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Abstract—This paper considers the detection problem for
fading channels in the presence of interference when both the
transmitter of interest and the interferers employ practical modu-
lation schemes. It is shown that, for Rayleigh fading, it is possible
to obtain symbol error rates that have the same dependence
on the received signal-to-noise ratio as when transmission is
interference-free. This is achieved using detectors that employ
knowledge on the channel and on the modulation schemes of the
interference. Therefore, the use of interference-aware detectors
can increase the overall capacity and improve the reliability of
wireless systems, justifying the use of additional knowledge on
the interferers that is required for implementation as compared
to detectors that do not differentiate interference from noise.

I. INTRODUCTION

Recently, there has been growing interest in interfer-
ence mitigation in cellular communication systems. So far,
the most common practice in system design has been to
avoid interference using orthogonal multiplexing schemes
(FDMA/TDMA/CDMA/OFDMA) and by placing cells that
reuse the same frequencies far apart. Coordination among base
stations allows full frequency reuse and interference mitigation
using spatial equalization and, whenever possible, transmit
precoding. However, in practice, it is not easy to achieve
coordination among base stations in real time. In this case,
if full frequency reuse is desired, transmission needs to occur
in the presence of interference.

Although joint detection of the desired signal and the
interference was considered in some contexts such as multi-
input multi-output (MIMO) and CDMA [1–6], interference is
commonly viewed as contributing to the noise floor at the
receiver [7–9]. However, this is true only when the detectors
do not take into account the statistics of interference. In fact,
in practical systems, interference may often be less detrimental
than noise of equal power, because, contrary to Gaussian noise,
the signals emitted by the interfering users belong to discrete
constellations. In this paper it is shown that, in such cases,
the fundamental limit on the performance of the system is the
power of the noise, and that discrete interference results in a
loss that is bounded, irrespective of the signal-to-noise ratio.

As was shown in previous work by the authors [10], for
a given channel realization, the symbol error rate (SER)
curve for an interference-ignorant detector reaches an error

floor as the signal-to-noise ratio (SNR) increases for a given
level of signal-to-interference ratio (SIR). However, with the
exception of a finite number of SIR values, no such error floor
appears if a maximum-likelihood (ML) detector is employed
that incorporates knowledge of the interfering channel and the
statistics of the interference. Therefore, the SER has the same
dependence on the SNR as when transmission is not subject
to interference. In this paper it is shown that the same holds in
the case where transmission is subject to Rayleigh fading: If
ML detection is employed at the receiver, the SER is limited
by the SNR (and not the signal-to-interference-and-noise ratio
(SINR)), and its dependence on the SNR is the same as in
interference-free transmission. The presence of interference
does result in performance loss, but this loss is bounded by a
constant factor, regardless of the SNR.

II. SYSTEM MODEL

In this paper, a Gaussian interference channel (IC) with flat
fading is considered. The signal y[m] received by user 1 at
time m in such a channel is represented as follows:

y[m] =

U∑
u=1

hu[m]xu[m] + z[m], (1)

where xu[m] is the transmit signal of user u at time m,
hu[m] is the channel gain from the transmitter of user u to
the receiver of user 1, and z[m] is the background noise. In
this paper, the problem of primary interest is the symbol-by-
symbol detection of x1[m] given y[m]. Thus, the time index
m is omitted whenever there is no potential for confusion. In
vector form, (1) can be written as

y = h∗x+ z, (2)

where h = [h∗
1 · · · h∗

U ]
T and x = [x1 · · · xU ]

T .
It is assumed that the transmit symbols are equiprobable

and that the power of the transmit signal of user u is Pu =
E|xu|2. The background noise z is modeled as a circularly
symmetric complex Gaussian random variable with mean 0
and variance N0, i.e., z ∼ CN (0, N0). A Rayleigh fading
channel is considered. In other words, the channel gains hu are
circularly symmetric complex Gaussian random variables with



mean 0 and variance 1, i.e., hu ∼ CN (0, 1). The variance of
hu can be set to 1 without loss of generality by incorporating
the variance of the channel gain into the transmit signal power
Pu. The random variables xu and hu for u = 1, · · · , U and
z are independent of one another. For convenience, various
useful ratios can be defined in terms of Pu and N0:

SNR � P1

N0
, SIR � P1∑U

u=2 Pu

,

SINR � P1∑U
u=2 Pu +N0

, INRu � Pu

N0
,

For the 2-user case, INR2 is simply represented as INR.
This paper focuses on the fading channel scenario in

which transmitters do not know the channel gains and use
a fixed finite constellation (e.g. quadrature-amplitude modula-
tion (QAM) or phase shift keying (PSK)). On the other hand,
it is assumed that receiver 1 knows the channel gains as well
as the modulation formats of all users.

