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Abstract— This paper characterizes the optimal power
control method for maximum sum capacity in a multi-
ple access fading channel with multiple transmitter and
receiver antennas when perfect channel side information
is available at both the transmitters and the receiver.
The profound benefit of multi-antenna diversity is demon-
strated by a dimension counting argument. The optimal
power allocation strategy in a system with n transmit an-
tennas for each user and m receive antennas is a combi-
nation of successive cancelation and a TDMA-like scheme
where in each time slot the rank of the transmit signals rk

for all users must satisfy k rk(rk + 1) ≤ m(m + 1). Thus,
the total number of users that are allowed to transmit
simultaneously is constrained by the number of receiver
antennas. Receiver diversity increases the total number
of dimensions thus allowing more users to transmit at the
same time. By contrast, transmitter diversity allows a
single user to occupy multiple dimensions as to benefit
its own transmission, thus having the effect of precluding
simultaneous transmission by other users.

I. Introduction

While the use of multiple antennas is increasingly
recognized as an effective means to provide both transmit-
ter and receiver diversity for high-rate wireless applica-
tions, efforts to quantify their precise benefit have mainly
been limited to single-user systems (see [1] and references
herein.) This is in part because the single-user fading
channel is already fairly involved, with several definitions
of capacity and many different assumptions on channel
state information possible. It is, however, important to
investigate the interaction between the extra dimensions
made possible by spatial diversity and the extra dimen-
sions brought into the system by many users. To this end,
this paper focuses on the multiple access fading channel
with multiple antennas, and explores the optimal power
control strategy when perfect and instantaneous channel
side information is available at both the transmitters and
the receiver. The structure of the optimal power con-
trol strategy sheds considerable light on the interaction
between spatial diversity and multiuser diversity.

Under the assumption of flat fading and perfect chan-
nel side information at both the transmitter and the re-
ceiver, Goldsmith and Varaiya [2] showed that the single-
user single-antenna ergodic capacity can be achieved with
“water-filling-in-time”. The idea is that the user should
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adapt its transmit power to transmit more bits when its
channel is good. In a multiuser environment, because of
the presence of multiuser interference, the optimal power
control strategy needs to consider the fading states of
other users as well. With a single transmit antenna for
each user and a single receive antenna at the base-station,
Knopp and Humblet [3] showed that to maximize the sum
ergodic capacity, at any given time instant, only the sin-
gle user who has the best fading state should transmit. In
this situation, a user need to wait for his channel realiza-
tion to become the best among all users before he could
transmit. Recently, Viswanath, Tse and Anantharam [4]
showed that such waiting can be completely eliminated
if infinitely many antennas are used in the receiver (with
a single transmit antenna for each user). Their paper
showed that the strategy where each user does “water-
filling-in-time” is asymptotically optimal when both the
number of users and the number of receive antennas go to
infinity. The intuition is that multiple receive antennas
provide enough diversity to allow simultaneous transmis-
sion by all users. This paper will make this intuition
precise by examining the optimal power allocation strat-
egy for the non-asymptotic case. It turns out that when
m receiver antennas are used, a maximum of 1

2m(m + 1)
users can be allowed to transmit simultaneously. This ob-
servation completes the gap between the single-antenna
case and the infinite-antenna case. The extra tool needed
in the analysis is the “simultaneous water-filling” idea
from convex analysis [5]. Our technique also extends to
the analysis of transmitter diversity, and it shows the dif-
ference between transmitter and receiver diversity in a
multiuser system.

This paper concentrates on flat fading channels. For
frequency selective channels that are slow-varying (i.e.
with delay spread much smaller than the coherence time),
the discrete Fourier transform can be used to partition
the channel into independent flat-fading sub-channels,
thus eliminating interference among frequency dimen-
sions. The case considered in this paper where spatial
dimensions do interfere into each other is the more inter-
esting case, and this is where many subtleties arise.

