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ABSTRACT

The multiuser detection problem for vector Gaussian mul-
tiple access channel with multiple inputs and multiple out-
puts (MIMO) is considered. It is shown that the capacity
region for the multiple access channel may be characterized
and the optimal multiuser transmitter spectrum may be ob-
tained by solving a convex programming problem. With the
optimized transmitter, a practical bit-loading and multiuser
detection scheme based on generalized decision feedback
equalizer (GDFE) is proposed. This GDFE-based detection
scheme achieves the extreme points in the multiple access
channel capacity region.

I. INTRODUCTION

A fundamental result in multiuser information theory is
the characterization of the capacity region for multiple ac-
cess channels. In a multiple access channel, multiple unco-
ordinated transmitters can potentially communicate with a
single receiver at the same total data rate as if they coordi-
nate [1]. However, although the capacity region for multiple
access channels is well-understood in terms of mutual in-
formation, its numerical characterization is not necessarily
easy, nor methods to achieve the capacity necessarily appar-
ent. Such is the case for channels whose inputs and outputs
are multi-dimensional. In vector channels, the characteri-
zation of capacity region involves transmitter optimization,
which, unlike the single user “waterfilling”, is non-trivial.
In this direction, [2] solved a special case where the mul-
tiple access channel has ISI. The general case was recently
solved in [3], where it was shown that the optimal transmit-
ter spectrum can be found using convex programming meth-
ods. With an optimal transmitter spectrum, it is then possi-
ble to design optimal coding/decoding schemes. The goal
of this paper is to propose one such practical bit-loading
and multiuser detection method based on decision feedback
equalizer that achieves multiuser capacity.

This work was supported by a Stanford Graduate Fellowship, and in part
by a gift from France Telecom.

Fig. 1. A wireless channel with antenna arrays

From an information theory perspective, multiuser capac-
ity is achieved with superposition and interference cancella-
tion. So, it is natural to consider decision feedback detection
schemes. Decision feedback equalizers (DFE) have long
been used to mitigate intersymbol interference in bandlim-
ited channels. Its generalization to multi-input multi-output
(MIMO) systems was first proposed in [4], where a MIMO
DFE based on the minimum mean square error (MMSE)
criterion was described. Such schemes are also found in
the CDMA literature [5], where interference cancellation is
performed on a user-by-user basis. Recently, [6] found that
this decision feedback structure, in addition to minimizing
MSE, also maximizes sum capacity. As we shall soon see,
this is not an accident. In this paper, we will develop a gen-
eralization of the decision feedback multiuser detection for
vector channels which also minimizes MSE and achieves
the extreme points in channel capacity at the same time. We
choose a derivation based on the generalized decision feed-
back equalizer (GDFE) [7] that shows the intimate relation
between MMSE and capacity-maximizing criteria. As one
might expect, the optimal detector depends on the optimal
transmitter spectrum.

The vector multiple access channels appear in many prac-
tical situations. In the wireless context, recent advances in
antenna array technology are promising many advantages
such as diversity and increased channel capacity for mobile
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Fig. 3. A multiple access channel

networks (Fig. 1). Since each mobile transmits via a mul-
tiple antenna array, the upstream transmission scenario is
a multiple access channel with vector input. Because the
synchronization and perfect channel side information as-
sumptions made in this paper, the methods proposed here
are most applicable to the fixed wireless situation.

A similar situation exists for wireline access technology
such as Digital Subscriber Lines (DSL) (Fig. 2). DSL is the
local loop technology which brings high speed data commu-
nication to home via ordinary phone lines. The predominant
noise source in copper wires is interference from adjacent
lines. If coordination at the central office is feasible, the
upstream transmission becomes a multiple access channel.
With multiuser detection schemes, crosstalk interference is
no longer regarded as noise, and dramatic data rate improve-
ment can be achieved [8].

In the rest of the paper, we first review the transmitter
optimization results for vector multiple access channels in
section II. Then in section III, we propose a multiuser bit-
loading and a multiuser detection scheme based on GDFE,
and prove that it achieves multiuser capacity. Finally, prac-
tical issues are discussed and conclusions are drawn in sec-
tion IV. Throughout this paper, we make tactic assump-
tions that channel state information is perfectly known at
both transmitter and receiver and synchronization can be
achieved among the users.