III. A BRIEF REVIEW OF DETECTORS

In this section, 4 detectors, which were considered in
[10], are briefly reviewed: an interference-ignorant detector, a
successive interference cancellation (SIC) detector, the optimal
ML detector, and the joint minimum-distance (MD) detector.
The interference-ignorant detector for x1 simply divides the
received signal y by the direct channel gain h1 and then maps
it to the closest point of the signal constellation of transmitter
1. On the other hand, the SIC detector performs detection for
the interference first, cancels interference, and then detects the
desired signal. To be more concrete, consider a two-user IC.
Although the detector for receiver 1 is ultimately interested
only in x1, it can first obtain an estimate, x̂2, of x2 by
treating x1 as noise, then detect x1 by mapping y−h2x̂2

h1
to

the closest constellation point of transmitter 1. Note that both
the interference-ignorant detector and the SIC detector assume
that either the desired signal or the interference is Gaussian.

Without the Gaussian assumption on either the desired
signal or the interference, the optimal ML detector for the
desired signal x1 is given as

x̂1(y) = argmax
x1

[
M2−1∑
m2=0

· · ·
MU−1∑
mU=0

exp

(
−|y − h1x1 −

∑U
u=2 huxu,mu |2

N0

)]
.(3)

The optimal ML detector requires the calculation of the sum
of exponential functions and the calculation of the Euclidean
distance from the received signal to all combined signal
constellation points. The following lower-complexity joint MD
detector can be derived as an approximation of the optimal ML
detector [10]:

x̂1(y)

= argmin
x1

⎡
⎣ min
x2,··· ,xU

∣∣∣∣∣y − h1x1 −
U∑

u=2

huxu,mu

∣∣∣∣∣
2
⎤
⎦ .(4)

IV. PERFORMANCE OF THE DETECTORS IN A FADING

INTERFERENCE CHANNEL

In this section, the performance of the four detectors is ana-
lyzed for a fading interference channel. Here the interference-
ignorant detector and the joint MD detector are of primary
interest. The interference-ignorant detector has the advantage
that it does not need any information on the channel gains and
modulation formats of interfering users, whereas all the other
detectors require such information. As is shown in [10] in
the fixed channel, the joint MD detector has almost the same
performance as the optimal ML detector except at very low
SNR and requires much lower complexity than the optimal
ML detector. Moreover, the joint MD detector significantly
outperforms the SIC detector. Thus, the focus in this section
is placed on the interference-ignorant detector and the joint
MD detector.

In this section, it is shown that use of the joint MD detector
in fading channels subject to interference guarantees that the
SER can be approximated by an expression of the form
c/SNR, similar to channels without interference. The penalty
due to the presence of interference is accounted for by the
coefficient c, which is larger in the presence of interference,
but is upper-bounded by a finite value regardless of the value
of the SIR.

A. SER in the Absence of Interference

Before proceeding to the analysis in the presence of inter-
ference, the average SER is evaluated for a fading channel in
the absence of interference. In this case, the received signal
can be represented using the model

y = h1x1 + z, (5)

where h1 ∼ CN (0, 1), z ∼ CN (0, N0), and E|x1|2 = P1. The
average SER can be derived by considering the conditional
SER given h1 and then taking the average over the distribution
of h1:

P{x̂1 �= x1} = Eh1 [P{x̂1 �= x1|h1}] . (6)

For a given h1, the derivation of the conditional SER has
been well-studied and can be found in standard digital com-
munication books [11]. Because the exact SER expression
is complicated to derive, usually, the nearest neighbor union
bound (NNUB) approach is taken, where only the nearest
neighbors are taken into consideration for the calculation of the
SER. For the case of M1-QAM, this NNUB approach results
in the following upper bound:

P{x̂1 �= x1|h1}

≤ 4

(
1− 1√

M1

)
Q

⎛
⎝
√

3|h1|2SNR
M1 − 1

⎞
⎠ , (7)

where 4(1−1/
√
M1) represents the average number of nearest

neighbors over all constellation points. It is also well known
that, when h1 ∼ CN (0, 1) [12],

Eh1

[
Q
(√

a|h1|2
)]

=
1

2
q(a), (8)



where

q(a) = 1−
√

a/2

1 + a/2
. (9)

From (6), (7), and (8), the following upper bound (UB) can
be obtained for the average SER

pe,no int,UB = 2

(
1− 1√

M1

)
q

(
3SNR
M1 − 1

)
. (10)

To gain more insight on the average SER, the above upper
bound is approximated to a simpler expression using the Taylor
series expansion of q(a) around 1/a = 0. For large a,

q(a) ≈ 1/a. (11)

Then the approximate upper bound (AUB) is

pe,no int,AUB = 2

(
1− 1√

M1

)
M1 − 1

3SNR
. (12)

Thus, the approximate upper bound decreases in proportion to
the SNR as the SNR grows.