The rest of the paper is organized as follows. Section
II establishes the channel model and formulates the op-
timization problem. Section III examines the property
of the optimal power allocation strategy for a multiuser



fading channel when an arbitrary and finite number of
transmitter and receiver antennas are used. The sepa-
rate effects of transmitter diversity and receiver diversity
are discussed in Section IV, and conclusions are drawn in
Section V.

II. Multi-Antenna Multi-User Fading Channel

A discrete-time multi-antenna multiuser fading channel
can be modeled as follows:

Y (i) =
K∑

k=1

Hk(i)Xk(i) + N(i), (1)

where i denotes the time index. A total of K users are
present in the system. Each user is equipped with n an-
tennas so the input signals Xk(i) are n dimensional vec-
tors. The receiver is equipped with m antennas so the re-
ceived signal Y (i) is an m dimensional vector. N(i) is the
i.i.d. Gaussian noise. The channel seen by user k at time
instant i is represented by Hk(i), which is an m× n ma-
trix. We will assume an i.i.d. fading model where instan-
taneous channel state information is available to all the
transmitters and the receiver. The availability of channel
state information is crucial and in practice it must be es-
timated at the receiver and fedback by a reliable feedback
mechanism. For simplicity, the entries of Hk are assumed
to be independent and identically distributed Gaussian
random variables. This corresponds to a Rayleigh chan-
nel model with rich scatterers.

The capacity of a K-user multiple access channel is
a K-dimensional convex region whose boundary points
characterize the trade-off among data rates for various
users. In this paper, the focus will be on the single
boundary point that maximizes the K-user rate sum. The
characterization of other boundary points involves maxi-
mizing a weighted average of all users’ data rates, which,
while numerically possible [6] [7], does not appear to have
a closed-form solution. The single maximum rate-sum
point is arguably the most effective single figure of merit
for the multiple access channel. It has been the subject
of many previous studies [3] [4], and it will be our focus
as well.

The capacity for the multiple access channel is achieved
with superposition coding and successive decoding. The
relevant mutual information corresponding to the sum
rate (assuming perfect channel side information at both
the transmitters and the receiver) can be expressed in the
chain rule as:

I(X1;Y |H) + I(X2;Y |X1, H) + · · · + I(XK ;Y |
X1, · · · , XK−1, H) = I(X1, X2, · · · , XK ;Y |H). (2)

Ergodic capacity is the channel capacity in the traditional
Shannon sense. In this case, channel coding is done over
a block length sufficiently large to cover all fading states.
The mutual information can then be averaged over all

fading states, and the ergodic capacity is expressed as an
expectation:

Csum = maxEH1,··· ,HK I(X1, · · · , XK ;Y |H1, · · · , HK).
(3)

Here, the expectation is over the joint channel distrib-
ution. The mutual information is now a random vari-
able, which depends on the channel in two ways. First,
the explicit computation of I(X1, · · · , XK ;Y ) depends on
the channel. Secondly, because of the perfect transmitter
side information assumption, the input distribution for
(X1, · · · , XK) is also a function of (H1, · · · , HK). The
maximization is over all such input distributions, which
are called power allocation policies.

Gaussian signaling is optimal in the i.i.d. fading multi-
ple access channel, so the optimal transmit signal is a
zero-mean Gaussian process. Given the instantaneous
channel realization (H1, · · · , HK), each transmitter sets
its power spectral density subject to its total power con-
straint. Let Sk(H1, · · · , HK) be the m×m signal covari-
ance matrix for user k at the given channel realization,
i.e. Sk(H1, · · · , HK) = E[XkX

∗
k |H1, · · · , HK ], where ∗

denotes complex conjugate, and the expectation is over
the transmitted codebook. A power allocation policy for
user k is a mapping

Pk : (H1, · · · , HK) �→ Sk(H1, · · · , HK). (4)

The average power constraint Pk for user k is satisfied
when

EH1··· ,HK [tr(Sk(H1, · · · , HK))] ≤ Pk, (5)

where the expectation is over the joint channel distrib-
ution and “tr” denotes the matrix trace operator. The
optimal sum capacity point is the solution to the follow-
ing optimization problem,

max
S1,··· ,SK

EH1,··· ,HK I(X1, · · · , XK ;Y |H1, · · · , HK), (6)

subject to the average power (or trace) constraints
(P1, · · · , PK) on (S1, · · · , SK).

