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Abstract— This paper derives a rigorous performance
bound for the constant-power water-filling algorithm for
ISI channels with multicarrier modulation and for i.i.d.
fading channels with adaptive modulation. Based on the
performance bound, a very-low complexity logarithm-free
power allocation algorithm is proposed. Theoretical worst-
case analysis and simulation show that the approximate
water-filling scheme is close to optimal.

I. Introduction

When a communication channel is corrupted by severe
fading or by strong intersymbol interference, the adapta-
tion of transmit signal to the channel condition can typi-
cally bring a large improvement to the transmission rate.
Adaptation is possible when the channel state is avail-
able to the transmitter, usually by a channel estimation
scheme and a reliable feedback mechanism. With perfect
channel information, the problem of finding the optimal
adaptation strategy has been much studied in the past. If
the channel can be partitioned into parallel independent
subchannels by assuming i.i.d. fading statistics for the
fading channel, or by the discrete Fourier transform for
the intersymbol interference channel, the optimal trans-
mit power adaptation is the well-known water-filling pro-
cedure. In water-filling, more power is allocated to “bet-
ter” subchannels with higher signal-to-noise ratio (SNR),
so as to maximize the sum of data rates in all subchan-
nels, where in each subchannel the data rate is related
to the power allocation by Shannon’s Gaussian capacity
formula1 1

2 log(1 + SNR). However, because the capacity
is a logarithmic function of power, the data rate is usually
insensitive to the exact power allocation, except when the
signal-to-noise ratio is low. This motivates the search for
simpler power allocation schemes that can perform close
to the optimal.
Approximate water-filling schemes often greatly sim-

plify transmitter and receiver design, and they have been
the subject of considerable study. In the multicarrier con-
text, Chow [1] empirically discovered that as long as the
optimal bandwidth is used, a constant-power allocation
has a negligible performance loss compared to true water-
filling. The same phenomenon is observed in the adaptive
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1In this paper, “log” is used to denote logarithm of base 2; “ln”
is used to denote logarithm of base e.

modulation setting [2]. There has been several perfor-
mance bounds on constant-power water-filling reported
in the literature. Aslanis [3] compared the worst case dif-
ference between a true water-filling and a constant-power
water-filling, and derived a bound based on the SNR cut-
off value. Schein and Trott [4] derived a different bound
also based on SNR. The current work extends the exist-
ing results in several directions. First, a worst-case per-
formance bound is derived using a novel approach based
on convex analysis, and the bound is valid for SNR. Sec-
ondly, it is shown that the new performance bound can
be used to design a very-low complexity power allocation
algorithm with a bounded worst-case performance. In
particular, the algorithm is shown to be at most 0.266
bits/sec/Hz away from capacity on a Rayleigh channel,
and it often performs much closer to capacity in practice.

The rest of the paper is organized as follows. Section II
formulates the water-filling problem, and derives the new
bound. Section III proposes a new low-complexity power
adaptation algorithm. Section IV applies the bound to
the Rayleigh fading channel. Simulation results are pre-
sented in Section V, and conclusions are drawn in Section
VI.

II. Sub-optimal Water-filling

A. Problem Formulation

We choose to formulate the problem in the adaptive
modulation framework because it is slightly more general
than the multicarrier setting. The communication chan-
nel is modeled as:

Y (i) =
√

ν(i) · X(i) + N(i), (1)

where i is the discrete time index, X(i) and Y (i) are
scalar input and output signals respectively, N(i) is the
additive white Gaussian noise, which is independent and
identically distributed with a constant variance σ2, and√

ν(i) is the multiplicative channel fading coefficient. For
simplicity, ν(i), the squared magnitude of the fading co-
efficient, is assumed to be independent and identically
distributed with a probability distribution ρ(ν). The ca-
pacity for this fading channel under an average transmit
power constraint when both the transmitter and the re-
ceiver have perfect and instantaneous channel side infor-
mation was characterized by Goldsmith and Variaya [5].
They proposed a water-filling-in-time solution and proved



a coding theorem based on finite partitions of channel
fading statistics, i.e. ν is restricted to take finite val-
ues ν1, ν2, · · · νm, with probabilities p1, p2, · · · pm. In this
case, the maximization problem becomes:

max
Sk

m∑
k=1

pk log
(
1 +

Skνk

σ2

)
(2)

s.t.
m∑

k=1

pkSk ≤ S̄, (3)

Sk ≥ 0, (4)

where S̄ is the average transmit power constraint, and
the maximization is over all power allocation policies Sk

based on the instant channel fading state νk. Letting
pk = 1 reduces the problem to the multicarrier setting.
The solution to this optimization problem is the well-
known water-filling procedure. Our interest is in finding
approximate solutions with provable worst-case perfor-
mance.

