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Abstract—This paper studies the downlink spectral efficiency
of distributed antenna system (DAS) where antenna ports are
distributed as a Poisson point process (PPP), while assuming
channel state information is not available at the transmitter and
each antenna has an individual power constraint. We first con-
sider the case with a single user per cell and analyze regular DAS
with fixed cell boundaries, and study both blanket transmission
where the user is served by all the antenna ports within each
cell, and selective transmission where only the closest antenna
port to the user within each cell is selected. We derive efficiently
computable spectral efficiency expressions as a function of the
user location, and show the limitation of blanket transmission by
establishing that the cell-edge spectral efficiency under blanket
transmission is upper bounded by a constant. Further, from a
network perspective, we also model users as a PPP and assume
a TDMA-based user access, and give analytical expressions for
and compare the average spectral efficiencies of regular DAS and
user-centric DAS where no fixed cell boundaries exist. We validate
our models with simulation, and show that selective transmission
outperforms blanket transmission for regular DAS, and user-
centric DAS with selective transmission achieves a higher spectral
efficiency averaged over the network than regular DAS.

Index Terms—Distributed antenna system, downlink spectral
efficiency, multiple-input single-output (MISO), stochastic geom-
etry, Poisson point process.

I. INTRODUCTION

UBIQUITOUS coverage and high data rates are key

characteristics of future wireless systems. In traditional

cellular systems, base-stations are located at the cell center

to serve users which are spatially distributed across the cell.

However, the dead spots within the cell caused by shadow-

ing and penetration loss may significantly degrade the radio

propagation strength of communication links, which in turn

limit the system performance. Such performance degradation

is most severe for the cell-edge users who suffer from both

weaker signal strength due to relatively longer propagation

distance and stronger inter-cell interference.

Distributed antenna system (DAS) provides a promising

solution for improving coverage and capacity of wireless cel-

lular networks [1]–[3]. Instead of deploying antennas centrally

at the base-stations, by deploying remote antenna ports in

coverage holes and connecting them with the home base-

stations via dedicated high-speed backhaul links, DAS can

effectively mitigate detrimental effects such as shadowing and
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Fig. 1. An illustration of the distributed antenna system.

indoor penetration loss. The main advantage of DAS is that it

statistically reduces the distance of a user to its nearest access

point, thereby enhancing the received signal quality. In this

way, the user performance in DAS is less sensitive to the

user location within each cell. Fig. 1 shows an example of

the DAS layout, where antenna ports are randomly deployed

within each cell boundary to serve users.

This paper aims to provide a rigorous spectral efficien-

cy analysis of downlink DAS under a stochastic model in

which antennas are randomly distributed as a Poisson point

process. We assume that channel state information (CSI) is

not available at the transmitter and each antenna has an

individual power constraint. For DAS with fixed cell bound-

aries, which we refer to as regular DAS, we consider two

different transmission schemes: blanket transmission where

all antenna ports within the cell cooperatively transmit to

a given user, and selective transmission where the user is

only served by the closest antenna port within the cell. The

performance analysis of the present paper shows that selective

transmission provides a higher spectral efficiency than blanket

transmission under random antenna distribution. This confirms

the empirical observation made in past literature, e.g., [4] for

downlink and [5] for uplink. In addition, we consider a user-

centric DAS architecture where the regular cellular structures

no longer exist [5]. In particular, this paper analyzes selective

transmission in this user-centric layout, and shows that it has

a superior performance as compared to regular DAS from a

network perspective. Note that this user-centric selective DAS

model is analogous to the system model in [6].

In contrast to some previous studies on DAS which assume

that antenna ports are deployed at fixed locations, e.g., uni-

formly on concentric circles as in [4], [7]–[9], in this paper
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we use a Poisson point process (PPP) to model the antenna

locations. Such a random topology assumption is also adopted

in other works on DAS [10]–[15]. The use of the PPP model

is motivated by the fact that practical remote antennas are

placed at arbitrary locations to cover the dead spots, so their

locations can be modeled as a spatial random process from a

birds-eye view of the network. It allows the use of theoretical

results in stochastic geometry [16], [17] and provides tools for

efficient numerical computation and analytical comparison of

the spectral efficiencies of various DAS schemes.

A typical DAS architecture operates in the regime where the

number of antennas exceeds the number of users in the system.

We assume that CSI is not available at the transmitter. This

assumption has been adopted in some of the DAS literatures,

e.g., [4], [18], since it is often difficult to collect CSI for

all the links in a system with a large number of distributed

antennas. In the first part of this paper, we assume that each

cell serves only one user, and analyze the location-specific

spectral efficiency of such a system. In the second part of this

paper, we assume that users are also randomly distributed in

the network so that each cell may contain more than one users.

In this case, we analyze the spectral efficiency of such a system

from a network perspective where each cell serves multiple

users in a time division multiple access (TDMA) manner in

the absence of CSI.

A. Related Work

DAS is originally proposed to cover dead spots and improve

coverage of wireless communication systems [1]. Benefits

of DAS include reducing transmission power and outage

probability, and most importantly, increasing capacity. The

information theoretical capacity of DAS has been studied in

some recent works. The authors of [4] suggest that DAS can

reduce inter-cell interference and thus significantly improve

capacity in a multi-cell environment, particularly for users

near cell boundaries. They also show that selective diversity is

better than blanket transmission in terms of capacity. The nor-

malized achievable rate distributions of DAS under difference

number of cooperative and interfering antennas are compared

in [7], and an adaptive cooperation scheme is proposed.