III. Optimal Power Control Strategy

A. Simultaneous Water-filling

Let ν be the random variable denoting the channel fad-
ing state, whose probability density function is ρ(ν). De-
note the channel fading distribution as Hk(ν), and the
power allocation strategy as Sk(ν). The ergodic sum ca-
pacity maximization problem (6) can be posed as follows.

max
Sk(ν)

∫
ν

log

∣∣∣∑K
k=1 Hk(ν)Sk(ν)H∗

k (ν) + Z
∣∣∣

|Z| dρ(ν)(7)

s.t
∫

ν

tr(Sk(ν))dρ(ν) ≤ Pk, (8)

Sk(ν) ≥ 0, (9)



where | · | denotes the determinant operator, Z de-
notes the receiver noise power spectrum, and the en-
tropy expression for Gaussian random vectors H(X) =
log ((2πe)n|E[XX∗]|) is used. Here, Sk(ν) ≥ 0 is taken to
mean that Sk(ν) is a positive semi-definite matrix. Equa-
tions (8) and (9) need to be satisfied for all k = 1 · · ·K
and for all fading states ν.

A key idea in solving the above optimization problem
is simultaneous water-filling. At the optimal, each user’s
power allocation strategy is a single-user “water-filling”
against the noise and the combined interference from all
other users. This observation is based on the fact that
the optimization problem above is convex in the positive
semidefinite matrix cone containing Sk(ν) ([4], [5], [7]).
It is then possible to write down its Karush-Kuhn-Tucker
(KKT) condition. Associate dual variables λk to each
power constraint and Uk(ν) to each positivity constraint,
where λk is a scalar, and Uk(ν) are n × n matrices. We
have the following theorem.

Theorem 1: A power control strategy Sk(ν) maximizes
the sum ergodic capacity for a fading multiple access
channel (1) with perfect side information at all the trans-
mitters and at the receiver if and only if it satisfies the
following at each fading state ν and for each user k:

λkIn = H∗
k (ν)


 K∑

j=1

Hj(ν)Sj(ν)H∗
j (ν) + Z




−1

Hk(ν)

+Uk(ν) (10)∫
ν

tr(Sk(ν))dρ(ν) ≤ Pk (11)

tr(Uk(ν)Sk(ν)) = 0 (12)
Uk(ν), Sk(ν), λk ≥ 0, (13)

where In is the n × n identify matrix. Such Sk(ν) has
an interpretation that each user’s power allocation is the
single-user water-filling allocation against the combined
noise and interference from all other users.

Note that the power control strategy is a function of
the channel fading state, but the water-filling level λk is
a function of the fading distribution only, which can be
pre-computed. The KKT conditions naturally separate
into K groups of single-user water-filling conditions, one
corresponding to each user. The only modification from
the single user case is that the interference from all other
users is now regarded as additional noise. This generalizes
an observation made in [5], where the non-fading case is
treated. The KKT condition is the key in deriving further
properties of optimal power allocation.

B. Single-Antenna Case

When there is only one antenna for each transmitter
and for the receiver, [3] showed that the sum-rate maxi-
mizing power control strategy is a TDMA-like strategy
where a single-user with the highest SNR transmit at

every moment. This result will be re-derived here using
the simultaneous water-filling interpretation, thus setting
the stage for subsequent development where multiple an-
tennas are introduced.