B. Duality Gap

The optimization problem (2) belongs to the class of
convex programming problems, where a convex objective
function is to be minimized subject to a convex constraint
set. A general form of a convex problem is the following:

min
x

f0(x) (5)

s.t. fi(x) ≤ 0, (6)

where fi(x), i = 0, 1, · · ·m are convex functions. f0(x)
is called the primal objective. The Lagrangian of the
optimization problem is defined as:

L(x, λ) = f0(x) + λ1f1(x) + · · ·λmfm(x), (7)

where λi are positive constants. The dual objective is
defined to be g(λ) = infx L(x, λ). It is easy to see that
g(λ) is a lower bound on the optimal f0(x):

f0(x) ≥ f0(x) +
∑

i

λifi(x) (8)

≥ inf
z

(
f0(z) +

∑
i

λifi(z)

)
(9)

≥ g(λ). (10)

So,
g(λ) ≤ min

x
f0(x). (11)

This is the lower bound that we will use to investigate
the optimality of approximate water-filling algorithms.
The difference between the primal objective f0(x) and
the dual objective g(λ) is called the duality-gap. A cen-
tral result in convex analysis [6] is that when the primal
problem is convex, the duality gap reduces to zero at the
optimum.

C. Lower Bound

The above general result is now applied to the water-
filling problem. First, maximizing the data rate is equiv-
alent to minimizing its negative. The capacity is a con-
cave function of power, so its negative is convex. The
constraints are linear, so they are convex as well. Asso-
ciate dual variable λ to the power constraint, and µk to
each of the positivity constraints on Sk, the Lagrangian
is then:

L(Sk, λ, µk) =
m∑

k=1

−pk log
(
1 +

Skνk

σ2

)

+λ

[(
m∑

k=1

pkSk

)
− S̄

]
+

m∑
k=1

µk(−Sk). (12)

The dual objective g(λ, µk) is the infimum of the La-
grangian over primal variables Sk. At the infimum, the
partial derivative of the Lagrangian with respect to Sk

must be zero:

∂L

∂Sk
= 0 = −pk · νk/σ

2

1 + Skνk/σ2
· 1
ln 2

+ λ · pk − µk, (13)

from which the classical water-filling condition

Sk +
σ2

νk
=

1
λ− µk/pk

· 1
ln 2

. (14)

is obtained. This condition, together with the constraints
of the original primal problem, the positivity constraints
on the dual variables, and the so-called complemen-
tary slackness constraints, form the Karush-Kuhn-Tucker
(KKT) condition, which is sufficient and necessary in this
case.

Substituting the water-filling condition (14) into (12)
gives the dual objective:

g(λ, µk) = −
m∑

k=1

pk log
(

νk/σ
2

λ − µk/pk
· 1
ln 2

)

−
(

m∑
k=1

(λpk − µk) · σ2

νk

)
− λS̄ +

1
ln 2

(15)

The dual objective is always convex, and it is a lower
bound to the primal objective2 for all positive λ and µk.
In particular, substituting the dual variables as in (14)
gives the following duality gap Γ, which is defined as the
difference between the primal and the dual objectives:

Γ =
m∑

k=1

pk

(
σ2/νk

Sk + σ2/νk
· 1
ln 2

)
+ λS̄ − 1

ln 2
. (16)

2g(λ, µk) is a lower bound to the minimization problem. So
−g(λ, µk) is an upper bound to the rate maximization problem.
To avoid notational inconvenience, the rest of the paper will be
speaking of only the duality gap.