Under Rayleigh fading, the authors of [19] approximate the

instantaneous DAS capacity to be Gaussian distributed, and the

approximation is further extended in [18] for the DAS capacity

under general fading and high signal-to-noise ratio (SNR)

assumption. The idea of the virtual cell is introduced in [5],

and the resulting user-centric DAS is analyzed for its outage

performance in CDMA systems, where selective diversity is

shown to outperform macrodiversity in the downlink. Most

of the above studies either ignore the inter-cell interference

or simply assume it to be Gaussian distributed. Explicitly

modeled out-of-cell interference is included in [9], where the

MIMO capacity of DAS under zero-forcing beamforming over

all or a subset of antennas is evaluated.

The aforementioned studies of DAS all assume fixed and

concentric deployment. The optimal antenna placement has

been dealt with in several previous works, e.g., [8] develops a

scheme based on the stochastic approximation theory, and [20]

proposes a placement optimization for single-cell and two-

cell systems by maximizing the lower bound of either SNR

or the signal-to-leakage ratio (SLR). However, in this paper

the placement of antennas is not an optimization objective.

Instead, we model the antennas as a PPP to capture the spatial

randomness in practice.

The analysis of wireless systems under random topology

has been carried out for cellular networks [21], [22] and

heterogeneous networks [23]–[25] in the literatures. For DAS,

the randomness of the node locations has been considered

in [10]–[12] for downlink and in [13]–[15] for uplink. The

advantage of DAS over centralized system is shown in [10]

by comparing the statistics of mean square access distance.

In [11], the authors focus on the outage probability of DAS

by approximating the out-of-cell interference as a single log-

normal random variable. Using random matrix theory, [12]

gives an approximation of the DAS capacity, where large-scale

fading is assumed to be static and interference is assumed to

be Gaussian distributed. In [13], the authors use the mean

square access distance as a performance metric for the uplink

system, assuming interference from other users is eliminated,

and reveal that given a fixed total number of antennas, it is

better to deploy more antenna clusters with fewer antennas per

cluster. The comparative study in [14] shows that decentralized

systems yield a much higher capacity than traditional co-

located systems. In [15], using the central limit theorem, the

uplink mutual information is approximated to be Gaussian

and log-normal distributed at high and low SNR, respectively,

and the transmission efficiencies of both DAS and co-located

MIMO are compared under different antenna deployments.

Different from the aforementioned works on DAS with

random antenna deployment in the downlink [10]–[12], this

paper characterizes the spectral efficiency of DAS (instead

of other metrics such as mean square access distance [10]

or outage probability [11]), and explicitly models the desired

signal as well as the inter-cell/cluster interference (instead of

modeling interference as a Gaussian random variable [12]).

We use tools from stochastic geometry to analyze and compare

different DAS schemes.

B. Main Results

This paper studies the downlink spectral efficiency of DAS

with random antenna locations. We analyze regular DAS

with blanket and selective transmission, as well as user-

centric selective DAS. The traditional cellular system where

all antennas are co-located at the cell center is also presented

as a reference. Using stochastic geometry, we derive spectral

efficiency formulas for DAS which enable fast numerical com-

putation without the need to resort to Monte Carlo simulations.

Our analytical model matches simulations of different DAS

schemes for most cases. Specifically,

• For regular DAS, we characterize the location-specific

spectral efficiency of a given user, i.e., spectral efficiency

as a function of the distance from the user to the cell

center, for both blanket and selective transmission.

• Using these expressions, we show that the cell-edge spec-

tral efficiency of regular DAS with blanket transmission
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is upper bounded by α
2 bits/s/Hz, which is a function of

the path loss exponent α only and is independent of the

antenna port intensity or the cell radius; while no such

bound is found for the selective scheme.

• Assuming that users are also PPP modeled, we analyze

and compare the average spectral efficiencies of regular

and user-centric DAS from a network perspective.

These derived expressions facilitate a comprehensive numer-

ical comparison of different DAS layouts and transmission

schemes. Based on the numerical results, we conclude for the

downlink DAS with random topology as follows.

• Fully distributed DAS (one antenna per port) outperforms

partially distributed DAS (multiple antennas grouped at a

port) with the same total number of antennas. This is in

accordance with the conclusion in [13] for uplink DAS.

• Regular DAS achieves a higher spectral efficiency than

the traditional cellular system for users at cell edges. With

fixed antenna locations, [4] reveals the same conclusion.

• For regular DAS, selective transmission achieves a higher

spectral efficiency as compared to blanket transmission.

Similar observations are made in [4] for downlink DAS

with fixed locations and [5] for uplink DAS.

• User-centric selective DAS achieves a higher spectral

efficiency than both regular DAS schemes when averaged

over the network.

C. Organization of the Paper

Section II describes the system model and establishes the

general DAS spectral efficiency expression under the MISO

channel. Section III analyzes the spectral efficiency of a single

user at a specified location within the cell for regular DAS

with both blanket and selective transmission, and presents

numerical results. In Section IV, the average spectral efficiency

of a randomly chosen user is studied for both regular and user-

centric DAS, and the comparison of all schemes are given.

Section V draws conclusions.