II. TRANSMITTER OPTIMIZATION IN VECTOR
MULTIPLE ACCESS CHANNELS

A multiple access channel is depicted in Fig. 3, wherex1,
x2 are input vector signals,y is the output vector signal,n is
the vector additive Gaussian noise,H1 andH2 are channel
responses represented as matrices so that

Y = H1x1 +H2x2 + n. (1)

Although we have restricted ourselves to the two-user case,
the development here can easily be generalized to more than
two users. We have also restricted ourselves to memory-
less models because channel with memory can be converted
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Fig. 4. Transmitter optimization in multiple access channels

to memoryless models using block-by-block processing and
guard periods. The objective is to find capacity region for
this channel subject to power constraintsP1,P2 respectively
onx1 andx2.

The capacity region for general memoryless multiple ac-
cess channels is well-known [1]. For Gaussian channels
with a specific input power spectral density, the capacity
region is a pentagon with one side at 45 degree slope,

R1 ≤ I(x1; y|x2), (2)

R2 ≤ I(x2; y|x1), (3)

R1 +R2 ≤ I(x1, x2; y). (4)

Since there are more than one input power spectrum density
satisfying the same power constraint, the capacity region for
vector Gaussian multiple access channel with power con-
straints is the union of pentagons over all such power spec-
trum densities, (Fig. 4):

C =
⋃

tr(Σ1) ≤ P1,
tr(Σ2) ≤ P2,
Σ1,Σ2 ≥ 0


(R1, R2) :

R1 ≤ I(x1; y|x2);
R2 ≤ I(x2; y|x1);

R1 +R2 ≤ I(x1, x2; y).




(5)

whereΣ1 andΣ2 are covariance matrices for input signals
x1 andx2 respectively, (i.e.,E[x1 · x∗1] = Σ1). The capac-
ity region is a convex region whose boundary points can be
characterized by numerically maximizingµR1+(1−µ)R2
subject to power constraints. The point(R1, R2) at which
µR1 + (1 − µ)R2 is maximized is at the boundary of the
capacity region where the tangent line has slope(µ− 1)/µ.
Varying µ from 0 to 1 would trace through all boundary
points. The following theorem makes the optimization pro-
cess explicit.

Theorem 1:The capacity region for the Gaussian vector
multiple access channel (1) is a convex region whose bound-
ary points are characterized by the solution to the following



set of optimization problems indexed by parameterµ ranged
between0 and1. As0.5 ≤ µ ≤ 1, the optimization problem
is

max (1− µ) · 12 log |H1Σ1H∗1 +H2Σ2H∗2 + Z|+
(2µ− 1) · 12 log |H1Σ1H∗1 + Z| − µ · 12 log |Z|

s.t. tr(Σ1) ≤ P1,
tr(Σ2) ≤ P2,
Σ1,Σ2 ≥ 0. (6)

As 0 ≤ µ ≤ 0.5, the optimization problem is

max µ · 12 log |H1Σ1H∗1 +H2Σ2H∗2 + Z|+
(1− 2µ) · 12 log |H2Σ2H∗2 + Z| − µ · 12 log |Z|

s.t. tr(Σ1) ≤ P1,
tr(Σ2) ≤ P2,
Σ1,Σ2 ≥ 0. (7)

For eachµ, the optimizingΣ1 andΣ2 are the covariance
matrices forx1 andx2 corresponding to the boundary point
of the capacity region whereµR1+(1−µ)R2 is maximized.
Further, the optimization problem is concave in(Σ1,Σ2)
over the set of positive semidefinite matrices pairs.

The detailed derivation of this theorem can be found
in [3]. The critical observation here is that the optimiza-
tion problem is concave. This follows from the fact that
log det(M) is a concave function ofM in the cone of pos-
itive semi-definite matrices [9]. The composition of a con-
cave function and a linear function is concave, so the ob-
jective is a concave function in(Σ1,Σ2). In addition, trace
constraints are linear, therefore, the entire problem can be
posed as a convex programming problem. The convexity
observation is crucial because it guarantees that efficient
search algorithms exist. In fact, the classical waterfilling
and the recent multiuser waterfilling algorithm in [2] are
particular examples of such convex optimization routines.
In the particular case whereµ = 0.5, the problem degen-
erates into themaxdet problem that is well studied in the
field of convex optimization and for which efficient software
package already exists [9]. Convex optimization algorithms
are always iterative in nature, and their convergence to the
global maximum is guaranteed.