To express the gap exclusively in primal variables Sk,
a suitable λ needs to be found. A small λ is desirable
because it makes the duality gap small. Since

1
Sk + σ2/νk

· 1
ln 2

= λ− µk

pk
, (17)

and recall that λ and µk need to be non-negative, the
smallest non-negative λ is then

λ = max
k

(
1

Sk + σ2/νk
· 1
ln 2

)
=

1
min

k
{Sk + σ2/νk}

· 1
ln 2

.

(18)
Assume that the approximate water-filling algorithm sat-
isfies the power constraint

∑
k pkSk ≤ S̄ with equality3,

the above gives the following:

Γ =
1
ln 2

·

 m∑

k=1

pk


 Sk

min
j

{Sj + σ2/νj}
− Sk

Sk + σ2/νk






(19)
The preceeding development is summarized in the follow-
ing theorem:

Theorem 1: For the optimization problem (2), if Sk ≥
0 is a power allocation strategy that satisfies the power
constraint with equality, then the achievable data rate us-
ing Sk is at most Γ bits/sec per Hz away from the optimal
water-filling solution, where Γ is expressed in (19).
This result is a general bound to all approximate

water-filling algorithms. For example, it can be used
to bound the performance of power allocation strategies
with integer-bit constraint4. It is clear that if exact water-
filling is used, i.e. when Sk+σ2/νk is a constant whenever
Sk > 0, the gap reduces to zero. Therefore, the cost of
not doing water-filling is the decrease in the denominator
in the second term. The simplicity of the above expres-
sion makes it quite useful in deriving new results, as it
shall soon be seen.

D. Constant Power Adaptation

We now turn our attention to the particular class of
constant-power adaptation algorithms. As mentioned be-
fore, log(1+SNR) is more sensitive to SNR when SNR is
low. So, it makes sense that the critical task in water-
filling should be to ensure that low SNR subchannels
are allocated the correct amount of power. In particu-
lar, those subchannels that would be allocated zero power
in exact water-filling should not receive a positive power
in an approximate water-filling algorithm, for otherwise,
the power is almost wasted. This intuition allowed Chow

3When the power constraint is not satisfied with equality, S̄ must
be used in the second sum in (19) instead of

∑
pkSk.

4Equation (19) can be used to show that integer-bit restriction
costs at most 1/ ln 2 bits/sec per Hz by noticing an integer bit allo-
cation algorithm essentially doubles Sk + σ2/νk in allocating each
additional bit. Unfortunately, this bound is rather loose.

[1] to observe that a constant-power allocation strategy,
where the transmitter allocates zero power to subchan-
nels that would receiver zero power in exact water-filling,
but allocates constant power in subchannels that would
receive positive power in exact water-filling is often close
to the optimal. In this section, this intuition will be made
precise using the gap bound derived before.

Consider the following class of constant-power alloca-
tion strategies where beyond a cut-off point, ν0, all sub-
channels are allocated the same power:

Sk =
{

S0 if νk ≥ ν0

0 if νk < ν0
. (20)

Here, the subchannels are assumed to be ordered so that
νk ≥ νl whenever k ≤ l. If the same cut-off point ν0 is
used as in exact water-filling, we have,

S0 + min
νk≥ν0

(
σ2

νk

)
≤ σ2

ν0
≤ min

νk<ν0

(
σ2

νk

)
. (21)

The first inequality is true because in the transmission
band (i.e. when νk ≥ ν0) the constant-power allocation
is an suboptimal strategy, therefore the minimal sum
of power and (normalized) noise is less than the water
level (σ2/ν0). The second inequality holds because the
subchannels are ordered. Equation (21) allows us to re-
place the mink{Sk + σ2/νk} term in the gap formula by
S0 +mink{σ2/νk}. In this case, (19) becomes:

ln 2 · Γ =
m∗∑
k=1

pk

(
S0

S0 +minj{σ2/νj} − S0

S0 + σ2/νk

)

=
m∗∑
k=1

pk

S0

(
σ2/νk −minj{σ2/νj}

)
(S0 + σ2/νk) (S0 +minj{σ2/νj})

≤
m∗∑
k=1

pk

(
σ2/νk

S0 + σ2/νk

)
, (22)

where m∗ denotes the number of channel states with posi-
tive power allocation. Notice that an immediate constant

bound can be obtained by replacing
σ2/νk

S0 + σ2/νk
with 1.

