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Abstract—The problem of optimally adjusting the power spec-
tral density level, referred as power spectrum optimization, is a
well-known and difficult nonconvex optimization problem. This
paper investigates a class of local optimization methods based on
a technique called iterative function evaluation. This idea, first
proposed in our previous work, is based on the manipulation
of the first order condition of the optimization problem into
an algorithm. This paper shows that these manipulations are
not unique, and proposes a new iterative-function-evaluation-
based method for power spectrum optimization. In addition, this
paper proposes methods based on the average channel gains
for an orthogonal frequency division multiple access network.
Finally, the performance of the proposed methods is evaluated
in a wireless backhaul application.

I. INTRODUCTION

Power spectrum optimization refers to the optimization of
transmit powers in a multiuser environment for the purpose of
managing mutual interference. Because of the mutual coupling
between the power terms which induces nonconvexity, finding
the global optimality of the power spectrum optimization
problem is understood to be a difficult problem.

Like many existing approaches to this problem, this pa-
per focuses only on local optimization methods, but aims
to identify algorithms with fast convergence. In particular,
we adopt an approach based on iterative function evaluation
methods (IFEMs), first proposed in [1], in which an iterative
algorithm is derived based on the manipulation of the first
order condition of the optimization problem.

This paper shows that such manipulation is not unique;
different manipulations lead to different iterative power opti-
mization algorithms. But one also has to be careful in choosing
the sensible manipulations in order to ensure convergence.
While our previous work proposed an IFEM method that has
the flavor of the SCALE algorithm [2] for power optimization,
this paper proposes a different IFEM method that has the flavor
of iterative water-filling [3].

The proposed method is computationally fast. It can be
implemented in a distributed fashion, and does not require step
size choices, as traditional subgradient or Newton’s methods
in optimization do. Finally, this paper also proposes numerical
power adaptation algorithms based on the average channel
gains, and evaluates their performance on a wireless backhaul
application.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

This paper considers a wireless backhaul network with L
access nodes (ANs) and K remote terminals (RTs) per AN,
as in [1], with single antenna at both the ANs and RTs. The
paper uses an orthogonal frequency division multiple access
(OFDMA) scheme with N subcarriers to separate the RTs
belonging to each AN. For each AN l, only one RT k is active
at each frequency tone n. More formally, the scheduled RT of
the lth AN at the nth tone is denoted by k = f(l, n). Similarly,
k′ = f(j, n) denotes the scheduled RT of the jth AN at the nth
tone. Let xn

l be the complex scalar denoting the information
signal for the kth RT. The received signal at the kth RT can
be written as:

ynl = hn
llkx

n
l +

∑
j ̸=l

hn
jlkx

n
j + znl (1)

where hn
jlk ∈ C is the channel from the jth AN to the kth

RT, and znl is the additive white Gaussian noise with variance
σ2/2 on each of its real and imaginary components.

B. Problem Formulation

Similar to our previous work [1], this paper adopts a
network utility maximization framework with an objective
of maximizing the proportionally fair log utility function of
the long-term average rate:

∑
l,k log

(
R̄lk

)
, where R̄lk is the

long term average rate of the kth RT of the lth AN. The
problem consequently boils down to a per-tone weighted rate-
sum maximization problem:

max
∑
l

wlkr
n
lk

s.t. 0 ≤ Pn
l ≤ Smax (2)

where

rnlk = log

(
1 +

Pn
l |hn

llk|2

Γ(σ2 +
∑

j ̸=l P
n
j |hn

jlk|2)

)
(3)

is the instantaneous rate of the scheduled kth RT for the lth
AN at the nth tone, Smax is the maximum power constraint
imposed on each AN at each tone, the weights come from
the scheduling objective (e.g. wlk = 1

R̄lk
for proportional

fairness), and where the maximization is over the set of powers
Pn
l .
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III. ALGORITHMS

Due to the nonconvexity of the problem (2), this paper, like
[1] and many previous works, aims at local optimal solutions.
The proposed method is based on the observation that the
gradient of the objective function is zero at a local optimum,
and that the manipulations of the optimality condition can
lead to power update algorithms. These algorithms are called
iterative function evaluation methods (IFEMs).