A lower bound (LB) of the average SER for M1-QAM can
be obtained by considering only half the nearest neighbors
compared to the upper bound:

pe,no int,LB =
1

2
pe,no int,UB. (13)

The same approach can be applied to the approximate bound.
Thus, both the approximate upper bound and the approximate
lower bound have the form c/SNR; the value of c depends
on whether it is used in the expression for the upper or the
lower bound. Even in the presence of interference, it can be
shown that the lower bound has the same form as the upper
bound except that the coefficient is different. Thus, in the
following, only upper bounds and approximate upper bounds
are examined.

B. SER for the Interference-Ignorant (II) Detector

The interference-ignorant detector assumes no knowledge
on the channel gains h2, · · · , hU or the modulation formats of
x2, · · · , xU . It ignores the presence of interference and makes
a decision on x1 based on the direct channel gain, h1, and the
modulation format of x1 only. In general, the exact analysis
of the interference-ignorant detector is cumbersome in the
case of a fading channel. However, for the special case when
all interferers employ PSK, the average SER performance
can be easily analyzed. With xu a PSK symbol, huxu is
a circularly symmetric complex Gaussian random variable:
huxu ∼ CN (0, Pu). Thus the received signal can be modeled
as

y = h1x1 + w, (14)

where w ∼ CN (0,
∑U

u=2 Pu + N0). Then the average SER,
when x1 employs M1-QAM, is upper-bounded by

pe,II,UB = 2

(
1− 1√

M1

)
q

(
3SINR
M1 − 1

)
, (15)

which, for large SINR, can be approximated by

pe,II,AUB = 2

(
1− 1√

M1

)
M1 − 1

3SINR
. (16)

Therefore, the SER of the interference-ignorant detector is
limited by the SINR instead of the SNR, unlike the case of
no interference. In Section V, using 16-QAM as an example,
it is shown by simulation that the dependence on 1/SINR is
maintained when QAM is employed by the interferer instead
of PSK.

C. SER for the Joint MD (JMD) Detector

An upper bound is now derived for the SER when the
joint MD detector is employed at receiver 1. Recall that in
the absence of interference, the average SER was derived
by averaging the conditional SER for a given channel gain,
h1, which, in turn, is calculated using the NNUB approach.
A similar approach can be employed in the presence of
interference by taking the average of the conditional SER
for a given h. However, this approach is complicated because
the nearest neighbors change as the channel gains vary in the
presence of interference. Moreover, the combined constellation∑U

u=1 huxu of the received signal is no longer square-shaped
even when the constellation of each individual xu is square-
shaped. Thus, examining the nearest neighbors does not yield
a strict upper bound. Therefore, in the presence of interfer-
ence, instead of considering only nearest neighbors, all the
signal constellation points that can possibly result in error are
considered even though the upper bound obtained in this way
may not be the tightest.

With the above new approach in mind, first, the pairwise
error probability (PEP) between two transmit symbol vectors
is considered for a fixed h. Then this PEP is averaged over h,
leading to a simple expression for the average PEP. Last, the
upper bound of the average SER is calculated by considering
all possible transmit symbol vectors and using the average
PEP.

The PEP for a given h is derived by examining the simple
detection problem where the transmit vector x is either xA

or xB . The maximum likelihood detector for this problem
selects the transmit vector x̂ that results in h∗x̂ closest to y.
In this case, the PEP, i.e., the probability that xB is erroneously
detected given that xA was transmitted is

P{xA → xB|h} = Q

(
‖h∗(xA − xB)‖

2
√
N0/2

)
. (17)

The average PEP over all channel realizations is

P{xA → xB}

= Eh

⎡
⎣Q

⎛
⎝
√

h∗(xA − xB)(xA − xB)∗h
2N0

⎞
⎠
⎤
⎦ . (18)