In the single antenna case, the KKT condition simpli-
fies to the following:

λk =
h2

k(ν)∑K
j=1 h2

j(ν)sj(ν) + σ2
+ uk(ν) (14)

∫
ν

tr(Sk(ν))dρ(ν) ≤ Pk (15)

uk(ν)sk(ν) = 0 (16)
uk(ν), sk(ν), λk ≥ 0. (17)

Without the uk(ν) term, equation (14) is the familiar
water-filling condition, with water level equal to λ−1

k . The
slack variable uk(ν) is used to account for the possibility
that a fading state may be so bad that no power is allo-
cated for that state. In that case, the positive slack vari-
able uk(ν) is used to make up the difference. Note that
the slack variable can only be non-zero when sk(ν) = 0.
This is also reflected in the matrix case as (12). For two
users k and l to both transmit at a fading state ν, they
must both satisfy the single-user water-filling condition:

λk =
h2

k(ν)∑K
j=1 h2

j(ν)sj(ν) + σ2
(18)

λl =
h2

l (ν)∑K
j=1 h2

j(ν)sj(ν) + σ2
(19)

The denominator for the two conditions are the same, so
if both users transmit, then

h2
k(ν)
λk

=
h2

l (ν)
λl

. (20)

In other words, the fading state ν may not be shared by
the two users unless the channel gains differ by exactly the
factor λk/λl. Since the channel fading state is assumed
to be i.i.d. complex Gaussian distributed, such event has
zero probability. Therefore, we have proved the following.

Theorem 2 (Knopp and Humblet [3]) : In a single-
antenna multiple access fading channel with i.i.d.
Gaussian fading statistics, assuming perfect side infor-
mation at the transmitters and the receiver, with proba-
bility 1, the sum capacity is achieved with a power control
strategy that allows only one user to transmit at a time.

This same conclusion was reached earlier by Cheng and
Verdu [8] in the context of multiple access channel with
intersymbol interference. The power allocation problem
for the fading channel is identical to the loading problem
for the ISI channel if the fading statistics is assumed to
be i.i.d., and if the ISI channel is equipped with guard
periods which ensure the orthogonality of subchannels.
Cheng and Verdu concluded that FDMA achieves the
sum capacity in a multiple access channel with ISI (which
corresponds to TDMA for fading channels).



C. Multiple-Antenna Case

The intuition for Knopp and Humblet’s result is the
following. A single-antenna receiver is limited by the sin-
gle degree of freedom it has. To achieve the sum capacity,
only one user can transmit at a time. With multiple an-
tennas however, multiple dimensions may be available.
So, the optimal power control strategy may involve more
than one user transmitting at the same time. Neverthe-
less, the maximum number of simultaneous users should
still be related to the number of antennas. This intuition
is made precise by the following theorem:

Theorem 3: In a multiple-antenna multiple-access fad-
ing channel whose channel matrix entries are i.i.d.
Gaussian distributed, the optimal power control strat-
egy with perfect channel side information at all trans-
mitters and at the receiver that achieves the maximum
sum ergodic capacity has the following property: with n
antennas for each user and m antennas for the receiver,
at any time instant, the rank of transmit signal rk for
each users must satisfy

∑
k rk(rk + 1) ≤ m(m + 1). In

particular, a maximum of 1
2m(m + 1) users can transmit

simultaneously.
Proof: First, consider receiver diversity alone. In this

case, each transmitter has one antenna, and the receiver
has m antennas, so that the channel matrix Hk(ν) is an
m×1 vector and the transmitter covariance is just a scalar
sk(ν), and the slack variable is also a scalar uk(ν):

λk = H∗
k(ν)

(∑K
j=1 sj(ν)Hj(ν)H∗

j (ν) + Z
)−1

Hk(ν)

+uk(ν). (21)

