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ABSTRACT /l/
The multiuser detection problem for vector Gaussian mul- &

tiple access channel with multiple inputs and multiple out-

puts (MIMO) is considered. It is shown that the capacity

region for the multiple access channel may be characterized N

and the optimal multiuser transmitter spectrum may be ob-

tained by solving a convex programming problem. With the

optimized transmitter, a practical bit-loading and multiuser

detection scheme based on generalized decision feedback

equalizer (GDFE) is proposed. This GDFE-based detection

scheme achieves the extreme points in the multiple access Fig. 1. A wireless channel with antenna arrays
channel capacity region.

I. INTRODUCTION From an information theory perspective, multiuser capac-

) . ) ) . ity is achieved with superposition and interference cancella-

A fundamental result in multiuser information theory is o g itis natural to consider decision feedback detection

the characterization of the capacity region for mu!tlple aC- schemes. Decision feedback equalizers (DFE) have long
cess channels. In a multiple access channel, multiple uncoyeen ysed to mitigate intersymbol interference in bandlim-
ordinated transmitters can potentially communicate with a jta( channels. Its generalization to multi-input multi-output

single receiver at the same total data rate as if they coordi—(M|MO) systems was first proposed in [4], where a MIMO
nate [1]. However,_ although the capac_ity region formultipl_e DFE based on the minimum mean square error (MMSE)
access channels is well-understood in terms of mutual in-¢jterion was described. Such schemes are also found in

formation, its numerical characterization is not necessarily \ho cDMA literature [5], where interference cancellation is
easy, nor methods to achieve the capacity necessarily appaterformed on a user-by-user basis. Recently, [6] found that

ent. Such is the case for channels whose inputs and outputyjs gecision feedback structure, in addition to minimizing
are multi-dimensional. In vector channels, the characteri- MSE, also maximizes sum capacity. As we shall soon see
zation of capacity region involves transmitter optimization, tpjs is not an accident. In this paper, we will develop a gen-
which, unlike the single user “waterfilling”, is non-trivial.  a3jization of the decision feedback multiuser detection for
In this direction, [2] solved a special case where the mul-ector channels which also minimizes MSE and achieves
tiple access channel has ISI. The general case was recently,« axtreme points in channel capacity at the same time. We

solved in [3], where it was shown that the optimal transmit- 4456 a derivation based on the generalized decision feed-
ter spectrum can be found using convex programming meth-y, 0y equalizer (GDFE) [7] that shows the intimate relation
ods. With an optimal transmitter spectrum, it is then possi- peveen MMSE and capacity-maximizing criteria. As one
ble to design optimal coding/decoding schemes. The goalyight expect, the optimal detector depends on the optimal
of this paper is to propose one such practical bit-loading {ransmitter spectrum.

and multiuser detection method based on decision feedback

equalizer that achieves multiuser capacity. The vector multiple access channels appear in many prac-

tical situations. In the wireless context, recent advances in

This work was supported by a Stanford Graduate Fellowship, and in part 2Nt€NNa qrray.techno_logy are promising many advantages
by a gift from France Telecom. such as diversity and increased channel capacity for mobile
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Fig. 3. A multiple access channel
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networks (Fig. 1). Since each mobile transmits via a mul- Fig. 4. Transmitter optimization in multiple access channels
tiple antenna array, the upstream transmission scenatrio is

a multiple access channel with vector input. Because theiq memoryless models using block-by-block processing and
synchronization and perfect channel side information as-guard periods. The objective is to find capacity region for
sumptions made in this paper, the methods proposed herenis channel subject to power constraiRts P; respectively
are most applicable to the fixed wireless situation. onz; andz,.

A similar situation exists for wireline access technology  The capacity region for general memoryless multiple ac-
such as Digital Subscriber Lines (DSL) (Fig. 2). DSListhe cess channels is well-known [1]. For Gaussian channels
local loop technology which brings high speed data commu- yith a specific input power spectral density, the capacity

nication to home via ordinary phone lines. The predominant region is a pentagon with one side at 45 degree slope,
noise source in copper wires is interference from adjacent

lines. If coordination at the central office is feasible, the Ry < I(z13yl22), (2)
upstream transmission becomes a multiple access channel. Ry < I(z2;ylx1), 3)

With multiuser detection _schemes, cross_talk mterference is Ri+Ry < I(z1,0;9). 4)

no longer regarded as noise, and dramatic data rate improve-

ment can be achieved [8]. Since there are more than one input power spectrum density

