rc =
αH(p2)n2 + αH(p1)n1

n1
.

However, n2 = (1−H/H(p2))n1, so

Rc =
αH(p2)(1−H/H(p2))n1 + αH(p1)n1

n1

= αH(p2),

so the scheme has the same gap to entropy as the original code
family. In particular, if α → 1, the scheme achieves entropy.

The same technique can be applied if the source has
three or more possible crossover probabilities, with minor
complications that we will not discuss in this paper. From
Fig. 3, there is a nesting property to the codes, which leads
us to coin the term Matrioshka code, after the Russian nesting
dolls. It is somewhat surprising that the gap to entropy remains
at α, which implies that no parity checks are “wasted” in

protecting some symbols with multiple codes. Furthermore,
this emphasizes our initial point concerning the ease of op-
timization, since only the single parameter α needs to be
minimized over a single LDPC degree sequence.

D. From multi-rate to rateless

For the code family obtained in the previous section, it is
more appropriate to call them multi-rate codes rather than
rateless codes. The proposed serial decoding algorithm makes
it necessary to wait for “chunks” of parity bits, representing the
parity bits in each layer of the code, to arrive before attempting
to decode. As a result, the allowed rates are quantized to a few
values. However, the serial decoding algorithm is proposed
only for convenience in describing the system. Since the entire
code can be drawn on a single factor graph, as in the top
diagram from Fig. 3, there is no reason in practice why the
codes must be decoded serially. Indeed, simultaneous decoding
of the code can only help, and may avoid problems of error
propagation.

If simultaneous decoding is used, then as parity checks
arrive at the decoder, the decoder may immediately incorporate
them into its factor graph and immediately attempt to decode
using that factor graph. Once enough parity checks have
arrived so that decoding is successful, the decoder can transmit
its acknowledgment to stop the encoder. However, since the
code would be determined by the properties of the layered
codes, the performance could only be guaranteed at the end
of chunks.

IV. OPTIMIZATION AND RESULTS

A. Optimization

For some family of revealing sources SH , we require the
lowest rate source code that is capable of decoding success-
fully for every source in SH . The LDPC degree sequence
(λ, ρ), which specifies the distribution of the check and
variable degrees in the factor graph, must be optimized to
minimize the source code rate (equivalent to maximizing the
channel code rate) subject to successful decoding in SH . To
accomplish this, we use a design tool from the literature that
reduces the LDPC code design problem to linear programming
[15]. The tool uses a form of extrinsic information transfer
(EXIT) chart [16] that tracks the message probability of
error from iteration to iteration. The key observation is that
variable nodes of each possible degree induce their own
EXIT chart (known as an elemental EXIT chart), and that
the true probability of error is a linear combination of the
elemental EXIT charts, where the coefficients are the elements
of the variable degree sequence. Thus, the criterion to ensure
successful decoding, which is that probability of error always
decreases from iteration to iteration, can be formulated as a
linear constraint. Furthermore, if the check degree sequence
is fixed, maximization of the rate can be posed as a linear
objective, so linear programming may be used.

The design tool from [15] is normally used to optimize
LDPC codes with respect to a single source, but we quantize
the parameter space and augment the constraints of linear



programming to ensure successful decoding at each quantized
point. Finally, once an optimized degree sequence is obtained,
we verify successful decoding at each quantized point using
density evolution [14], which has higher accuracy than the
design tool.

For convenience in using the method in [15], our optimiza-
tion focused on LDPC codes with a particular factor graph
structure. For an LDPC code of length n, we partition the
variables into two groups of lengths n1 and n2. When symbols
are revealed, they are only revealed from the second group.
The connections of the parity checks are constrained so that,
for each check of degree dc, at least b(n1/n)dcc edges are
connected to the first group, and at least b(n2/n)dcc edges
are connected to the second group. We emphasize that there
is nothing mandatory about this factor graph structure, and
that we propose it solely for ease of use with the design tool
in [15]. Randomly connected LDPC factor graphs should be
no worse in performance.

B. Results

Using the optimization method outlined in the previous
section, we obtained an LDPC code for the family SH , where
H = 0.4541, corresponding to p∗ = 0.0953. Before revealing
(i.e., b = 1), the degree sequence for this LDPC code is given
by

λ2 = 0.1763,

λ3 = 0.3943,

λ10 = 0.3206,

λ50 = 0.1088;
ρ8 = 1,

and zero for all other entries. After revealing with b = 0.5652,
and removing all the revealed symbols, the variable degree
sequence λ is the same, while the new check degree sequence
ρ is given by

ρ4 = 0.4232,

ρ5 = 0.5768,

and zero for all other entries. The rate of the unrevealed code
is R = 0.4925, so the gap to entropy is α = 1.0845 (i.e., the
code is within 8.5% of entropy).

Using density evolution, this code was tested for revealing
sources over the range of parameters p in which 0.0953 ≤ p ≤
0.2451, corresponding to a range of entropies from 0.4541 ≤
H(p) ≤ 0.8034. Simulation results for the extreme points of
this range are given in Fig. 4, in which the code length was
n = 20001, and the results show good agreement with the
predictions of density evolution.

V. CONCLUSION

This paper describes Matrioshka codes, which are LDPC-
like codes with variable rates, as a rateless solution to the
Slepian-Wolf problem. These codes have the attractive prop-
erty of being easy to optimize and analyze, since they are
obtained from a single LDPC degree sequence. Experimental
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Fig. 4. Experimental results for the given code, for sources (1, 0.0953) and
(0.5652, 0.2451).

results indicate that these codes have good performance for
sources with a wide range of joint entropies.
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