The matrix (xA − xB)(xA − xB)
∗ is Hermitian.1 Since a

Hermitian matrix is diagonalizable,

(xA − xB)(xA − xB)
∗ = UΛU∗, (19)

1A complex square matrix A is Hermitian if A∗ = A.



where U is a unitary matrix, i.e., U∗U = UU∗ = I, and Λ
is a diagonal matrix, i.e., Λ = diag{λ2

1, · · · , λ2
U}. By defining

h̃ as U∗h, the average PEP can be represented as

P{xA → xB} = Eh̃

⎡
⎣Q

⎛
⎝
√

h̃∗Λh̃

2N0

⎞
⎠
⎤
⎦ (20)

= Eh̃

⎡
⎣Q

⎛
⎝
√∑U

u=1 |h̃i|2λ2
i

2N0

⎞
⎠
⎤
⎦ , (21)

where h̃ has the same distribution as h since hu for u =
1, · · · , U are i.i.d. CN (0, 1) and U is unitary. In other words,
h̃u for u = 1, · · · , U are i.i.d. CN (0, 1).

Because (xA − xB)(xA − xB)
∗ has rank 1, λu for u =

2, · · · , U is 0. It can be easily seen that λ1 is the Euclidean
distance λ1 = ‖xA−xB‖ between the two transmit vectors xA

and xB . Thus, as is well known from the analysis of Rayleigh
fading channels [12], the average PEP can be expressed in a
closed form as

P{xA → xB} =
1

2
q

(
λ2
1

2N0

)
=

1

2
q

(‖xA − xB‖2
2N0

)
. (22)

Using this expression for the average PEP, it is now possible
to derive an upper bound for the average SER for the detection
of x1. First, the upper bound is derived for the 2-user case with
both users employing QPSK, in order to simplify the descrip-
tion. Then, an upper bound is derived for any constellation size
for 2 users. Finally, the general case of U users is considered.

Because of the symmetry of QPSK, the average PEP does
not depend on the transmitted symbol. Thus,

P{x̂1 �= x1} = P{x̂1 �= x1,00|x = x0000}, (23)

where xpqrs = [ x1,pq x2,rs ]T and x1,pq and x2,rs are
Gray-coded. In other words,

x1,pq =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
P1

2 (1 + j), for (p, q) = (0, 0)√
P1

2 (−1 + j), for (p, q) = (0, 1)√
P1

2 (−1− j), for (p, q) = (1, 1)√
P1

2 (1− j), for (p, q) = (1, 0)

. (24)

x2,rs can be similarly represented. The probability of error for
a given x0000 is upper bounded using the average PEP:

P{x̂1 �= x1,00|x = x0000}

≤
1∑

a=0

1∑
b=0

[P{x0000 → x10ab}+ P{x0000 → x01ab}]

+P{x0000 → x1101}+ P{x0000 → x1110}
+P{x0000 → x1111}, (25)

where P{x0000 → x1100} was not included because the error
event of x0000 → x1100 is covered by the error events of
x0000 → x1000 and x0000 → x0100. Each term in the upper
bound (25) can be evaluated using the average PEP (22). The
squared Euclidean distance between xpqrs and x0000 is

‖xpqrs − x0000‖2 = d21,pq + d22,rs, (26)

where d2u,00 = 0, d2u,01 = d2u,10 = 2Pu, and d2u,11 = 4Pu for
u = 1, 2. Thus, the upper bound of the average SER is

pe,1,JMD,UB
= q(SNR) + 2q(SNR + INR) + q(SNR + 2INR)

+q(2SNR + INR) +
1

2
q(2SNR + 2INR). (27)

For sufficiently high SNR, the upper bound on the average
SER of the joint MD detector can be approximated as follows:

pe,1,JMD,AUB = f(SIR) · 1

SNR
, (28)

where

f(α) = 1 +
α

2α+ 1
+

9

4
· α

α+ 1
+

α

α+ 2
. (29)

Hence, at sufficiently high SNR, for fixed SIR, the upper
bound of the average SER is inversely proportional to SNR.

The coefficient f(α) in (28) is a monotonically increasing
function of α for α ≥ 0, i.e., f ′(α) > 0 for α ≥ 0. Moreover,

f(0) = 1 ≤ f(α) <
19

4
= f(∞) (30)

Hence, regardless of the value of SIR,

P{x̂1 �= x1} <≈ 19

4SNR
, (31)

This shows that the SER bound decreases in inverse proportion
to the SNR. As was shown in Section IV-B, this does not
hold when the interfering signal is not taken into account for
detection.