II. DAS SPECTRAL EFFICIENCY UNDER MISO CHANNEL

This section derives a general spectral efficiency formula

for DAS with a single user per cell. The user is assumed

to be equipped with a single antenna, and the link from the

distributed antennas within the cell to the user is modeled as

a multiple-input single-output (MISO) channel. We assume

each individual antenna, no matter co-located at a port or

individually placed, has a separate power constraint. This is

justified by the fact that in practical implementation each

antenna is equipped with its own power amplifier and the

transmission power at the antenna is limited individually by the

linearity range of the amplifier. Without transmitter-side CSI

and with per-antenna power constraint, the spectral efficiency

computed in this paper for this setting is in fact the multiple-

access channel capacity, which also equals the ergodic MISO

channel capacity under the same CSI and power assumption

[26]. With Gaussian signaling, the general form of the spectral

efficiency (in nats/s/Hz) of the user in cell o (or cluster o) under

the DAS model is

C = Eh






ln






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(1)

where n and m are the antenna indices, o and w are the

cell (cluster) indices, P
(o)
n is the transmit power of antenna

n in cell (cluster) o with a fixed value µ, h
(o)
n ∼ CN (0, 1)

is the complex channel coefficient with Rayleigh distributed

amplitude from antenna n in cell (cluster) o to the considered

user, {r
(o)
n }−α models the path loss where α is the path

loss exponent (typically α > 2), and σ2 is the noise power.

We consider the case where only one user is served in each

cell (cluster) at each time/frequency unit, thus (1) is also the

spectral efficiency per cell (cluster). Note that with selective

transmission, o and w become the indices of the antenna ports

that are actively serving users.

The above expectation is averaged over the channel h and

does not take the random antenna port locations into account.

We now further assume that the distributed antenna ports can

be modeled as a homogeneous PPP ΦA, and denote Φ
(S)
A

and Φ
(I)
A as the subsets of points over R

2 that consist of,

respectively, antenna ports in the serving cell (cluster) o and

antenna ports in all the interfering cells (clusters) w,w 6= o.

For the general partially distributed case, we assume that every

K of the antennas are co-located within one antenna port. Let

i and j be the antenna port indices, p and q be the antenna

indices within one port. We use Pip and hip to denote the

power and the Rayleigh fading of antenna p in port i, and

ri is its distance to the user. Note that the antennas at the

same port have the same path loss attenuation. For notational

simplicity we denote

Gi =

K
∑

p=1

Pip|hip|
2 = µ

K
∑

p=1

|hip|
2, ∀i. (2)

Let Ai be the location of antenna port i, we can now rewrite

(1) by dropping the cell (cluster) index o and w as

C = EΦA,G


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, (3)

where the expectation is taken over both the PPP ΦA and the

equivalent channel G.

The following lemma is useful in further deriving the

spectral efficiency expressions of different DAS schemes.

Lemma 1: The DAS downlink spectral efficiency under the

PPP antenna model can be expressed as

C
(

G
Φ

(S)
A

,G
Φ

(I)
A

)

=

∫ ∞

0

e−sσ2

s
G
Φ

(I)
A

(

1− G
Φ

(S)
A

)

ds, (4)

where G
Φ

(S)
A

and G
Φ

(I)
A

are the Laplace transforms of the
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desired signal and the interference parts, respectively,

G
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Proof: From equation (3),
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where (a) follows from the Lemma 1 in [27]:

ln(1 + x) =

∫ ∞

0

e−z

z

(

1− e−xz
)

dz, (7)

and (b) follows from a change of variable z =

s
(

∑

j∈Φ
(I)
A

Gjr
−α
j + σ2

)

. The expectation and integration

are interchanged in (c) by applying the Fubini theorem (since

the integrand is non-negative), and by recognizing that the

subsets Φ
(S)
A and Φ

(I)
A are disjoint. By plugging in G

Φ
(S)
A

and

G
Φ

(S)
A

we have (4).

III. SPECTRAL EFFICIENCY OF REGULAR DAS FROM A

LOCATION-SPECIFIC PERSPECTIVE

This section considers DAS in the conventional sense where

the coverage area of each cell is defined by the fixed cell

boundary. This deployment topology is called the regular DAS

layout in this paper. We provide the spectral efficiency analysis

for regular DAS from a location-specific perspective, assuming

that there is a single user in the cell. The location here refers

to the distance between the specific user and the cell center.

Different from [21], [22] where all cells are derived from

Voronoi tessellation [28], we adopt a hybrid approach as in

[29]: the center serving cell is of fixed size and modeled as a

circle with radius R, while the shape of interfering cells can be

arbitrary. Thus Φ
(S)
A and Φ

(I)
A are sets of antenna ports within

and outside of the cell radius R, respectively, as in Fig. 2.

r

R

Ɩ (θ)

θ

User

ΦA
(S)

ΦA
(I)

Fig. 2. The regular DAS layout. The boundary of the cell under consideration
is modeled as a circle, and the boundaries of interfering cells can be arbitrary.

Let the average number of antennas per cell be N . Assuming

exactly K antennas per port, the average number of antenna

ports per cell is therefore N
K . We assume that the average size

of the interfering cells is πR2, i.e., the same as the serving

cell. In this section, we make a key assumption that there

is exactly one user being served at a time in each cell, and

compute the spectral efficiency for that user as a function of

its location. This assumption will be removed and the analysis

will be extended in the next section to provide a network-wide

spectral efficiency characterization for DAS.

A. Blanket Transmission

Blanket transmission refers to the case in which all antennas

of each cell form a macrodiversity group by transmitting to

one scheduled user which is randomly placed within the cell.

The spatial intensity of the antenna ports in Φ
(S)
A is therefore

λ
(S)
A = N

KπR2 . Assuming homogeneity, we have λA = λ
(S)
A =

λ
(I)
A , where λ

(I)
A is the intensity of the set Φ

(I)
A .

Setting the location of the considered user in the cell o as

the origin, we have the following theorem.