In the rest of the paper, we first review the transmitter satisfying the same power constraint, the capacity region for
optimization results for vector multiple access channels in vector Gaussian multiple access channel with power con-
section II. Then in section Ill, we propose a multiuser bit- Straints is the union of pentagons over all such power spec-
loading and a multiuser detection scheme based on GDFE{rum densities, (Fig. 4):

and prove that it achieves multiuser capacity. Finally, prac- Ry < I(z1;ylas);

tical issues are discussed and conclusions are drawn in seG _ U (R1,Rs) : Ry < I(z2;y|z1);

tion V. Throughout this paper, we make tactic assump- X

: : o tr(31) < Pp Ri+ Ry < I(z1,22;y).

tions that channel state information is perfectly known at (%) < Py

both transmitter and receiver and synchronization can be $1,%0 >0

achieved among the users. (5)

II. TRANSMITTER OPTIMIZATION IN VECTOR whereX; and>l; are covariance matrices for input signals
MULTIPLE ACCESS CHANNELS x1 andxq respectively, (i.e.E[z1 - 5] = X1). The capac-

ity region is a convex region whose boundary points can be
characterized by numerically maximizipd?; + (1 — ) R
subject to power constraints. The poift;, R2) at which
uR1 + (1 — p)Re is maximized is at the boundary of the
capacity region where the tangent line has slgpe 1)/p.

Y = Hyzy + Hozo + 1. (1) Va_rying w from 0 Fo 1 would trace through qll _bou_ndary

points. The following theorem makes the optimization pro-

Although we have restricted ourselves to the two-user casecess explicit.
the development here can easily be generalized to more than Theorem 1:The capacity region for the Gaussian vector
two users. We have also restricted ourselves to memory-multiple access channel (1) is a convex region whose bound-
less models because channel with memory can be convertedry points are characterized by the solution to the following

A multiple access channel is depicted in Fig. 3, where
o are input vector signalg,is the output vector signat, is
the vector additive Gaussian noigé;, and H, are channel
responses represented as matrices so that



set of optimization problems indexed by parametesinged
betweerd andl. As0.5 < p < 1, the optimization problem
is

(1—p) - Log |H\ Sy HY + HySo H + Z| +
(20— 1)  log |HySH; + 2] — - log 2]
tr(X,) < Py,
tr(Xs) < Py,
¥1,%2>0.

max

s.t.

(6)
As 0 < u < 0.5, the optimization problem is

1 ilog |HiS1HY + HoSoH + Z| +
(1—2u) - 3 log|HaSoHs + Z| — pu- 3 1og | Z]
tr(X,) < Py,
tr(Xs) < Py,

1,3 > 0.

max

s.t.

(7)

For eachy, the optimizingX; and X, are the covariance
matrices forr; andxz, corresponding to the boundary point
of the capacity region whegeR; + (1— ) Ro is maximized.
Further, the optimization problem is concave(i8,, X5)
over the set of positive semidefinite matrices pairs.

The detailed derivation of this theorem can be found
in [3]. The critical observation here is that the optimiza-
tion problem is concave. This follows from the fact that
log det(M) is a concave function @/ in the cone of pos-

block version was first proposed in [7], and it is called Gen-
eralized Decision Feedback Equalizer (GDFE). GDFE is
not only optimal in the MMSE sense, it also achieves the
mutual information between the input signal and output sig-
nal. In this section, we aim to use the same GDFE structure
for multiple access channels. We will give a derivation of a
multiuser decision feedback detector which simultaneously
minimizes MSE and maximizes total capacity. Toward this
end, we will first develop GDFE for single user, taking a
slightly different route as in [7].

First, we note that information source is i.i.d. To obtain
the necessary input covariance, the information source need
to be shaped by a pulse filter. Such pulse shaping filter may
be absorbed into the channel. So, without loss of general-
ity, we aim to find practical coding/decoding schemes that
achieve the mutual information with a white input.

The capacity region for multiple access channels with a
fixed input covariance is a pentagon, i.e., the total data rate
is bounded by (z1, z2; y). Therefore, in (1)z, andzs may
be considered jointly. Define the input vector= [z;z2]7,
and the channel responge= [H; H»|, we have,

y=Hzx+n. (8)

For simplicity, assume tha&'[nn*] = I, i.e. noise is pre-
whitened. The goal becomes to achieve single user ca-
pacity I(z;y). From Shannon’s original channel capacity
argument, we know that with a randomly generated code
and a typicality or maximum likelihood decoder, data trans-

itive semi-definite matrices [9]. The composition of a con- Mission at rates below the maximum mutual information

cave function and a linear function is concave, so the ob-has probability of error exponentially approaching zero.

