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Abstract— Spectrum optimization is an important part of the
design of interference-limited multiuser communication systems.
While traditional water-filling provides a closed-form solution
to the transmit optimization problem in a single-user system,
the multiuser version of the problem often leads to nonconvex
problem formulations which are difficult to solve. Motivated by
high-speed parallel-link and digital subscriber line applications,
this paper investigates two practical multiuser settings in which
global or local optimal solutions to the multiuser spectrum
optimization problems can be found efficiently. The first part of
this paper considers a high-speed transmission system in which
practical (but suboptimal) minimum-mean-squared-error linear
equalizers (MMSE-LEs) are used at the receiver. The optimal
single-user transmit spectrum in this case involves a modified
water-filling solution. Surprisingly, such a modified water-filling
spectrum can be shown to be near-optimal in a multiuser
setting as well, if the direct-link and the crosstalk characteristics
are symmetric and if crosstalk is reasonably small. Thus, for
practical parallel-link systems using MMSE linear equalizers, the
optimal single-user and multiuser spectra are nearly identical.
The second part of this paper considers numerical techniques
for solving a nonconvex multiuser rate maximization problem
for digital subscriber line applications. A new ingredient in the
proposed approach is a taxation scheme that takes into account
the effect of interference between neighboring lines. This leads
to a modified iterative water-filling algorithm which is capable
of finding local optimum solutions to the multiuser spectrum
optimization problem efficiently.

I. INTRODUCTION

Spectrum optimization is an important aspect of multiuser
communication system design. While for traditional single-
user systems, spectrum optimization amounts to an optimal
choice of bandwidth, power and modulation format for the
maximization of single-user capacity, the design of multiuser
systems also has to account for the effect of interference.
Mathematically, while single-user spectrum optimization prob-
lem often leads to convex problem formulations which are
analytically tractable, its multiuser counterpart often leads to
nonconvex problems which are numerically difficult to solve.
This paper makes progress on multiuser spectrum optimization
problems by focusing on two specific scenarios in which
efficient numerical algorithms exist. In the first part of the
paper, we show that the formulation of transmit spectrum
optimization problem depends on receiver design. While the
use of an optimal receiver leads to a well-known water-filling
solution, the use of a less-complex minimum-mean-squared-
error (MMSE) linear receiver leads to a different water-filling
spectrum. Surprisingly, this spectrum is near-optimal in some

multiuser setting as well. In the second half of this paper, we
focus on efficient numerical solutions to a nonconvex mul-
tiuser rate maximization problem in the presence of crosstalk
interference. We show that a modified iterative water-filling
algorithm can be used to arrive at local optimal solutions of
the problem efficiently.

We are motivated to study the multiuser transmit spectrum
optimization problem by high-speed parallel transmission line
and digital subscriber line applications. (See Fig. 1.) In high-
speed backplane communication systems, data transmissions
occur on parallel links. The crosstalk between the links is a
major transmission impairment. In these high-speed applica-
tions, the information-theoretical optimal multi-carrier modu-
lation or decision-feedback equalization may be too complex
to implement; suboptimal linear equalizers are often used. The
first part of this paper tackles the optimal transmit power
allocation problem in the presence of crosstalk when MMSE
linear equalizers are used at the receiver.

The second part of the paper is motivated by applications
in which information-theoretic achievable rate is the correct
metric to optimize. This is the case for digital subscriber line
systems where optimal receivers are used. The multiuser rate
maximization problem for an interference channel is a well-
known nonconvex optimization problem. This paper provides
numerical insights to the problem and proposes an efficient
algorithm that aims to reach local optimal solutions of the
problem.

II. VARIATIONS OF WATER-FILLING

Traditional water-filling refers to the shaping of the transmit
spectrum for capacity maximization in a single-transmitter
single-receiver Gaussian channel with additive colored noise.
The water-filling solution is derived from a maximum mutual
information argument; it is widely used in frequency-selective
or intersymbol interference (ISI) channels, as well as in fading
channels with adaptive modulation.

A key assumption in the derivation of water-filling spectrum
is the use of an optimal receiver. However, when a suboptimal
receiver such as an MMSE linear equalizer (MMSE-LE) is
used, the water-filling spectrum needs to be suitably modified.
In the following, we begin by reviewing the structures of
optimal water-filling spectra for both optimal and suboptimal
receivers.