Theorem 1: For regular DAS with blanket transmission, the

downlink spectral efficiency of the user with distance r ≤ R

from the cell center is

C(Blk.)
r =

∫ ∞

0

{

exp

[

1

2
λA(µs)

2/α

∫ 2π

0

∫ ∞

ℓ2(θ)(µs)−2/α

β(u)dudθ

]

− exp

[

πλA(µs)
2/α

∫ ∞

0

β(u)du

]

}

e−sσ2

s
ds, (8)

where β (u) < 0 has the form of

β (u) = (1 + u−α/2)−K − 1. (9)

The term ℓ(θ) in (8) is the distance from the user to the cell

edge at the angle θ, which is also a function of the distance

r and the cell radius R, as shown in Fig. 2. Specifically,

ℓ(θ) =
√

R2 − r2 cos2 θ + r sin θ. (10)
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Proof: We start from (4) to get the Laplace transforms of

the desired signal and interference parts. For the signal part

G
(Blk.)

Φ
(S)
A

(a)
= EΦA
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i )−K
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(c)
= exp

{

λA

∫ 2π

0

∫ ℓ(θ)

0

[

(1 + µsv−α)−K − 1
]

vdvdθ

}

.

(11)

In (a) we use the i.i.d. property of the fading channels

among antenna ports and their independence from the PPP

ΦA. Assuming independence of the fading among antennas

of one port in (b), we have Gi ∼ Γ (K,µ), which simplifies

to Gi ∼ exp
(

1
µ

)

when K = 1. Step (c) follows from the

probability generating functional (p.g.fl.) [17] of a PPP Φ with

intensity λ(x) such that

EΦ

[

∏

x∈Φ
f(x)

]

= exp

{∫

R2

[f(x)− 1]λ(x)dx

}

, (12)

and a conversion from Cartesian to polar coordinates.

Similarly, for the interference part in (4) we have

G
(Blk.)

Φ
(I)
A

= exp

{

λA

∫ 2π

0

∫ ∞

ℓ(θ)

[

(1 + µsv−α)−K − 1
]

vdvdθ

}

.

(13)

By employing a change of variables u = v2(µs)−2/α in

(11) and (13) and plugging them back to (4), after some

manipulations we have (8).

The spectral efficiency expression (8) can be further simpli-

fied if we consider the special case of K = 1 (corresponding

to the fully distributed antenna deployment), α = 4, σ2 = 0
(thus the power has no influence on the spectral efficiency and

we can use µ = 1). In this case,

C(Blk.)
r =

∫ ∞

0

1

s
e−

1
2π

2λAs1/2
(

e
1
2λAs1/2τ(s) − 1

)

ds, (14)

where

τ(s) =

∫ 2π

0

arctan
[

ℓ2(θ)s−1/2
]

dθ. (15)

Fixing λA and r, the spectral efficiency (8) is an increasing

function of R, since ℓ(θ) increases with R for all θ and β(u) <
0. (Note that in this case N

K grows as O(R2).) In addition,

the spectral efficiency at the cell edge is also an increasing

function of R (i.e., when r = R). This gives the following

spectral efficiency upper bound for the cell-edge user:

Corollary 1: For regular DAS, the downlink cell-edge

spectral efficiency is upper bounded by α
2 bits/s/Hz.

Proof: Since spectral efficiency increases with R, we only

need to consider the limiting case r = R = ∞, where ℓ(θ) is

ℓ(θ)|r=R=∞ =

{

2R sin θ|R=∞ = ∞ θ ∈ [0, π)

0 θ ∈ [π, 2π).
(16)

Substituting (16) into (8) and ignoring the noise (i.e., σ2 = 0),

after some manipulations, the upper bound on the cell-edge

spectral efficiency can be derived as

C
(Blk.)
r=R < C

(Blk.)
r=R=∞

=

∫ ∞

0

1

s

(

e−Qs2/α − e−2Qs2/α
)

ds

(a)
=

α

2

∫ ∞

0

e−Qt

t

(

1− e−Qt
)

dt

(b)
=

α

2
ln(1 + 1)

=
α

2
ln(2) nats/s/Hz

=
α

2
bits/s/Hz, (17)

where Q = 1
2πλAµ

2/α
∫∞

0 β(u)du, (a) follows from a change

of variables t = s2/α, and (b) follows from equation (7).

This corollary shows that although DAS is expected to have

a better coverage than the traditional cellular system at the cell

edge, the cell-edge spectral efficiency of regular DAS with

blanket transmission is still bounded by a constant, which is

solely determined by the path loss exponent and is independent

of the antenna port intensity. This is a severe limitation of the

blanket transmission scheme of DAS architecture.

This upper bound is derived by letting the cell size go

to infinity. In such a limit, the cell boundary is locally a

straight line, with the serving and the interfering antenna ports

distributed on each half-plane with the same intensity.

B. Selective Transmission

Selective transmission in DAS refers to the transmission

strategy in which only the antenna port closest to the user is

selected to transmit within each cell as in [4], [11]. Note that

it is possible to generalize this selective transmission scheme

to a k-selective scheme, in which the user communicates with

k closest antenna ports. This generalized approach is however

more difficult to analyze. The analysis in this paper is restricted

to the case of k = 1.

Under the PPP assumption of the antenna ports, there are

occasions when a cell has no antennas, and we denote void as

the event of having at least one antenna within a cell, which

has the probability

PA

(

void
)

= 1− e−πR2λA . (18)

To utilize (4), we again need to obtain the Laplace trans-

forms of the signal and interference parts. Conditioned on the

existence of antennas in the considered cell, the signal set

Φ
(S)
A contains one selected antenna port. The signal part hence

simplifies to

G
(Sel.)