A. IFEMs

The objective function of the problem (2), which is opti-
mized over the set of power on a tone-by-tone basis, can be
written as:

R
(
{Pn

i }Li=1

)
=
∑
l

wlk log

(
1 +

Pn
l |hn

llk|2

Γ(σ2 +
∑

j ̸=l P
n
j |hn

jlk|2)

)
We begin by taking the derivative of the objective function R
with respect to Pn

l :

∂R

∂Pn
l

= wlk
∂rnlk
∂Pn

l

+
∑
j ̸=l

wjk′
∂rnjk′

∂Pn
l

=
wlk

Pn
l

(
SINRn

l

1 + SINRn
l

)
−

∑
j ̸=l

wjk′
|hn

ljk′ |2

σ2 +
∑

i ̸=j P
n
i |hn

ijk′ |2
SINRn

j

1 + SINRn
j

(4)

where SINRn
j is defined as:

SINRn
j =

Pn
j |hn

jjk′ |2

Γ(σ2 +
∑

i ̸=j P
n
i |hn

ijk′ |2)
, (5)

and k = f(l, n) and k′ = f(j, n) are the scheduled RTs of the
lth AN and the jth AN respectively at the nth tone. A local
optimal solution must be such that the above gradient is zero.
The key idea of IFEM is that by setting the above gradient
to zero and by manipulating the optimality condition, one can
obtain algorithms for optimizing power.

One possible manipulation of the optimality condition gives
the following equation:

Pn
l =

wlk
SINRn

l

1+SINRn
l∑

j ̸=l wjk′
|hn

ljk′ |2

σ2+
∑

i ̸=j Pn
i |hn

ijk′ |2
SINRn

j

1+SINRn
j

. (6)

This leads to an algorithm called full-IFEM in [1]. In this
paper, we call it IFEM-1 for the sake of comparing it with the
new algorithms.

The main point of this paper is that the the manipulation
used in deriving IFEM-1 is not unique. In fact, different
manipulations of the optimality condition can lead to different
algorithms. For example, starting again by setting the gradient
(4) to zero, we can write

Pn
l

(
1 +

1

SINRn
l

)
=

wlk∑
j ̸=l

wjk′ |hn
ljk′ |2

σ2+
∑

i̸=j Pn
i |hn

ijk′ |2
SINRn

j

1+SINRn
j

(7)

Thus,

Pn
l =

wlk∑
j ̸=l wjk′

|hn
ljk′ |2

σ2+
∑

i̸=j Pn
i |hn

ijk′ |2
SINRn

j

1+SINRn
j

− Pn
l

SINRn
l

(8)

Again, we can interpret the above equation as an iterative
algorithm, i.e., one can compute the terms on the right-hand
side, and update the new power allocation according to (8).
We name the resulting new algorithm IFEM-2. More formally,
in IFEM-2 the power level of every AN at every tone, Pn

l , is
updated from step t to t+ 1 according to

Pn
l (t+ 1) =

[
wlk∑

j ̸=l τ
n
jl(t)

− Pn
l (t)

SINRn
l (t)

]Smax

0

(9)

where the power constraint is again taken into account using
the projection step [.]

Smax

0 .
This strategy of deriving a fixed-point equation for power

optimization by isolating the power term Pn
l on one part of

the equation is by no means limited to the above methods,
i.e. IFEM-1 and IFEM-2. For example, one can rearrange the
terms in (4) in a different way to get the following relation:

Pn
l = SINRn

l

 wlk∑
j ̸=l

wjk′ |hn
ljk′ |2

σ2+
∑

i ̸=j Pn
i |hn

ijk′ |2
SINRn

j

1+SINRn
j

− Pn
l

 ,

(10)
which we call IFEM-3 in this paper. But interestingly, although
both IFEM-1 and IFEM-2 are excellent algorithms, IFEM-
3 is not. It turns out that the iterative function evaluation
method resulting from this above manipulation (10) does not
necessarily converge. The reason behind such differences is
not well understood. It nevertheless serves to illustrate that
one has to be careful in coming up with different algorithms.

B. High-SINR IFEM (HSIFEM) and θ-IFEM-2

The convergence of both IFEM-1 and IFEM-2 is not easy
to establish in full generality, due to the tight coupling of the
interference terms in their respective update equations. In [1],
two-algorithms called θ-IFEM-1 (called θ-IFEM in [1]) and
IFEM are proposed to approximate IFEM-1. The advantage
of such approximation is that the convergence of the two
algorithms IFEM and θ-IFEM-1 can be proven based on the
standard function properties introduced in [4]. While IFEM
is a high-SINR approximation of IFEM-1, θ-IFEM-1 replaces
the per-iteration SINRs in the IFEM-1 update equation with
fixed values of SINRs calculated under the initial maximum
power transmission strategy.