As can be seen in (30), f(SIR) in (28) is close to 1 for
very strong interference and close to 19/4 for almost no
interference. However, the fact that f(SIR) is an increasing
function of the SIR does not necessarily imply that the actual
SER increases monotonically with the SIR for a given SNR.
It should be kept in mind that (28) is an upper bound for the
average SER. In fact, for SIR = ∞, the average SER should
converge to the average SER in the absence of interference:

P{x̂1 �= x1} ≈ 1

SNR
. (32)

However, the upper bound analysis in this section results
in f(∞) = 19/4. This is because all the possible pairwise
error events were considered for the derivation of the upper
bound; these error events overlap more and more as the SIR
increases. Thus, the upper bound overestimates the actual SER.
Nonetheless, the upper bound analysis reveals the fact that the
SER decreases in proportion to the SNR.

The above analysis sheds light on the behavior of the
average SER when the user of interest employs M1-QAM
and the interferer employs any constellation of size M2. As
can be seen in (7), in the absence of interference, the average
number of neighbors considered are 4

(
1− 1√

M1

)
. Moreover,

the neighbors considered are all |h1|d1,min apart, where d1,min



is the minimum distance of any constellation points at the
transmitter. It was shown in [11] that

d1,min =

√
6P1

M1 − 1
. (33)

On the other hand, in the presence of interference employing
a constellation of size M2, (M1 − 1)M2 PEP terms are
considered for the calculation of the upper bound of the
average SER.2 Furthermore, in (22), the average PEP was
found to be equal to

P{xA → xB} =
1

2
q

(‖xA − xB‖2
2N0

)
. (34)

The Euclidean distance between xA and xB for any xA and
xB is bounded below by

‖xA − xB‖ ≥ |x1,A − x1,B |, (35)

where x1,A and x1,B are the symbols of user 1 corresponding
to xA and xB , respectively. Furthermore,

|x1,A − x1,B| ≥ d1,min =

√
6P1

M1 − 1
. (36)

Then the average PEP bound becomes

P{xA → xB} ≤ 1

2
q

(
3SNR
M1 − 1

)
, (37)

since q(x) is a monotonically decreasing function of x. Thus,

pe,1,JMD,UB =
(M1 − 1)M2

2
q

(
3SNR
M1 − 1

)
(38)

≈ (M1 − 1)2M2

6SNR
, (39)

for sufficiently large SNR. In the special case where
(M1,M2) = (4, 4), the above bound becomes

pe,1,JMD,UB = 6q (SNR) ≈ 6

SNR
. (40)

This upper bound is looser than the bound given in (31)
because the minimum distance was used instead of the actual
distance |x1,A−x1,B|. If a tighter bound is desired, the actual
distance |x1,A − x1,B | can be calculated in a straightforward
way. For example, for M1 = 16, the following tighter
approximate upper bound can be obtained:

pe,1,JMD,UB,16QAM ≈ 2965M2

208SNR
≈ 14.3

M2

SNR
, (41)

whereas, according to (39), the bound would have been

pe,1,JMD,UB,16QAM ≈ 75M2

2SNR
= 37.5

M2

SNR
. (42)

2A tighter bound can be derived by considering fewer PEP terms than
(M1 − 1)M2. For example, in the case of (M1,M2) = (4, 4), 11 terms
were used in (25) instead of (M1 − 1)M2 = 12. However, the primary goal
of this paper is not to derive the tightest upper bound, but to show that the
SER is proportional to the SNR even in the presence of interference. As is
shown in the paper, a bound using (M1 − 1)M2 PEP terms shows that the
SER is proportional to the SNR.

Nonetheless, the bound (39) shows that the average SER
decreases according to c/SNR, where c depends on the
constellation sizes of the signal of interest and the interferer.

The average SER bound (39) can be compared with (10) in
the absence of interference:

pe,1,JMD,UB
pe,no int, UB

=

√
M1(

√
M1 + 1)M2

4
. (43)

In other words, the average SER in the presence of M2-QAM
interference is (approximately) at most

√
M1(

√
M1+1)M2

4 times
larger than the average SER in the absence of interference.
This shows that the interference created by a signal belonging
to one of M2 constellation points increases the SER by a
factor that depends on M1 and M2, whereas the functional
dependency of SER on SNR remains the same as in the case of
no interference. This is in contrast to the interference ignorant
detector where the dependency of SER changes from that of
SNR to that of SINR.