III. GENERALIZED DECISION FEEDBACK
EQUALIZER

Although decision feedback equalizer has long been used
to combat intersymbol interference, it was not until fairly re-
cently that minimum mean square error decision feedback
equalizer (MMSE-DFE) was shown to achieve channel ca-
pacity in single-user ISI channels [10]. Traditionally, the
MMSE-DFE structure includes linear time invariant filters,
which operate on the entire input signal. The finite length

block version was first proposed in [7], and it is called Gen-
eralized Decision Feedback Equalizer (GDFE). GDFE is
not only optimal in the MMSE sense, it also achieves the
mutual information between the input signal and output sig-
nal. In this section, we aim to use the same GDFE structure
for multiple access channels. We will give a derivation of a
multiuser decision feedback detector which simultaneously
minimizes MSE and maximizes total capacity. Toward this
end, we will first develop GDFE for single user, taking a
slightly different route as in [7].

First, we note that information source is i.i.d. To obtain
the necessary input covariance, the information source need
to be shaped by a pulse filter. Such pulse shaping filter may
be absorbed into the channel. So, without loss of general-
ity, we aim to find practical coding/decoding schemes that
achieve the mutual information with a white input.

The capacity region for multiple access channels with a
fixed input covariance is a pentagon, i.e., the total data rate
is bounded byI(x1, x2; y). Therefore, in (1),x1 andx2 may
be considered jointly. Define the input vectorx = [x1x2]T ,
and the channel responseH = [H1H2], we have,

y = Hx+ n. (8)

For simplicity, assume thatE[nn∗] = I, i.e. noise is pre-
whitened. The goal becomes to achieve single user ca-
pacity I(x; y). From Shannon’s original channel capacity
argument, we know that with a randomly generated code
and a typicality or maximum likelihood decoder, data trans-
mission at rates below the maximum mutual information
has probability of error exponentially approaching zero.
However, randomly choosing codewords from Gaussian en-
sembles is not practical, and typicality decoder or maxi-
mum likelihood decoder involves searching through multi-
dimensional space which is computationally intensive. The
aim is, therefore, to find practical ways to achieveI(x; y),
preferably on a symbol-by-symbol basis. Generalized de-
cision feedback equalization (GDFE) is one such practical
method that achieves capacity.

The development of GDFE involves three key ideas. The
first idea is the following observation made in [10]:

I(y;x) = H(y)−H(y|x) = 1
2
log
|Σyy|
|Σy|x| , (9)

I(x; y) = H(x)−H(x|y) = 1
2
log
|Σxx|
|Σx|y| . (10)

The equivalence ofI(x; y) andI(y;x) shows that mutual
information may be achieved in two different ways. In the
forward direction (9), the input signal isx, the output sig-
nal is y, andΣy|x is just the covariance matrix of additive
noise. In the backward direction (10),y is considered as
the input signal,x the output signal, and the error signale
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Fig. 5. Forward and backward channels with MMSE estimation

is the MMSE linear estimation error ofx based ony. The
relationship between the forward and backward directions
is illustrated in Fig. 5, whereW is the MMSE linear es-
timation filter of x given y. The fact that the backward
channel associated with minimum-mean-square-error esti-
mation has the same channel capacity as the original chan-
nel suggests that with an MMSE filter, detectingx from x̂
achieves the same channel capacity as detectingx from y.
Therefore, an MMSE estimator is also necessarily capacity
achieving. Note, at this point, we are still doing block-based
processing. Component-wise decision onx̂ directly is not
the right thing to do because the MMSE error is not nec-
essarily white, hence such detection scheme is not optimal
in the sense that it does not achieve the channel capacity
1
2 log(|Σxx|/|Σee|). Our goal is to use decision feedback
to allow component-wise decision while not increasing the
mean square error or decreasing mutual information. As the
following development shows, such is possible with GDFE.