Similar approaches can be applied to IFEM-2. First, note
that at a high SINR, both IFEM-1 and IFEM-2 reduce to the
same update equation. This high-SINR approximation, which
is the same as IFEM in [1], has the following power update
equation:

Pn
l (t+ 1) =

 wlk∑
j ̸=l wjk′

|hn
ljk′ |2

σ2+
∑

i ̸=j Pn
i (t)|hn

ijk′ |2

Smax

0

(11)
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We call this algorithm High-SINR IFEM (HSIFEM).
Moreover, following the same idea used in deriving θ-

IFEM-1 from IFEM-1, a similar method can be applied to
replace the per-iteration SINRs in the IFEM-2 update equation
with the values of SINRs calculated under the initial maximum
power transmission strategy. However, it turns out that this
method does not necessarily converge. But for the sake of
completeness, we write down the θ-IFEM-2 algorithm, which
updates the power level Pn

l according to:

Pn
l (t+1) =

 wlk∑
j ̸=l

wjk′ |hn
ljk′ |2

σ2+
∑

i ̸=j Pn
i (t)|hn

ijk′ |2 θ
n
j

− Pn
l (t)
θn
l

1−θn
l

Smax

0
(12)

where θnl =
S̃INR

n

l

1+S̃INR
n

l

, and S̃INR
n

l is the fixed SINR calculated
from the maximum power transmission strategy, i.e.

S̃INR
n

l =
Smax|hn

llk|2

Γ(σ2 +
∑

j ̸=l S
max|hn

jlk|2)
(13)

C. Methods Based on Average Channel Gains:
All the methods above are based on per-tone channel

measurements. Those measurements are typically provided to
either a central server for further centralized processing, or to
each of the several access nodes for distributed processing.
In practice, to minimize the overhead of such exchange
of information, the measurements can alternatively provide
the frequency domain average channel gains. The proposed
methods above can make use of the average channel gains
instead. In the simulations section, we subsequently quantify
the performance of these “average gains methods” in a typical
wireless backhaul network. These methods are of particular
interest when the delay spread of the wireless propagation
environment is limited.

Define the average channel gain |h̄jlk|2 as:

|h̄jlk|2 =
1

N

N∑
n=1

|hn
jlk|2, ∀(j, l, k) (14)

All the methods presented earlier become “Average Gain
methods (AG method)” by substituting the average gains in
the equations of the corresponding method. For example,
IFEM-2 becomes AG IFEM-2. To evaluate the performance
of the methods in this paper, we compare them with full-
blown Newton’s method (NM) proposed in [5]. The update
equations of NM and its high-SINR approximation (HSNM)
can be found in [1].

D. Distributed Implementation:
The above methods in this paper can be put together under

a generic power update equation:

Pn
l (t+ 1) = ϑ

(
τnjl(t), P

n
l (t), SINRn

l (t)
)

(15)

Typically, Pn
l is known and SINRn

l can be easily measured
at each AN. A distributed implementation of power allocation
(15) is, therefore, possible if ANs exchange the variables τnjl.
The terms τnjl typically have the interpretation of being the
interference prices.

Sum Rate in bps/Hz d1 = 0.5km d1 = 1km
HSIFEM 60.68 91.33
AG HSIFEM 60.67 91.33
HSNM 60.68 91.33
AG HSNM 60.67 91.33
IFEM-1 62.61 91.58
AG IFEM-1 62.59 91.57
IFEM-2 62.61 91.58
AG IFEM-2 62.59 91.57
NM 62.61 91.58
AG NM 62.59 91.57
Max Power Method 53.01 86.22
IFEM-2 Gain 18.1% 6.2%

TABLE I
METHODS BEHAVIOR OVER 7 ANS, 4 RTS PER AN. d1 IS THE AN-TO-AN

DISTANCE. AN-TO-RT DISTANCE IS 150M.

Sum Rate in bps/Hz Cell-edge(d2 = 333m) Cell-center(d2 = 125m)
HSIFEM 34.84 78.39
AG HSIFEM 34.83 78.38
HSNM 34.84 78.39
AG HSNM 34.83 78.38
IFEM-1 41.11 78.77
AG IFEM-1 41.09 78.76
IFEM-2 41.11 78.77
AG IFEM-2 41.09 78.76
NM 41.11 78.77
AG NM 41.09 78.76
Max Power Method 30.54 71.91
IFEM-2 Gain 34.6% 9.5%

TABLE II
METHODS BEHAVIOR OVER 7 ANS, 4 RTS PER AN. AN-TO-AN

DISTANCE IS 0.5KM.