jective is a concave function ifE;, X,). In addition, trace However, randomly choosing codewords from Gaussian en-
constraints are linear, therefore, the entire problem can besembles is not practical, and typicality decoder or maxi-

posed as a convex programming problem. The convexitymum likelihood decoder involves searching through multi-

observation is crucial because it guarantees that efficientdimensional space which is computationally intensive. The
search algorithms exist. In fact, the classical waterfilling aim is, therefore, to find practical ways to achid\e; y),

and the recent multiuser waterfilling algorithm in [2] are preferably on a symbol-by-symbol basis. Generalized de-
particular examples of such convex optimization routines. Cision feedback equalization (GDFE) is one such practical
In the particular case wheye = 0.5, the problem degen- method that achieves capacity.

erates into thenazdet problem that is well studied in the The development of GDFE involves three key ideas. The
field of convex optimization and for which efficient software first idea is the following observation made in [10]:

package already exists [9]. Convex optimization algorithms

are always iterative in nature, and their convergence to the I(y;z) = H(y) — H(y|z) = llog 2yl : (9)
global maximum is guaranteed. 2 Xyal
lll. GENERALIZED DECISION FEEDBACK 1 IS
EQUALIZER I(z;y) = H(z) — H(zly) = 3 log |E“"“’ B (10)
z|y

Although decision feedback equalizer has long been used
to combat intersymbol interference, it was not until fairly re- The equivalence of (z;y) and I(y; z) shows that mutual
cently that minimum mean square error decision feedbackinformation may be achieved in two different ways. In the
equalizer (MMSE-DFE) was shown to achieve channel ca- forward direction (9), the input signal is the output sig-
pacity in single-user ISI channels [10]. Traditionally, the nal isy, andX%,, is just the covariance matrix of additive
MMSE-DFE structure includes linear time invariant filters, noise. In the backward direction (10),is considered as
which operate on the entire input signal. The finite length the input signalx the output signal, and the error sigral
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Fig. 6. Forward and backward canonical channels

is the MMSE linear estimation error af based ory. The

relationship between the forward and backward directionsestingly and perhaps surprisingly, the backward channel

is illustrated in Fig. 5, wher&V is the MMSE linear es-

timation filter of z giveny. The fact that the backward w=(HH+3;,) 2 +e=Rpz+e (16)

channel associated with minimum-mean-square-error stiyg 454 canonical. The following computation verifies this

mation has the same channel capacity as the original Cha”fact,

nel suggests that with an MMSE filter, detectindrom &

achieves the same channel capacity as detectiingm y. Elee*] = E[(x—1)(z—2)"]

Therefore, an MMSE estimator is also necessarily capacity = Ellz- szy—yly)(x _ Exyzy—yl )]

achieving. Note, at this point, we are still doing block-based N . 1

processing. Component-wise decisionadirectly is not = Bop — BooH (0o H + 1) HEqy

the right thing to do because the MMSE error is not nec- (H*H+ ;)"

essarily white, hence such detection scheme is not optimal = Ry, (17)

in the sense that it does not achieve the channel capacity _ o )

L1og(|S4z]/|See|). Our goal is to use decision feedback where we haq again used the matrix |nverS|on.Iemma (24).

to allow component-wise decision while not increasing the ~ Recall thatin order to perform optimal detection, we need

mean square error or decreasing mutual information. As thet0 whiten the MMSE error.  The third key idea in GDFE

following development shows, such is possible with GDFE. iS t0 recognize that whitening may be done with decision
To facilitate component-wise detection, we need to feedback via Cholesky factorization. Since decision feed-

whiten the MMSE erroe, while preserving the “informa- back is causal, the unique causal whitening filter (up to scal-

tion content” iné. Toward this end, we break up MMSE ing) is the Cholesky factor of the error covariance, which

filter W in Fig. 5 into two components, creating two so- by construction, is jusR,. Because in a canonical chan-

called canonical channels. The notion of canonical channeln€l, the noise variance and the channel response are the

is the second key idea in GDFE. Canonical channel is use-Same, the noise whitening process may be accomplished

ful in that it makes symbol-by-symbol detection possible, as by splitting the filterR; into a feedback configuration. Let

will be apparent shortly. Let us first write down the MMSE £ = G~'S~'G™*, where§ is diagonal,G is an upper

filter W explicitly, triangular matrix withl’s on the diagonal. Then
W= 2,5} (11) T = szl e (18)
= S H (HS.H + 1) (12) v Gfl Sf*G Fre (19)

_ . which suggests the successive decoding structure in Fig. 7.
where (11) follows from the standard linear estimation the- Because is upper triangulaz;,, can be decoded first, then

ory, (13) follows from the matrix inversion lemma [11], \yith its interference subtracted, ; may be decoded, etc.