Tx

Tx

Tx

Rx

Rx

Rx

Fig. 1. A multiuser system in the presence of crosstalk. The optimal transmit
spectrum depends on the receiver structure.

A. Water-filling for Capacity Maximization

The traditional justification for water-filling is based on
mutual information maximization. In an ISI channel with a
channel transfer function H(f), the maximum achievable data
rate subject to an input power constraint P is the solution to
the following optimization problem:

maxmize
∫ F

0

log
(

1 +
|W (f)|2|H(f)|2

σ2

)
df

subject to
∫ F

0

|W (f)|2 ≤ P

|W (f)|2 ≥ 0, (1)

where the optimizing variable is input power spectral density,
denoted as |W (f)|2, σ2 is the additive white Gaussian noise
power level, and F is the maximum frequency range used. This
optimization problem is convex; it has the following simple
solution:

|W (f)|2 =
(

K − σ2

|H(f)|2
)+

, (2)

where K is a constant chosen to satisfy the total power
constraint. Equation (2) is referred to as the water-filling power
allocation because σ2

|H(f)|2 can be thoughts of as the bottom
of a bowl, |W (f)|2 as the water filling the bowl, and K as
the water level.

In formulating the optimization problem (1) via mutual
information, it is implicitly assumed that an optimal equalizer
is used at the receiver1. This is true, for example, in an
orthogonal frequency-division multiplex (OFDM) implemen-
tation where H(f) is simply the channel gain and the optimal
W (f) is simply the power spectrum across the frequency
tones. This can also true for single-carrier systems. As single-
carrier systems with decision-feedback equalizers can also be
capacity achieving [1], the solution W (f) obtained from (1)
is the optimal transmit spectrum in this case as well. However,
when the optimal transmit spectrum has a multi-band structure,
multiple decision-feedback equalizers may have to be used.

B. Water-filling with MMSE Linear Equalizer

Clearly, water-filling is no longer the optimal transmit
spectrum when suboptimal receivers are used. This is the case,

1In addition, (1) also assumes that use of capacity-achieving codes. How-
ever, the use of practical codes can be easily taken into account by including
an SNR gap term in (1).
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Fig. 2. Capacity-maximizing water-filling vs. MMSE-LE water-filling.

for example, when a linear equalizer is used. Consider the
use of an MMSE-LE. Fixing the transmit spectrum W (f),
an MMSE-LE minimizes the total mean-squared error at the
receiver. An interesting question is then: What is the optimal
transmitter for such a suboptimal receiver? This problem has
been formulated and solved in [2], where an analytic solution
is shown to exist. We derive the solution below for the sake
of completeness.

It is convenient to begin the derivation in matrix form.
Consider an ISI channel with a Toeplitz matrix channel H :

y = Hx + z, (3)

where Szz = σ2I . The transmit spectrum can be represented
by a Toeplitz matrix W in

x = Wu. (4)

Without loss of generality, we may set Suu = I . The input
power constraint then becomes tr(WW T ) ≤ P . The MMSE
linear equalizer L has the following form:

L = SuyS−1
yy

= WT HT (HWWT HT + σ2I)−1 (5)

The minimum mean-squared error in this case is:

MMSE = I − WT HT (HWWT HT + σ2I)−1HW

= (I + WT HT σ−2HW )−1 (6)



We now formulate the MMSE minimization problem subject
to a power constraint. This is most easily done in the frequency
domain. As both H and W are assumed to be Toeplitz, we now
use their frequency-domain representations H(f) and W (f),
respectively. In this case, the design problem becomes:

minimize
∫ F

0

1
1 + σ−2|W (f)|2|H(f)|2 df

subject to
∫ F

0

|W (f)|2 ≤ P

|W (f)|2 ≥ 0, (7)

Interestingly, this problem also has an analytical solution.
Following a Lagrangian approach, it is not difficult to show
that the optimal transmit spectrum is [2]:

|W (f)|2 =
(

Kσ

|H(f)| −
σ2

|H(f)|2
)+

(8)

Comparing this solution with the capacity-maximizing water-
filling solution (2), it is interesting to note that the two are very
similar, except that the water-filling level in (8) is no longer a
constant. Instead, the MMSE-LE water-filling level is scaled
by the inverse of the square root of the effective channel gain.
Fig. 2 illustrates the difference between capacity-maximizing
and MMSE-LE water-filling.