In this case, Γ ≤ 1/ ln 2 = 1.44 bits/sec/Hz is an upper
bound to the maximum capacity loss for constant-power
allocation algorithms. But this is usually too loose to be
of practical interest. Instead, we can simplify the nota-
tion using the fact that the number of bits allocated in
each subchannel is given by log

(
1 + S0νk/σ

2
)
. In this

case, Γ can be written in a particularly simple form:

Γ ≤ 1
ln 2

m∗∑
k=1

pk2−bk , (23)

where bk is the number of bits allocated in each sub-
channel. Note that bk are not restricted to integer val-
ues in the above bound. Also note that the crucial as-
sumption for the bound to hold is mink{Sk + σ2/νk} =
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Fig. 1. Constant-Power Allocation

S0 + mink{σ2/νk}. Having the same cut-off point as in
exact water-filling is a sufficient but not necessary. Thus,
we have the following theorem.

Theorem 2: For a constant-power allocation strategy
of the form (20) that satisfies the power constraint with
equality, if mink{Sk + σ2/νk} = S0 +mink{σ2/νk}, then

it is at most

(
m∗∑
k=1

pk · 2−bk/ ln 2

)
bits/sec/Hz away from

the water-filling optimal, where the sum is over all m∗

subchannels that are allocated S0 amount of power, and
bk is the number of bits allocated in subchannel k, i.e.
bk = log(1 + S0νk/σ

2).
Fig. 1 illustrates the theorem graphically. As long

as level A is lower than level B, the achievable rate is
bounded by (23). Note that subchannels with low SNR
(and hence low bit allocation) are precisely those con-
tributing most to the bound, thus confirming the intu-
ition that low SNR subchannels are the most sensitive to
power mis-allocation.

III. Low Complexity Adaptation

The crucial condition in Theorem 2 is mink{Sk +
σ2/νk} = S0 + mink{σ2/νk}. This condition says that
the bound is valid only if not too few subchannels are
used. The condition is trivially satisfied, for example, by
putting equal power in all subchannels. In that case, 2−bk

will be nearly 1 for many subchannels, and the duality
gap becomes large (although still bounded by the con-
stant 1.44 bits/sec/Hz). Therefore, it is of interest to use
as few subchannels as possible without violating the con-
dition so as to simultaneously make the number of terms
in the summation small, and make each individual term
small (since fewer subchannels implies larger S0, which in
term implies smaller 2−bk .) This suggests that a simple
power allocation strategy which sets the cut-off point to
be the largest m∗ that satisfies S0+σ2/ν1 ≤ σ2/νm∗+1 is
close to the optimal. Graphically, an algorithm that tries
to find the smallest m∗ so that level A is less than level B

has the smallest duality gap. This fact is used to devise
the following algorithm:

Algorithm 1: Assume that the channel gain νk’s are or-
dered so that ν1 ≥ ν2 · · · ≥ νm. Let ν0 be the cut-off point
so that a constant power S0 is allocated for all νk ≥ ν0.
Let m∗ be the largest k such that νk ≥ ν0. The following
steps find the m∗ with the smallest duality gap:
1. Set m∗ = m.
2. Compute S0 = S̄/

∑m∗

k=1 pk.
3. If σ2/νm∗+1 ≥ S0 + σ2/ν1, set m∗ = m∗ − 1, repeat
step 2. Otherwise, set m∗ = m∗ + 1 and go to the next
step.
4. Compute bk = log(1 + S0νk/σ

2) for k = 1, · · · ,m∗.

Then, R =
m∗∑
k=1

pkbk is at most

(
m∗∑
k=1

pk · 2−bk/ ln 2

)

bits/sec/Hz away from capacity.
Two properties of this algorithmmake it attractive. First,
unlike most previous low complexity bit-loading methods
(e.g. [1]), where the boundary point is found by finding
the cut-off point that gives the highest data rate, this
algorithm finds the optimal cut-off point without actu-
ally computing the data rate achieved in each step, and
is therefore free of logarithmic operations. The most ex-
pensive operation in this algorithm is the single division
in each step, thus making its complexity very low. Sec-
ondly, this algorithm has a provable worst-case perfor-
mance bound as given by Theorem 2. Finally, we note
that a binary search of the cut-off point can be used to
further improve the algorithm’s efficiency.