To facilitate component-wise detection, we need to
whiten the MMSE errore, while preserving the “informa-
tion content” inx̂. Toward this end, we break up MMSE
filter W in Fig. 5 into two components, creating two so-
called canonical channels. The notion of canonical channel
is the second key idea in GDFE. Canonical channel is use-
ful in that it makes symbol-by-symbol detection possible, as
will be apparent shortly. Let us first write down the MMSE
filterW explicitly,

W = ΣxyΣ
−1
yy (11)

= ΣxxH
∗(HΣxxH∗ + I)−1 (12)

= (H∗H +Σ−1xx )
−1H∗, (13)

where (11) follows from the standard linear estimation the-
ory, (13) follows from the matrix inversion lemma [11],
which states,

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.
(14)

Now, it is clear thatW may be split into a matched filterH∗,
and an estimation filter, as shown in Fig. 6. The channel
from x to z is the forward canonical channel,

z = H∗Hx+H∗n = Rfx+ n′. (15)

The name canonical channel comes from the fact that the
covariance of noisen′ is the same as the channelRf . Inter-
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Fig. 6. Forward and backward canonical channels

estingly and perhaps surprisingly, the backward channel

x = (H∗H +Σ−1xx )
−1z + e = Rbz + e (16)

is also canonical. The following computation verifies this
fact,

E[ee∗] = E[(x − x̂)(x − x̂)∗]
= E[(x − ΣxyΣ−1yy y)(x − ΣxyΣ−1yy y)∗]
= Σxx − ΣxxH∗(HΣxxH∗ + I)−1HΣxx
= (H∗H +Σ−1xx )

−1

= Rb, (17)

where we had again used the matrix inversion lemma (14).
Recall that in order to perform optimal detection, we need

to whiten the MMSE error. The third key idea in GDFE
is to recognize that whitening may be done with decision
feedback via Cholesky factorization. Since decision feed-
back is causal, the unique causal whitening filter (up to scal-
ing) is the Cholesky factor of the error covariance, which
by construction, is justRb. Because in a canonical chan-
nel, the noise variance and the channel response are the
same, the noise whitening process may be accomplished
by splitting the filterRb into a feedback configuration. Let
Rb = G

−1S−1G−∗, whereS is diagonal,G is an upper
triangular matrix with1’s on the diagonal. Then

x = Rbz + e (18)

x = G−1S−1G−∗z + e (19)

Gx = S−1G−∗z +Ge, (20)

which suggests the successive decoding structure in Fig. 7.
BecauseG is upper triangular,xn can be decoded first, then
with its interference subtracted,xn−1 may be decoded, etc.
In this structure, noise prior to the decision device is just
Ge, which is white,

E[Ge(Ge)∗] = GRbG∗ = S−1, (21)

and has the same means square error as an MMSE estima-
tor:

|S−1| =
∏
S−1i = Rb = |Σee|. (22)

Note that the minimum mean square error here is taken as
the determinant of the covariance matrix instead of the usual
trace. These two criteria are equivalent [11].
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Now, the noise has been whitened, and inputx is also
white by assumption, so we have converted the vector chan-
nel into a set of independent AWGN sub-channels, each
with a capacity12 log(SNRi) =

1
2 log(EiSi), whereEi is

the energy of the input signal inith component. The SNR
here is so-called biased SNR, which is the ratio of output
signal energy to noise energy. The capacity of the vector
channel is the sum of capacities of each individual sub-
channels. So,

C =
1

2
log
∏
i

EiSi (23)

=
1

2
log
|Σxx|
|Σee| , (24)

which is the capacity of the original channel. Therefore,
GDFE is able to convert a vector channel with white input
into a set of parallel AWGN sub-channels in such a way that
the mean-square error is the same as an MMSE estimator,
and the sum capacity of the parallel channels is exactly same
as the original vector channel capacity.

IV. GDFE FOR MULTIUSER DETECTION

GDFE works with vector channels with white input
where components of the input vector are not coordinated.
Without coordination, the single user vector channel is iden-
tical to a multiple access channel with one user at each vec-
tor component. So, it is natural to expect GDFE to achieve
multiuser channel capacity also when each user has only
one input dimension. This is the case we will consider first.

The capacity region for multiple access channel with
scalar inputs is precisely a pentagon. Because GDFE
achieve the total capacity and every point on the 45 de-
gree slope of the pentagon has the same total capacity, the
question is therefore, which point in the capacity pentagon
is achieved by GDFE, or in other words, how data rates
are divided among the users. To calculate individual data
rates from GDFE, it is necessary to go into the details of
Cholesky factorization:

R−1b = H
∗H +Σ−1xx = G

∗SG. (25)

Let H = [h1h2...hm], Σxx = diag{E1, E2, ...Em}. Then,

H∗H +Σ−1xx equals:



h∗1
...
h∗m


 [ h1 · · ·hm

]
+




1
E1

...
1
Em


 . (26)

The Cholesky factorization intoG∗SG can be obtained by
comparing coefficients. The process yields a unique solu-
tion, and the diagonal terms ofS are obtained successively.
Let

G =




1 g11 g21 · · ·
1 g22

1
...