Φ
(S)
A |void

= Ed,G

(

e−sGd−α
)

= Ed

[

EG

(

e−sGd−α
)]

= Ed

[

(1 + µsd−α)−K
]

(19)

where d is the antenna-to-user distance within the cell, for

which we arrive at the following lemma:

Lemma 2: For the regular DAS layout, conditioned on

having at least one antenna within the serving cell, the dis-

tribution of the distance between the considered user located
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r

R

D

(a) D ≤ R− r

R D

(b) R− r < D ≤ R+ r

Fig. 3. Intersection area of the cell and user disc with radius D.

at a distance r ≤ R away from the cell center and its closest

antenna port within the cell boundary is

fd
(

d|void
)

=































2πdλA

1−exp(−πR2λA)e
−πd2λA d ∈ [0, R− r]

2dλA

1−exp(−πR2λA)e
−X (R,r,d)λA

× arccos
(

r2−R2+d2

2rd

)

d ∈ (R − r, R+ r]

0 d ∈ (R + r,+∞).
(20)

where

X (R, r, d) =

d2 arccos

(

r2 −R2 + d2

2rd

)

+R2 arccos

(

r2 +R2 − d2

2rR

)

−
1

2

√

(r +R + d)(r −R+ d)(r +R− d)(−r +R + d).

(21)

Proof: We start by finding the conditional probability

P
(

d > D|void
)

, i.e., the probability that no antennas within

the cell boundary are closer to the considered user than a

distance D. Equivalently, this is the null probability of PPP

in the intersection area of the cell and the disc with radius

D centered at the user. This intersection area is a function

of the radii R and D of the two circles as well as the

distance r between their centers. As illustrated in Fig. 3, the

area is πD2 if D ≤ R − r and is X (R, r,D) as in (21) if

R− r < D ≤ R+ r. Thus we have

P
(

d > D|void
)

=
P(d > D)

P
(

void
) =

P(d > D)

1− e−πR2λA

=



















1
1−exp(−πR2λA)e

−πD2λA D ∈ [0, R− r]

1
1−exp(−πR2λA)e

−X (R,r,D)λA D ∈ (R − r, R+ r]

0 D ∈ (R + r,+∞).

(22)

Consequently fd
(

d|void
)

=
d[1−P(d>D|void)]

dD |D=d
as in (20).

Based on Lemma 2, the signal part is now

G
(Sel.)

Φ
(S)
A |void

=

∫ R+r

0

(1 + µsd−α)−Kfd
(

d|void
)

dd. (23)

To derive the corresponding characterization of the interfer-

ence part, we note that in each interfering cell one antenna port

is selected to serve one user. Since the locations of the selected

antenna ports are arbitrary, the set of interfering antenna ports

Φ
(I)
A can be well approximated as a PPP. Considering that

a cell with no antennas does not generate interference, the

intensity of this PPP is a thinned version of the intensity of

the interfering cells (given the average cell size πR2)

λ
(Sel.)
A = PA

(

void
) 1

πR2
=

(

1− e−πR2λA

) 1

πR2
. (24)

Hence following the similar procedures as in (13) we have

G
(Sel.)

Φ
(I)
A

≈ exp

[

1

2
λ
(Sel.)
A (µs)2/α

∫ 2π

0

∫ ∞

ℓ2(θ)(µs)−2/α

β(u)dudθ

]

.

(25)

Similar to (6) and considering the zero-antenna event we

have the following proposition.

Proposition 1: For regular DAS with selective transmission,

the downlink spectral efficiency of the user with distance r ≤
R from the cell center is approximated by

C(Sel.)
r = PA

(

void
)

C
(Sel.)

r|void
, (26)

where

C
(Sel.)

r|void
=

∫ ∞

0

e−sσ2

s
G
(Sel.)

Φ
(I)
A

(

1− G
(Sel.)

Φ
(S)
A |void

)

ds, (27)

and PA

(

void
)

, G
(Sel.)

Φ
(I)
A

and G
(Sel.)

Φ
(S)
A |void

are given in (18), (23),

and (25), respectively.

C. Comparison of Blanket and Selective Transmission

We present numerical simulations to verify our theoretical

results, and compare the two regular DAS schemes in the

location-specific analysis. Recall that N is the average antenna

number per cell and K is the antenna number per port. We

assume that the per-antenna power is P
N , where P = 46dBm.

We set the cell radius to R = 1000m and vary the user-

to-cell-center distance r. Compared with the Monte Carlo

experiments, the analytical integrations can be computed more

efficiently, and its effectiveness is verified with simulations as

in Figs. 4-7.

Note that spectral efficiency drops from the cell center to the

cell edge as expected. Also, with a stochastic-geometry-based

analysis there is no such “rise-and-drop” effect for spectral

efficiency as observed in [4], [9] for fixed deployment (i.e.,

spectral efficiency rises as the user gets closer to a antenna

port at a fixed location, and drops when it is farther away).