which states, In this structure, noise prior to the decision device is just
(A+ BCD) ' =A"'—A'B(C"'+ DA 'B)"'DA !, Ge, which is white,

(14) E[Ge(Ge)*] = GR,G* = 571, (21)
Now, itis clear thatV’ may be splitinto a matchedfiltéf*,  and has the same means square error as an MMSE estima-

and an estimation filter, as shown in Fig. 6. The channel igr:
from z to z is the forward canonical channel,
ST =]]57" = Ro = [Zeel. (22)
z=H*Hx+ H'n=Rjx+n' (15) o _
Note that the minimum mean square error here is taken as
The name canonical channel comes from the fact that thethe determinant of the covariance matrix instead of the usual
covariance of noise’ is the same as the chanr®}. Inter- trace. These two criteria are equivalent [11].



z S_l G x-Ge 4’7 X H*H + E;xl equals:
h &
- [ hreeho ]+ . (26)
h, &

Fig. 7. Generalized decision feedback equalizer
The Cholesky factorization int6¢*SG can be obtained by
comparing coefficients. The process yields a unique solu-
Now, the noise has been whitened, and inpus also tion, and the diagonal terms Sfare obtained successively.
white by assumption, so we have converted the vector chanLet
nel into a set of independent AWGN sub-channels, each

with a capacityl log(SNR;) = 1log(&;S;), whereé; is 1 gil 921
the energy of the input signal iith component. The SNR G— 952 27)

here is so-called biased SNR, which is the ratio of output
signal energy to noise energy. The capacity of the vector
channel is the sum of capacities of each individual sub-

channels. So, S = diag{Si, S2, ..., Sn}. ThenG*SG is:
1 S1 91151 92151
¢ = D) IOgH&S" (23) { 91151 93151 + 52 92191151 + 92252
) ;: 92151 92191151 + 92252 93151 + 93252 + 53
ee (28)

which is the capacity of the original channel. Therefore, To find the data rate on each AWGN sub-channel, it is only

GDFE is able to convert a vector channel with white input necessary to obtain the sub-channel SNR, which |ﬂl&t
into a set of parallel AWGN sub-channels in such a way that Comparing (26) with (28),

the mean-square error is the same as an MMSE estimator,
and the sum capacity of the parallel channels is exactly same

1
2
= —. 2
as the original vector channel capacity. S1= [l + & (29)

So, the channel capacity of the first sub-channel is,
IV. GDFE FOR MULTIUSER DETECTION

1 1

GDFE works with vector channels with white input C1 = 5 log(€151) = 5 log(1 + Eil[hal[?). (30)
where components of the input vector are not coordinated.
Without coordination, the single user vector channel is iden- This is the sub-channel capacity as if there is no interference
tical to a multiple access channel with one user at each vecfrom other sub-channels. (Note, the noise variance is scaled
tor component. So, it is natural to expect GDFE to achieve 10 0” = 1.) The second sub-channel capacity is calculated
multiuser channel capacity also when each user has onlyffom Sa:
one input dimension. This is the case we will consider first.

1
The capacity region for multiple access channel with Cy = 510g(5252)
scalar inputs is precisely a pentagon. Because GDFE 1 ) )
achieve the total capacity and every point on the 45 de- = 5 log[(1 + &ullha]]” + Exllhaf|” ~
gree slope of the pentagon has the same total capacity, the & (B IR 12 = (B - o)
guestion is therefore, which point in the capacity pentagon 12/l ||2 2| (b1 - h2)7))/
is achieved by GDFE, or in other words, how data rates (L + &lha|7)]- (31)

are divided among the users. To calculate individual data
rates from GDFE, it is necessary to go into the details of
Cholesky factorization:

We claim that (31) is precisely the capacity of the second
sub-channel when signal from the first channel is regarded
as noise and signals from all other channels are perfectly
. i . i cancelled. To see this, notice that output covariance due to

R,"=H"H+X%,, =G"SG. (25) 2z, in the ith sub-channel i=[(h;z;)(hiz;)*] = Ehihs.