The SER bound for more than two users can be derived
similarly. For each combined constellation point for two users,
there are

∏U
u=3 Mu possible combinations for the signals of

the remaining users. Thus, the number of PEP terms that needs
to be taken into account increases by

∏U
u=3 Mu times. Thus, a

simple SER bound for the U -user case is just the SER bound
for two-user case times

∏U
u=3 Mu. Thus, the coefficient in

front of 1/SNR increases with the number of interferers and
the constellation size. However, the coefficient would not be
too large in a cellular environment because there are only one
or two dominant interferers. Non-dominant interferers can be
treated as part of the background noise.

Note that the average SER bound for modulation schemes
other than QAM for user 1 can be calculated in a similar
fashion by appropriately modifying the Euclidean distance
bound (35). Then the remaining analysis can be done similarly.

V. SIMULATION RESULTS

In this section, the performance of various detectors is eval-
uated by Monte Carlo simulation. The interference-ignorant
detector, the SIC detector, the ordered-SIC detector, the joint
MD detector, and the optimal ML detector are considered.
Here the ordering for the ordered-SIC is based on the instan-
taneous minimum distance of user 1 and user 2’s receive signal
constellations. In other words, when |h1|d1,min > |h2|d2,min,
then user 1 is detected first. Otherwise, user 2 is detected first.

Fig. 1 shows the performance of various detectors when 2
users employ 4-QAM and 4-QAM for SIR = 12 dB. As can
be seen in the figure, in the absence of interference, the SER
curve follows the theoretical 1/SNR curve quite well. The
presence of interference increases the SER. However, with
the use of the joint MD or optimal ML detector, the SER
is approximately f(101.2)/SNR ≈ 4.27/SNR, especially
for high SNR. On the other hand, the interference-ignorant
detector, the SIC detector, and the ordered SIC detector fail
to perform satisfactorily.

Fig. 2 shows the theoretical f(SIR) and the actual coeffi-
cient c when the SER is represented as SER= c · 1

SNR . Here,
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the joint MD detector is used with 2 users, both employing 4-
QAM. The figure shows that f(SIR) represents the SER ratio
bound better for higher levels of SNR.

Figs. 3, 4, and 5 show the performance of various de-
tectors when 2 users employ M1-QAM and M2-QAM with
(M1,M2) = (4, 16), (16, 4), and (16, 16). In all these figures,
the simulation results match quite well with the theoretical
approximate upper bounds. Here the approximate upper bound
is the tighter bound that was calculated based on the actual
distance of |x1,A − x1,B| instead of the minimum distance.
Comparing Fig. 1 with Fig. 3, it can be seen that the SER
for the joint MD detector increases with the use of higher
modulation for the interference. Similar observation can be
made from the comparison of Fig. 4 and Fig. 5.

In Fig. 6, the performance of various detectors is shown
when three users share the same resource and every user
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Fig. 3. Performance of various detectors with 2 users employing 4-QAM
and 16 QAM for SIR = 12 dB.
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Fig. 4. Performance of various detectors with 2 users employing 16 QAM
and 4-QAM for SIR = 18 dB.

employs 4-QAM. SIR = P1

P2+P3
= 6 dB. The figure shows

that the actual SER follows the approximate upper bound
quite well, which is given as M3f(2SIR)/SNR = 4f(2 ×
100.6)/SNR ≈ 17.07/SNR since P1/P2 = 2SIR. Moreover,
it can be seen that the joint MD detector works well even in the
presence of two interferers, whereas the interference-ignorant
detector does not perform well.

VI. CONCLUSION

This paper explored the detection problem for fading chan-
nels in the presence of interference. Upper bounds and approx-
imate expressions were derived for the symbol error rate for
different detection schemes. It was shown that, if no effort is
made to detect the interference, the symbol error rate is limited
by the SINR. On the other hand, when advanced detectors
such as the joint MD detector and the optimal ML detector
are employed, the symbol error rate decreases and is limited by
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Fig. 5. Performance of various detectors with 2 users both employing 16
QAM for SIR = 18 dB.
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Fig. 6. Performance of various detectors with three users, all employing
4-QAM for SIR = 6 dB.

the SNR. This holds even in the presence of moderate interfer-
ence, which is the most challenging scenario. Moreover, it was
shown that by using advanced detectors, the difference in error
rate performance of systems with interference as compared to
systems shielded from interference is only a bounded constant.
Therefore, although advanced detection schemes require more
information about the interferers, the improved performance
can make their use attractive in future communication systems.
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