IV. SIMULATIONS

The performance of the proposed methods is evaluated using
a wireless backhaul network comprising 7 ANs, and 4 RTs
per AN, over 10MHz bandwidth. It assumes an OFDMA
system with 1024 subcarriers, where only one RT is active
at each frequency tone. A distance-dependent pathloss model
128.1+37.6 log10(d), where k is in km, and a multipath delay
profile corresponding to SUI-3 Terrain type B are adopted. To
study the performance of the proposed methods for various
topologies, the AN-to-AN distance d1 and the AN-to-RT
distance d2 vary throughout the simulations. To compare the
sum rate of the various methods, the weighting factors wlk in
problem (2) are set to 1 ∀(l, k).

Tables I and II show the sum-rate performance of the
proposed methods for different network topologies. Tables I
and II show that IFEM-1, IFEM-2, and NM all have similar
performance over all topologies, i.e., they all converge to a
local optimal solution of the original nonconvex optimiza-
tion problem. In addition, HSIFEM and HSNM, which are
derived under the high SINR approximation, also always have
the same performance. For cell-center RTs, e.g. the case of
d1 = 1km, d2 = 150m in Table I and the case of d1 = 0.5km,
d2 = 125m in Table II, the high SINR approximation is valid.
In this case, HSIFEM, HSNM, IFEM-1,IFEM-2 and NM all

160



0 5 10 15 20 25 30
85

86

87

88

89

90

91

92

93

94

Iterations

T
ot

al
 S

um
−

R
at

e 
ac

ro
ss

 a
ll 

A
N

s 
in

 b
ps

/H
z

 

 

Newton’s Method
IFEM−2
IFEM−1
θ−IFEM−1
HSIFEM

Fig. 1. Sum-rate in bps/Hz versus the number of iterations, over 7 ANs,
4 RTs per AN. AN-to-AN distance is 1km. AN-to-RT distance is 150m. It
shows the convergence of the different methods at high SINR.

have similar performance. But when the SINR level is not
sufficiently high as it is the case for cell-edge RTs, HSIFEM
and HSNM become inferior to IFEM-1, IFEM-2 and NM.
Note that all the proposed algorithms remain superior to the
maximum power method strategy, for all network topologies.

Tables I and II also show that the methods that rely on the
frequency domain average channel gain have a very similar
performance to the methods that are based on the per-tone
channel gain measurements. This is due to the fact that a
typical fixed wireless backhaul channel is relatively flat fading.
Our simulation assumes an SUI-3 model with Terrain type B,
in which the delay profile has three taps; the k-factors of the
three taps are 3, 0, and 0; the relative taps delays are 0, 0.4,
and 0.9 in microseconds.

The convergence performance of the various proposed al-
gorithms is shown in Figs. 1 and 2. The step size of Newton’s
method is fixed to 1, so as to allow a fair comparison with
the IFEMs. Fig. 1 corresponds to a high SINR situation. In
this situation, the Newton’s method has a poor performance
as compared to the IFEMs, IFEM-2 shows the overall faster
convergence. In a low SINR situation, however, as it is the
case in Fig. 2, the convergence of the Newton’s method is
faster than both IFEM-1 and IFEM-2.

Finally, Fig. 3 illustrates the convergence behavior of IFEM-
3 and θ-IFEM-2. Unlike the other proposed methods in the pa-
per, these two algorithms show an oscillatory behavior. IFEM-
3 particularly shows an inferior performance as compared to
all other methods.

V. CONCLUSION

Dynamic power spectrum optimization is expected to play
a major role in improving the performance of future wireless
networks. This paper proposes novel methods for power man-
agement. The methods are based on either the frequency do-
main channel gains, or the frequency domain channel average
gains. The methods are computationally feasible and can be
implemented in a distributed fashion. They do not require step
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Fig. 2. Sum-rate in bps/Hz versus the number of iterations, over 7 ANs,
4 RTs per AN. AN-to-AN distance is 0.5km. AN-to-RT distance is 333m. It
shows the convergence of the different methods at low SINR.
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Fig. 3. Sum-rate in bps/Hz versus the number of iterations, over 7 ANs, 4
RTs per AN, for different SINR levels. It shows the oscillatory convergence
behavior of θ-IFEM-2 and IFEM-3.

size choices, as traditional subgradient or Newton’s methods
in optimization do. They show a significant performance im-
provement as compared to the maximum power transmission
strategy.
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