...


 , (27)

S = diag{S1, S2, ..., Sn}. ThenG∗SG is:




S1 g11S1 g21S1 · · ·
g11S1 g211S1 + S2 g21g11S1 + g22S2
g21S1 g21g11S1 + g22S2 g221S1 + g

2
22S2 + S3

...
...


 .

(28)

To find the data rate on each AWGN sub-channel, it is only
necessary to obtain the sub-channel SNR, which is justEiSi.
Comparing (26) with (28),

S1 = ||h1||2 + 1E1 . (29)

So, the channel capacity of the first sub-channel is,

C1 =
1

2
log(E1S1) = 1

2
log(1 + E1||h1||2). (30)

This is the sub-channel capacity as if there is no interference
from other sub-channels. (Note, the noise variance is scaled
to σ2 = 1.) The second sub-channel capacity is calculated
from S2:

C2 =
1

2
log(E2S2)

=
1

2
log[(1 + E1||h1||2 + E2||h2||2 −
E1E2(||h1||2||h2||2 − (h1 · h2)2))/
(1 + E1||h1||2)]. (31)

We claim that (31) is precisely the capacity of the second
sub-channel when signal from the first channel is regarded
as noise and signals from all other channels are perfectly
cancelled. To see this, notice that output covariance due to
xi in the ith sub-channel isE[(hixi)(hixi)∗] = Eihih∗i .
So, if the output term includes contributions fromx1, x2
and additive Gaussian noisen, and noise term includesn



and contribution fromx1, then the capacity of the second
sub-channel can be computed as:

C′2 = I(x2; y|x3 · · ·xm)
=
1

2
log
|Σyy|
|Σnn|

=
1

2
log
|I + E1h1h∗1 + E2h2h∗2|

|I + E1h1h∗1|
. (32)

(31) and (32) are equal, which can be shown using the ma-
trix identity det(I +XY ) = det(I + Y X), thus verifying
our claim. In fact, this argument may be repeated for ev-
ery sub-channel, and it becomes apparent that the following
theorem holds:

Theorem 2:For a vector multiple access channel defined
by y = Hx + n, wherex ∈ Rm has a diagonal covariance
matrix, and each component of vectorx is interpreted as a
single user, the GDFE structure is a capacity-achieving mul-
tiuser detector in the sense that the sub-channel for useri
has its capacity equal toCi = I(xi; y|xi+1, ..., xm), achiev-
ing a corner point in the multiple access channel capacity
polyhedron. Further, components of the vectorx may be
ordered inm! ways, achieving allm! corners.
In multiuser information theory, the corner points of the
multiple access channel capacity polyhedron are achieved
with superposition and interference cancellation. We see
that GDFE is precisely the practical method which imple-
ments interference cancellation.

Thus far, we have treatedy = Hx + n as am-user mul-
tiple access channel where each component ofx is a sin-
gle user. In the original model,x = [x1x2], wherex1, x2
are input vector signals corresponding to two users. GDFE
does not make a distinction between two users with vec-
tor inputs andm users with scalar inputs. By the chain
rule of conditional mutual information, the corner point of
m-dimensional polyhedron corresponding to the ordering
x = [x1x2], when combined into two users, collapses into
the corner point of two-dimensional pentagon.

In a real systems design, corner points may not always
be the desirable operating points. For example, it may be
of interest to achieve the point with equal rates for all users.
From information theory point of view, corner points are
the extreme points of the convex rate region. Any other
points may be achieved with time-sharing. But, with GDFE
on vector channels, there is enough versatility to approach
many of the middle points on the pentagon without time-
sharing. The trick is to re-order the components of the vec-
tor x = [x1x2]. The vector components may be shuffled,
i.e. a vector component for user 1 is decoded first, then
a component for user 2 is decoded, then back to 1, etc.
Each different shuffling achieves a different middle point.
In addition, even in the case where the user input signal is a
scalar, artificial vector components may be created making
shuffling possible. For example, the systemy = x1 + x2

1 2
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Fig. 8. A multiuser bit-loading and detection scheme

may be re-written asy = x11+x12+x21+x22, which now
has two components for each user. The trade-off is that the
GDFE structure becomes more complex, and it also wors-
ens the error propagation effect. Nevertheless, achieving
only the corner points is not a limitation of GDFE. Once the
corner points of the multiaccess capacity region is achieved,
all middle points can be easily dealt with.