The claim is that at any fading state ν, only a maximum
of 1

2m(m + 1) users can have sk(ν) > 0 and uk(ν) = 0.
The rest of the users have sk(ν) = 0 and uk(ν) > 0. As
in the single-antenna case, the key is to recognize that
the matrix inversion in the expression is common to all
users, and each user has an arbitrary channel. Recall
that λk is determined by the channel fading distribution,
so it can be considered fixed. We first ask whether there
exists a positive definite symmetric matrix M such that
H∗

kMHk = λk for more than 1
2m(m + 1) Hk’s. The fol-

lowing Lemma answers this question.
Lemma 1: Fixing positive λ1, · · · , λK , let H1, · · · , HK

be m × 1 random vectors whose entries have an i.i.d.
Gaussian distribution. If K > 1

2m(m + 1), then with
probability 1, there does not exists a positive definite
symmetric matrix M such that H∗

kMHk = λk, ∀k =
1 · · ·K.

Proof: Let Hk = (hk1, hk2, · · · , hkm)τ . Denote the
(i, j) entry of M by mij . Because of the symmetry,
mij = mji, so there are 1

2m(m + 1) independent vari-
ables in M . To have H∗

kMHk = λk, we need
∑
ij

hkihkjmij = λk, (22)

for all k = 1 · · ·K. Because Hk are i.i.d. Gaussian, with
probability 1, these K equations are linearly independent.
So a solution to (22) exists only if K ≤ 1

2m(m + 1). ✷

Lemma 1 shows that the number of users that can
transmit simultaneously is 1

2m(m + 1) or fewer. It does
not guarantee that exactly 1

2m(m+1) users will transmit
because the existence of a matrix M satisfying (22) does
not guarantee that such M can be synthesized by sk(ν)
as in (21).

Next we turn our attention to transmitter diversity.
The water level is now an n× n identity matrix, and the
transmitter power spectrum and the slack variables are
both n × n positive semidefinite matrices. The water-
filling condition is:

λkIn = H∗
k (ν)

(∑K
j=1 Hj(ν)Sj(ν)H∗

j (ν) + Z
)−1

Hk(ν)

+Uk(ν), (23)

for k = 1 · · ·K. Parallel to the previous development, we
ask: whether there exists a positive semidefinite matrix
M that satisfies λkIn = H∗

k (ν)MHk(ν)+Uk(ν). The idea
is to count the number of independent equations and the
number of unknowns. To satisfy the matrix equation,
we need to satisfy one equation for each matrix entry.
By symmetry, there are 1

2n(n + 1) independent entries
for each k, so there are in total K

2 n(n + 1) independent
equations.

The number of unknown variables is counted as follows.
The matrix M introduces 1

2m(m+ 1) degrees of freedom.
The number of unknowns introduced by the slack variable
Uk(ν) depends on its rank. An n × n symmetric matrix
has at most 1

2n(n + 1) degrees of freedom. But, if the
matrix is restricted to rank r, the number of degrees of
freedom decreases to 1

2n(n+1)− 1
2 (n−r)(n−r+1). To see

this, recall that a positive semidefinite symmetric matrix
can be represented in its (unique) Cholesky factorization
as LL∗. If a n×n matrix is of rank r, its Cholesky factor
is a n × r triangular matrix, with exactly 1

2n(n + 1) −
1
2 (n− r)(n − r + 1) independent entries.

Now, the slack variables need to satisfy the comple-
mentary slackness condition

tr(Uk(ν)Sk(ν)) = 0. (24)

So, if the transmit signal Sk(ν) is of rank rk(ν), the rank
of Uk(ν) is at most n − rk(ν). Therefore, each Uk(ν)
introduces at most 1

2n(n + 1) − 1
2rk(ν)(rk(ν) + 1) extra

degrees of freedom. The total number of unknown vari-
ables is then 1

2m(m + 1) coming from the matrix M plus
1
2n(n+1)− 1

2rk(ν)(rk(ν)+1) coming from each of Uk(ν).
All equations involve the channel realization Hk(ν),

which is a Gaussian random matrix. So, with probability
1, these equations are independent. Thus, for a solution
to exist, there need to be at least as many unknown vari-



ables as there are equations, so:

m(m + 1)
2

+ K
n(n + 1)

2
−

K∑
k=1

rk(ν)(rk(ν) + 1)
2

≥ K
n(n + 1)

2
, (25)

from which the condition
∑

k rk(rk + 1) ≤ m(m + 1) fol-
lows.