This is because in a stochastic DAS topology antenna ports are

not fixed and are distributed randomly according to a spatial

point process. The simulation results for the regular cellular

topology are depicted as “Grid Cellular” in Fig. 4, where all

N antennas are co-located at each cell center, and all cell

centers are regularly placed to form a hexagonal layout. As

compared to the centralized cellular architecture, the spectral

efficiency of DAS is higher at the cell edge but lower at the cell

center, which illustrates DAS’s ability in achieving ubiquitous

coverage. Another observation from Fig. 4 is that the gap

between N = 1 and N = 24 is much more significant for

DAS than for the co-located cellular system. This is because

unlike the latter layout, increasing the total antenna number in

DAS statistically shortens the distance between a user and its
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Fig. 5. Regular DAS: spectral efficiency as a function of the cell-center-to-
user distance and the antenna number per port. α = 4, N = 24, R = 1000.

closest serving antenna port, thus improves spectral efficiency.

Note that the simulation results with N = 1 for the blanket and

selective cases are not the same. It is because N is the average

number of antennas (or antenna ports as K = 1) per cell.

When N = 1 it is also possible that a cell contains multiple

antenna ports, all of which are used in blanket transmission

while only one is selected in selective transmission.

In Fig. 5, we fix the total average number of the antennas

per cell and vary the number of antennas per port (thus the

average number of antenna ports per cell is N
K ), and show that

the fully distributed case (K = 1) outperforms the partially

distributed case (K > 1). Fig. 6 investigates the effect of

the path loss exponent and shows that the largest spectral
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Fig. 6. Regular DAS: spectral efficiency as a function of the cell-center-to-
user distance and the path loss exponent. N = 6, K = 1, R = 1000.
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efficiency is achieved at α = 5 for blanket transmission and

α = 4 for selective transmission, respectively.

From Figs. 4-6, we see that selective transmission out-

performs blanket transmission in spectral efficiency for most

cases at both the cell center and the cell edge, which is in

accordance with the conclusion in [4]. This is because in

selective transmission only the antennas closest to the active

users are transmitting; antenna ports far from the user do not

add much signal for the desired user while they contribute to

the interference of adjacent cell users1. The only exception

1We note that it is possible for an intermediate approach, e.g., k-selective
scheme, to yield better results, but such a scheme is more difficult to analyze.
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occurs at the cell center (r = 0) with α = 5 (Fig. 6)

where blanket transmission is slightly better than selective

transmission. This happens because at high attenuation the

radiation power declines more rapidly with distance. For the

user at the cell center area, since interfering antennas are

always farther away than serving antennas, under the high

attenuation scenario, the interference power declines faster

than the desired signal power, so in this case it is beneficial to

use all available antenna ports to enhance the desired signals.

Observe that in Figs. 4-5, with the same path loss exponent,

the spectral efficiencies of blanket transmission converge at

the cell edge to a single point regardless of the antenna

intensities. We further confirm the cell-edge spectral efficiency

upper bound of blanket transmission in Fig. 7, where spectral

efficiency increases with the antenna intensity and the cell

radius, but is always upper bounded by α
2 ln 2 nats/sec/Hz.

However, no such upper bound is observed for selective

transmission at cell edge in Figs. 4-5. This underscores the

limitation of blanket transmission in regular DAS.

IV. SPECTRAL EFFICIENCY OF REGULAR AND

USER-CENTRIC DAS FROM A NETWORK PERSPECTIVE

In the location-specific analysis of regular DAS, we assume

exactly one user is served per cell and focus on the spectral

efficiency of such a user at a given location. This single-

user assumption is adopted in many previous works on DAS,

e.g., [4], [8], [18], [19], but it does not take the effect of

scheduling into account. This section analyzes the average

spectral efficiency from a network perspective by considering

random distribution of users as well. Specifically, we assume

that users are also distributed as a PPP denoted as ΦU with

intensity λU , superposed on the antenna PPP ΦA. In this case,

a cell may contain no users or more than one user.

Without transmit CSI, if multiple other users are present in

the cell, TDMA can be used as a multiple access scheme [15].

In this section, we define the network spectral efficiency as the

expected spectral efficiency of a randomly chosen user (termed

the typical user) by assuming that TDMA is employed in the

cell and every user has an equal probability to be selected for

service (or has an equal share of resources). For regular DAS, a

crucial difference between the network spectral efficiency and

the location-specific spectral efficiency considered earlier is

that the network spectral efficiency is not a monotonic function

of the cell radius. Intuitively, a larger cell radius allows more

antennas to be in the cooperating cluster, but also allows more

users in the cluster, which reduces the selection probability

of each user. Therefore, from a network spectral efficiency

perspective, there exists an optimal cell radius for regular DAS.

We first provide an approximated network spectral efficien-

cy analysis for regular DAS by considering the random user

distribution both within and outside of the considered cell. This

approximation facilitates performance comparison for both

blanket and selective transmission, and indicates the existence

of an optimal cell radius from numerical evaluation. We then

investigate the network spectral efficiency of a user-centric

DAS layout under random user distribution, which is different

from the regular DAS layout in that no fixed cell boundaries

exist. Finally, the network spectral efficiency comparison of

all DAS schemes are given.

A. Regular DAS with Fixed Cell Boundaries

Under random user distribution, there might be zero or mul-

tiple other users, apart from the typical user, in the considered

cell. The following lemma deals with the selection probability

with multiple users present in the cell.

Lemma 3: With PPP-modeled users, the selection probabil-

ity of (or the fraction of the resources allocated to) the typical

user in a cell with radius R, is

P
(Reg.)
U =

1− e−πR2λU

πR2λU
. (28)

Proof: We add the typical user at the origin of the 2D

plane in addition to the user PPP ΦU . With random shift of the

regular cellular boundaries on the plane, the relative location

of the typical user within its cell is random. According to the

Slivnyak’s theorem [17], the locations of other users that fall

in the same cell of the typical user follow the same original

distribution. Thus, the probability mass function of the number

of other users (denoted as M ) in the cell of the typical user

is Poisson

P (M = m) =

(

πR2λU

)m

m!
e−πR2λU . (29)

The selection probability of the typical user is thus

P
(Reg.)
U =

∞
∑

m=0

P (M = m)

m+ 1
. (30)

By evaluating the above summation we have (28).