We now put everything together and present a multiuser
detection scheme based on GDFE. The first task is to find
the multiuser channel capacity region and the optimal input
covariance matrices corresponding to the desirable point in
the capacity region by solving forΣi in the convex opti-
mization problems (6) and (7). The covariance matrices acts
as pulse shaper to the information source and it is absorbed
into the channel matrix as shown in Fig. 8. The information
sources are assumed to have unit covariance matrices.

Next, determine the appropriate ordering among the com-
ponents of the two users in GDFE. If the chosen rate point
is a corner point, then ordering is automatic. The higher
priority user occupies the lower indices inu. If the chosen
rate point is a middle point, it would be necessary to shuffle
the indices of the two users in order to find a point close
to the desirable rate trade-off. Let the permutation matrix
corresponding to the ordering beP . The system equation
becomesy = [H1Σ

1/2
1 , H2Σ

1/2
2 ]Pu+ n = Au+ n.

Now, design the GDFE receiver. This involves a
Cholesky factorization of(A∗A + Σ−1uu ) = G∗SG, where
Σuu = I. GDFE yields a set of parallel AWGN sub-
channels and the corresponding SNR for each sub-channel
is computed from the Cholesky factor. Note that each user
has as many sub-channels as the number of dimensions,
thus the input bit sequence need to be arbitrarily divided
into sub-streams. In the detector, GDFE decodes each sub-
stream as an individual user and then re-assembles the de-
coded bits back to the original order. Because GDFE de-
composes the vector channel into a set of parallel indepen-
dent sub-channels, the exact same code as used in AWGN
channels can now be applied to each of the sub-channels.



Therefore, the number of bits in each sub-channel (or equiv-
alently, the input constellation size) may be determined
from the sub-channel SNR using standard single-user meth-
ods. The choice of constellation size would depend on the
probability of error desired and the amount of coding used.
Overall, this multiuser system design is optimal in the sense
that with an optimal code for AWGN single-user channels,
this encoding/decoding scheme achieves the multiuser ca-
pacity.

Finally, we will comment on an important issue in deci-
sion feedback design so far tactically ignored: error propa-
gation. The capacity result for the multiuser detector here
are calculated assuming correct decisions are made in each
stage. In practical systems, this is not going to be true,
and errors in early stage generate errors in all subsequent
stages. Traditionally, precoding [12] is used to deal with
this problem by moving the decision feedback structure to
the encoder. Precoding is not possible in the present setting
because it requires coordination among different users. We
suggest the following methods to deal with the error propa-
gation problem. First, error correcting codes may be used to
decrease error probability at early stages. A block of trans-
mitted vectors may be coded component-wise. Decision
for the first vector component is not made until an entire
block of codewords is processed, allowing the error correct-
ing code to correct early decision errors. This would lessen
the error propagation effect in subsequent stages. We could
also take error propagation into account in bit-loading. Sup-
posePi is the error probability ofith stage assuming no
error propagation. With error propagation, the first stage
error probability is stillP1, but the second stage error prob-
ability becomesP1 + P2, and the last stage error probabil-
ity becomes

∑
Pi. To take this effect into account in bit-

loading, we can load the last stage with raw error probabil-
ity Pm = 1

2Pe, wherePe is the target probability of error.
Then, load the second last stage withPm−1 = 1

4Pe, etc.,
and first stage withP1 = 1

2mPe. This scheme would guar-
antee that with error propagation, the probability of error is
belowPe. In effect, each stage takes a loss of approximately
0.2 dB (assuming target probability of errorPe = 10−6).

V. CONCLUSIONS

This paper addresses the problem of optimal receiver de-
sign for Gaussian multiple access channels with vector in-
put and outputs. The underlying goal is to achieve multiuser
channel capacity. To this end, we first noted that the mul-
tiuser channel capacity may be explicitly characterized by
solving a set of convex optimization problems, which also
yields the optimal transmitter spectral density. We then pro-
posed a multiuser detector based on generalized decision
feedback equalizer (GDFE). This GDFE-based detector de-
composes the multiuser channel into a set of parallel AWGN
channels, allowing AWGN codes to be used in each sub-
channel. We proved that the GDFE-based detector, together

with an optimized transmitter, achieves the extreme points
in the multiple access channel capacity region.
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