So, if the output term includes contributions fram, x-

Let H = [hiha...hp], Xpw = diag{&1,Ea,...Em}. Then, and additive Gaussian noisg and noise term includes



and contribution frome;, then the capacity of the second ”1% 112 % H, n
sub-channel can be computed as: ! ‘ y
L
Cy = I(z2sylzs - am) /
X
= llog 2wl uzﬂ 2P M,
2 [Znn]
1 I+ Erhihf 4 Ehohl
= 3k | T+ Sl L@ 2H,
| + &1 1| uslug w1 — | uGe 1 lel
_ , -+ s'c .
(31) and (32) are equal, which can be shown using the ma- 22

trix identity det(I + XY) = det(I + Y X), thus verifying
our claim. In fact, this argument may be repeated for ev-
ery sub-channel, and it becomes apparent that the following
theorem holds:

Theorem 2:For a vector multiple access channel defined
byy = Hx + n, wherex € R™ has a diagonal covariance
matrix, and each component of vectois interpreted as a
single user, the GDFE structure is a capacity-achieving mul-
tiuser detector in the sense that the sub-channel foriuser
has its capacity equal ©; = I(z;; y|it1, ..., Tm), @chiev-
ing a corner point in the multiple access channel capacity
polyhedron. Further, components of the vectomay be

. o all middle points can be easily dealt with.
ordered inm! ways, achieving alin! corners. We now put everything together and present a multiuser
In multiuser information theory, the corner points of the . ; ) .
Y P . Odetectlon scheme based on GDFE. The first task is to find

ethe multiuser channel capacity region and the optimal input
covariance matrices corresponding to the desirable point in
the capacity region by solving for; in the convex opti-
mization problems (6) and (7). The covariance matrices acts
as pulse shaper to the information source and it is absorbed
gle user. In the original modet, = [x12], wherez,, a2 into the channel matrix as shown in Fig. 8. The information

are input vector signals corresponding to two users. GDEESources are assumed to have unit covariance matrices.
does not make a distinction between two users with vec- Next, determine the appropriate ordering among the com-
tor inputs andm users with scalar inputs. By the chain ponents of the.two users in QDF!E. If the chpsen rate.point
rule of conditional mutual information, the corner point of 1S @ corner point, then ordering is automatic. The higher
m-dimensional polyhedron corresponding to the ordering Priority user occupies th.e Iqwer indicesun If the chosen
z = [z172], when combined into two users, collapses into rate pointis a middle point, it would be necessary to shuffle
the corner point of two-dimensional pentagon. the |nd|ce§ of the two users in order to find a pplnt cloge
In a real systems design, corner points may not alwaysto the deswgble rate trade—pff. Let the permutation matrlx
be the desirable operating points. For example, it may becorresponding to the ordering lie. The system equation
of interest to achieve the point with equal rates for all users. becomeg; = [H, 21, HySy 2| Pu+n = Au +n.
From information theory point of view, corner points are  Now, design the GDFE receiver. This involves a
the extreme points of the convex rate region. Any other Cholesky factorization ofA*A + ¥,}) = G*SG, where
points may be achieved with time-sharing. But, with GDFE X, = I. GDFE yields a set of parallel AWGN sub-
on vector channels, there is enough versatility to approachchannels and the corresponding SNR for each sub-channel
many of the middle points on the pentagon without time- is computed from the Cholesky factor. Note that each user
sharing. The trick is to re-order the components of the vec-has as many sub-channels as the number of dimensions,
tor z = [z122]. The vector components may be shuffled, thus the input bit sequence need to be arbitrarily divided
i.e. a vector component for user 1 is decoded first, theninto sub-streams. In the detector, GDFE decodes each sub-
a component for user 2 is decoded, then back to 1, etc.stream as an individual user and then re-assembles the de-
Each different shuffling achieves a different middle point. coded bits back to the original order. Because GDFE de-
In addition, even in the case where the user input signal is acomposes the vector channel into a set of parallel indepen-
scalar, artificial vector components may be created makingdent sub-channels, the exact same code as used in AWGN
shuffling possible. For example, the systgm= z; + z- channels can now be applied to each of the sub-channels.

Fig. 8. A multiuser bit-loading and detection scheme

may be re-written ag = x1; + 212 + x21 + 22, Which now

has two components for each user. The trade-off is that the
GDFE structure becomes more complex, and it also wors-
ens the error propagation effect. Nevertheless, achieving
only the corner points is not a limitation of GDFE. Once the
corner points of the multiaccess capacity region is achieved,

with superposition and interference cancellation. We se
that GDFE is precisely the practical method which imple-
ments interference cancellation.

Thus far, we have treated= Hzx + n as am-user mul-
tiple access channel where each component &f a sin-



Therefore, the number of bits in each sub-channel (or equiv-with an optimized transmitter, achieves the extreme points
alently, the input constellation size) may be determined in the multiple access channel capacity region.

from the sub-channel SNR using standard single-user meth-

ods. The choice of constellation size would depend on the ACKNOWLEDGMENT
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