We can verify that limR→0 PU = 1, limR→∞ PU = 0, and

that PU monotonically decreases with R.

Since the number of users in neighboring cells can be zero,

not all neighboring cells produce interference to the typical

cell at each snapshot. Under the regular cellular boundaries, it

is not easy to model the spatial distribution of the interferers

exactly. In this paper we adopt an approximation by assuming

independent thinning of the interference PPP.

For blanket transmission, a neighboring cell does not pro-

duce interference if there are no users in that cell. Thus

we assume that the intensity of the interfering antenna port

is thinned by the probability of non-zero-user event of its

cell, i.e., the interference set Φ
(I)
A can be approximated as a

PPP with intensity λ
(I′)
A =

(

1− e−πR2λU

)

λA. For selective

transmission, if there are either no antennas or no users in a

cell, no interference is generated from that cell. Hence the

interference set Φ
(I)
A can be approximated as a PPP with

intensity λ
(I′′)
A =

(

1− e−πR2λA

)(

1− e−πR2λU

)

1
πR2 .

Considering the selection probability and the reduced inter-

ference intensity, and averaging over all possible user locations

within the cell, we have the following proposition for the

network spectral efficiency of regular DAS under random user

distribution.

Proposition 2: Assuming users are PPP-modeled, the net-

work spectral efficiency of regular DAS averaged over the cell
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is

C
(Reg.)
Netw. =

∫ R

0

C(Reg.)
r fr(r)dr, where fr(r) =

2r

R2
, (31)

where C
(Reg.)
r is the location-specific spectral efficiency at a

distance r from the cell center of any of the two transmission

schemes

C(Reg.)
r ≈











P
(Reg.)
U C

(Blk.)
r

(

λ
(I′)
A

)

blanket transmission

P
(Reg.)
U C

(Sel.)
r

(

λ
(I′′)
A

)

selective transmission.

(32)

C
(Blk.)
r

(

λ
(I′)
A

)

and C
(Sel.)
r

(

λ
(I′′)
A

)

are the location-specific

spectral efficiencies (8) and (26), with point processes substi-

tuted by PPPs with intensities λ
(I′)
A and λ

(I′′)
A in the Laplace

transform of the interference parts, respectively. P
(Reg.)
U is given

in (28).

We demonstrate the effectiveness of the approximations

used for the interference intensities λ
(I′)
A and λ

(I′′)
A in the

simulation part of this paper.

B. User-Centric Selective DAS

In the previous regular DAS schemes, the entire network

is partitioned into cells with fixed boundaries. In this section,

we consider a user-centric DAS layout where all regular cell

boundaries are removed. In this case, each user finds its closest

antenna port as its serving port, which we refer to as the user-

centric selective (UC-Sel.) DAS scheme. Note that user-centric

selective DAS is different from regular selective DAS, where

in the latter scheme the closest antenna port is searched within

the cell. Since in DAS networks there are usually more antenna

ports than users, i.e., λA > λU , this architecture is also known

as the ultra-dense network [30].

With the distance based association, the antenna ports

form the Voronoi tessellation [28]. Since ΦU and ΦA are

independent, the Voronoi cell containing the typical user may

contain none or multiple other users. In the latter case, TDMA

is adopted as a user access scheme. From the Proposition 2 in

[6], the selection probability of the typical user is

P
(UC-Sel.)
U =

λA

λU

[

1−

(

1 + 3.5−1λU

λA

)−3.5
]

, (33)

which is only a function of the ratio of the antenna port and

the user intensity.

Conditioned on the distance between the considered user

and its closest antenna port d, the Laplace transform of the

signal part in (4) is

G
(UC-Sel.)

Φ
(S)
A |d

= EG

(

e−sGd−α
)

= (1 + µsd−α)−K . (34)

Considering that antenna ports do not generate interference

if their Voronoi cells do no contain users, the interfering

antenna ports set Φ
(I)
A can be approximated as a PPP with

intensity [6]

λ
(UC-Sel.)
A = λA

[

1−

(

1 + 3.5−1λU

λA

)−3.5
]

. (35)

Similar to (13), the Laplace transform of the interference part

is approximated as

G
(UC-Sel.)

Φ
(I)
A |d

≈ exp

{

λ
(UC-Sel.)
A

∫ 2π

0

∫ ∞

d

[

(1 + µsv−α)−K−1
]

vdvdθ

}

= exp

[

πλ
(UC-Sel.)
A (µs)2/α

∫ ∞

d2(µs)−2/α

β(u)du

]

,

(36)

where v > d since the interfering antenna ports are farther

than the serving port.

The spectral efficiency of user-centric selective DAS can

now be obtained using (4). In addition, the network spectral

efficiency should be averaged over the distance d, since the

border between the signal and interference region is not fixed

as in regular DAS with fixed cell boundaries.

Proposition 3: For user-centric DAS with selective trans-

mission, the downlink network spectral efficiency has the

following approximation

C
(UC-Sel.)
Netw. = P

(UC-Sel.)
U Ed

(

C
(UC-Sel.)
d

)

= P
(UC-Sel.)
U

∫ ∞

0

C
(UC-Sel.)
d fd (d) dd (37)

where

C
(UC-Sel.)
d =

∫ ∞

0

e−sσ2

s
G
(UC-Sel.)