At any time instant, a user transmits with positive
power if the rank of its transmitted signal is at least 1.
Therefore, in a multiple user scenario with m receive an-
tennas, a total of 1

2m(m + 1) users can transmit at the
same time. The power control strategy can be thought of
as choosing the “best” set of 1

2m(m+1) users, when trans-
mitting together (using power determined by the fading
state and their respective water levels), provides the high-
est sum capacity. This concludes the proof.

Theorem 3 establishes an upper bound on the number
of simultaneous users that can transmit simultaneously
in a multiple access channel. Although the theorem does
not guarantee that the bound is tight, simulation results
indicate that the maximum number of simultaneous users
is somewhere between m and 1

2m(m + 1).

IV. Spatial Diversity for Multiple Access

In a multiple access fading channel, the degrees of free-
dom created by spatial diversity is bounded quadratically.
With m receive antennas, the maximum number of de-
grees of freedom that an optimal multiuser detector can
process is 1

2m(m+1). These many degrees of freedom are
to be divided among the transmitters. Each transmitter,
with n transmitting antennas, can potentially use up to
1
2n(n + 1) degrees of freedom. Therefore, the number of
receiver antennas has the effect of allowing more users to
transmit simultaneously, while the number of transmitter
antennas has the opposite effect. Transmitter antennas
have the potential to crowd out receiver dimensions and
thus prevent other users from transmitting at the same
time. Such crowding-out increases system sum capacity
at the expense of delay and fairness.

There is an interesting interplay between spatial di-
versity and multiuser diversity. In a single-user vector
channels, the maximum number of usable dimensions is
the rank of the channel matrix. The rank is the num-
ber of independent data streams that a vector channel
can process. In a multiuser systems however, the maxi-
mum number of independent users that the system can
accommodate is bounded by the square of the rank. The
difference is that in a multiuser environment, no signal
coordination among the users is possible, so spatial di-
mensions for each user overlap. Consequently, more users
are cramped into the limited number of dimensions.

This result reduces immediately to the single antenna
case considered in [3]. It also extends to the asymptotic

result in [4] nicely. As the number of users and the num-
ber of receiver antennas both go to infinity while keeping
their ratio α fixed, [4] identified a single-user water-filling
power allocation strategy which is asymptotically opti-
mal for α either larger than 1 or smaller than 1. With
the quadratic growth of maximum number of allowable
users, the reason is now clear. By fixing the ratio α, the
number of total users in the problem setting of [4] is a
linear function of the number of receive antennas, yet the
number of degrees of freedom grows quadratically. Since
1
2m(m + 1) will eventually exceed any linear function of
m, as m goes to infinity, all users will be able to transmit.

V. Conclusion

This paper formulated the power control problem for
multiple access fading channels when each transmitter
and the receiver are equipped with multiple antennas.
Under the assumption of i.i.d. fading and perfect and in-
stantaneous transmitter and receiver channel side infor-
mation, the power control strategy that maximizes the
sum ergodic capacity is characterized. It is shown that in
a system with n transmitter antennas for each user and
m receiver antennas, the optimal power control strategy
allows up to 1

2m(m+1) degrees of freedom be used at any
time, with each user contributing up to 1

2n(n+1) degrees
of freedom. This property illustrates following: receiver
dimensions can be thought of as discrete resources to be
distributed among all the users, and transmitter dimen-
sions can be thought of as each user’s potential ability to
utilize the available dimensions.
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