IV. Rayleigh Channel

The bound developed previously can be explicitly com-
puted if channel fading statistics are known. In particu-
lar, for a Rayleigh fading channel, it can be shown that
the constant-power adaptation strategy is only a small
fraction of one bit away from capacity.

In a wireless channel where a large number of scatter-
ers contribute to the signal at the receiver, application
of the central limit theorem leads to a (zero-mean) com-
plex Gaussian model for the channel response. The en-
velope of the channel response at any time instant has a
Rayleigh distribution, whose square magnitude is expo-

nentially distributed, pν(ν) =
1
Ω
·e−ν/Ω, where Ω, the av-

erage channel gain, parameterizes the set of all Rayleigh
distributions.

Fixing Ω, the constant-power control strategy is deter-
mined by the average power constraint, or alternatively
by the cut-off value ν0. The low complexity power allo-
cation algorithm says that the constant power allocated
in each state S0 should be such that

S0 +min
{

σ2

ν

}
=

σ2

ν0
. (24)



The Rayleigh distribution has a non-zero probability for
arbitrarily large amplitudes of ν, so the above reduces
to S0 = σ2/ν0. Curiously, note that the constant-power
allocation algorithm allocates a constant power S0 to all
subchannels that can support at least one bit/second/Hz
with S0.
Now, using the gap bound (22), the spectral efficiency

for an optimal constant-power allocation with cut-off ν0

is bounded within the following constant from capacity:

Γ(ν0) =
1

ln 2

∫ −∞

ν0

(
σ2/ν

σ2/ν0 + σ2/ν

)
· 1
Ω

· e−ν/Ωdν (25)

By a change of variable t = ν/Ω (and also t0 = ν0/Ω),
define

f(t0) =
∫ ∞

t0

t0e
−t

t + t0
dt, (26)

the duality gap can be expressed as

Γ(ν0) =
1
ln 2

· f
(v0

Ω

)
. (27)

The authors are not aware of a closed-form expression for
the integral. Numerical evaluation reveals that it has a
single maximum occurring at about t0 = 0.39, and the
value of the maximum is about 0.1840. The duality gap
is largest when the power constraint is such that the cut-
off point ν0 = 0.39Ω. In this worst case, the average
data rate is 1.3631 bits/sec/Hz, and the duality gap is
0.1840/ ln2 ≤ 0.266 bits/sec/Hz away from capacity. The
following theorem summarizes the result.

Theorem 3: For a flat i.i.d. Rayleigh fading channel
with perfect side information at the transmitter and
the receiver, assuming infinite granularity on the chan-
nel state partition, a constant-power adaptation method
should allocate S0 to all subchannels that could support
at least one bit with S0, where S0 is determined from the
power constraint. In this case, the resulting spectral effi-
ciency is at most 0.266 bits/sec/Hz away from capacity.

V. Simulation

Simulation results on the Rayleigh channel are now
presented. The average channel gain (Ω) is chosen to
be -10dB. In Fig. 2, the average spectral efficiencies of
the exact water-filling and the low-complexity constant-
power allocation are plotted against the average power
constraint together with the duality-gap bound. The
average power constraint is normalized by setting noise
power σ2=0dB. The two curves are indistinguishable. For
Rayleigh channels, the constant-power allocation method
performs even better than the bound suggests, and it has
a truly negligible loss compared to the exact water-filling.
Note that the constant-power allocation method is de-
signed using the bound. So, while the bound could be
loose, the algorithm designed using the bound works very
well.
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Fig. 2. Spectral efficiency of exact water-filling and constant-power
allocation on Rayleigh channel with Ω=-10dB.

VI. Conclusion

Approximate power adaptation algorithms are investi-
gated in this paper. A rigorous performance low bound
for sub-optimal power allocation is derived. A very-
low complexity constant-power adaptation method is pro-
posed using the bound derived. The low-complexity al-
gorithm has the desirable properties of having a provable
worst-case performance and being logarithm-free. The
performance bound is applied to Rayleigh fading chan-
nels, and it is shown that constant-power adaptive mod-
ulation is at most 0.266 bits/sec/Hz away from capacity.
Simulation results suggest that the actual gap is even
smaller.
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