Φ
(I)
A |d

(

1− G
(UC-Sel.)

Φ
(S)
A |d

)

ds, (38)

and P
(UC-Sel.)
U , G

(UC-Sel.)

Φ
(S)
A |d

, and G
(UC-Sel.)

Φ
(I)
A |d

are given in (33), (34),

and (36), respectively. The distribution of d is given as in [21]

fd(d) = e−πd2λA2πdλA. (39)

C. Comparison of All Schemes

In this section, we present simulation results for the network

spectral efficiency of the regular and user-centric DAS layouts,

and compare all DAS schemes. With the same antenna-port

and user density as in the previous location-specific analysis

with R = 1000m radius, we set λU = 1
π(1000m)2 and

λA = N
Kπ(1000m)2 where N here denotes the average number

of antennas over an area of π10002. The power per antenna

is again assumed to be P
N where P = 46dBm.

First, for regular DAS with fixed cell boundaries, we plot

the network spectral efficiency versus different cell radii R

in Figs. 8-9. We observe that the analytical results deviate

from simulation for blanket transmission, especially at α = 4
with a high antenna intensity. This inaccuracy comes from

the approximation used for the thinning of the interference,

i.e., the approximation of λ
(I′)
A , where we assume independent

thinning of the PPP. Note that under blanket transmission,

excluding the cells that do not generate interference (with no

users inside), the set of actual interfering antenna ports appears

as a clustered process, i.e., superposition of many (perhaps

non-adjacent) clusters/cells of points, which is far from the

PPP that we use to approximate the interference set Φ
(I′)
A .

At α = 5, the gap between the analysis and simulation of

blanket transmission becomes smaller because of the higher at-

tenuation of the interference. Also, for selective transmission,
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Fig. 8. Network spectral efficiency of regular DAS as a function of the cell
radius. α = 4, K = 1, λU = 1

π(1000m)2
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Fig. 9. Network spectral efficiency of regular DAS as a function of the cell
radius. α = 5, K = 1, λU = 1

π(1000m)2
.

the analytical results are always close to simulation. This is

because there is always one active antenna port per interfering

cell in this case, and the interference set Φ
(I′′)
A forms a point

process (although not Poisson), which is closer to a PPP as

compared to the case of a clustered process.

As verified in Figs. 8-9, the network spectral efficiency is

not a monotonic function of R, and there exists an optimal cell

radius that maximizes the network spectral efficiency, e.g., in

Fig. 8 with α = 4 and λA = 24
π(1000m)2 , R = 300m and

R = 500m are optimal for blanket and selective transmission,

respectively. Qualitatively, with larger cell radius the interfer-

ers are farther away, but more users are contained in the cell
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Fig. 10. Network spectral efficiencies of all schemes as a function of the
antenna intensity (average antenna number per π(1000m)2 area). Regular

DAS is plotted with the optimal cell radius. K = 1, λU = 1
π(1000m)2

.

and hence the selection probability of the typical user is lower.

The analytical results, despite its gap from the simulation,

can predict the trend of the network spectral efficiency as

a function of the cell radius, and is useful in determining

the optimal radius. With the optimal radius, the network

spectral efficiency of selective transmission outperforms that

of blanket transmission at α = 4; while the two schemes have

similar performance at α = 5. The optimal radius of selective

transmission is greater than that of blanket transmission under

the same antenna intensity; for both transmission schemes it

decreases with the antenna port intensity.

In Fig. 10, we compare regular DAS and user-centric selec-

tive DAS as the antenna port intensity varies. The regular DAS

schemes are plotted with its optimal cell radius as determined

from Figs. 8-9. Compared to regular selective DAS with

circular cell boundaries, user-centric selective DAS has better

performance. One reason for this is that, the cell size of regular

selective DAS with the optimal radius is still on average larger

than that of the Voronoi cells of user-centric selective DAS,

thus a regular cell contains more users which reduces the

user selection probability. This loss in available transmission

opportunity is not compensated by the interference reduction

due to the interferers being pushed away with a larger cell

size. Further, under the PPP model: 1) the selected antenna

port of regular DAS may not be the closest to the user,

since such selection is not done over the whole network but

within one cell; 2) with fixed cell boundaries, there is a non-

zero probability PA

(

void
)

that there are no antennas in the

cell. These factors explain the inferior performance of regular

selective DAS as compared to user-centric selective DAS.

Finally we comment that since each antenna port acts as an

independent access point like a micro base-station, employ-

ing user-centric selective DAS is in principle equivalent to
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splitting cells into smaller cells hence densifying the network.

This may add to the architecture complexity of the network

since the number of independent control units need to grow

proportionally.

V. CONCLUSION

In this paper, we study random antenna distribution and

PPP based modeling of DAS. Assuming no transmit CSI and

per-antenna power constraint, we derive the downlink spectral

efficiency of DAS in a tractable form for efficient numerical

computation. We present the spectral efficiency results of

DAS with either blanket or selective transmission under fixed

cell boundaries, as well as user-centric selective DAS where

cell boundaries are removed. The proposed analytical results

facilitate the comparison of different DAS schemes, and their

effectiveness is demonstrated by numerical simulation. For

regular DAS with cell boundaries, we show that it has better

cell-edge spectral efficiency than the traditional cellular sys-

tem, and the selective scheme outperforms the blanket scheme.

From a network perspective where users are also randomly

distributed and assuming a TDMA-based user access, user-

centric selective DAS is shown to outperform both regular

DAS schemes.
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