The capacity-maximizing water-filling solution always puts
more power in high-SNR frequency bands in such a way that
|W (f)|2 + σ2

|H(f)|2 is a constant. The MMSE-LE water-filling
solution is less aggressive in spectrum shaping. The MMSE-
LE water-filling process effectively depresses the water-filling
level in the high-SNR frequency bands, and raises the water-
filling level in the low-SNR frequency bands. The MMSE-LE
water-filling process is essentially a combination of channel
inversion and water-filling.

III. MULTIUSER WATER-FILLING WITH MMSE-LE

The main objective of this paper is to derive the optimal
multiuser water-filling solution in the presence of crosstalk. As
mentioned earlier, in many high-speed multiline transmission
systems, crosstalk interference between the lines is a dominant
source of channel noise. Thus, the optimal transmit spectrum
has to consider not only the maximization of each line’s own
rate (or the minimization of its own MSE), but also the effect
of crosstalk interference each line emits to its neighboring
lines. In this section, we consider the multiuser water-filling
problem assuming MMSE-LE receivers.

In general, multiuser spectrum optimization often leads to
nonconvex problem formulations, which are difficult to solve.
In this section, we focus on a special, yet very practical,
subclass of such problems for which an analytical solution
is possible. This specific class includes parallel transmission
line systems in which the direct channel transfer functions are
identical for all lines and each line receives a same amount of
crosstalk. This is the case, for example, for parallel backplane
transmission line systems, where a set of equal-length lines
are in close proximity to each other. The crosstalk channels

are symmetric, and each line (except the first and the last line
in the backplane) experiences the same amount of crosstalk.
This is the scenario depicted in Fig. 1.

The optimal multiuser spectrum optimization problem in
these scenarios simplifies significantly because of the sym-
metry. It is reasonable to assume that every transmitter and
receiver must operate in the same way. In particular, the
transmit power spectral density for each line must be identical.
In addition, linear equalizers are assumed to be used at the
receiver. We now ask: What is the optimal transmit spectrum
with an MMSE-LE receiver?

By symmetric, the channel models for all users are identical
and it simplifies to the following:

y = Hx + Gv + z, (9)

where v is the crosstalk signal and G is the Toeplitz crosstalk
channel. By assumption, v has the same power spectrum as
x. As before, H is the Toeplitz matrix representing the direct
channel. Let the transmit filter be:

x = Wu (10)

The total noise power spectrum then becomes GWW T GT +
σ2I . Following the same derivation as in the single-user case,
the minimum mean-squared error with an MMSE-LE is:

MMSE = (I+WT HT (GWWT GT +σ2I)−1HW )−1. (11)

Again, the minimization of the MMSE subject to power
constraint is most easily done in the frequency domain. As H ,
W and G are all Toeplitz, the design problem then becomes:

minimize
∫ F

0

1

1 + |W (f)|2|H(f)|2
|G(f)|2|W (f)|2+σ2

df

subject to
∫ F

0

|W (f)|2 ≤ P

|W (f)|2 ≥ 0, (12)

where H(f), W (f) and G(f) are the respective frequency-
domain representations. The main result of this section is that
the above problem has almost the same solution as in the
single-user case.

Theorem 1: The optimal transmit spectrum that minimizes
the mean-squared error in a symmetric crosstalk environment
with MMSE linear equalizers at the receiver is

|W (f)|2 =
|H(f)|2

|H(f)|2 + |G(f)|2
(

Kσ

|H(f)| −
σ2

|H(f)|2
)+

(13)
where H(f) and G(f) represent the direct and the total
crosstalk channel gains, σ2 is the additive background noise
level, and K is a constant chosen to satisfy the total power
constraint.

Proof: The proof involves a manipulation of the Karush-
Kuhn-Tucker condition for the optimization problem (12).
Form the Lagrangian of (12) and take its derivation, we arrive
at (14) at the top of the next page. After cancelation of terms,
we get the optimality condition (13).



|G(f)|2((|G(f)|2 + |H(f)|2)|W (f)|2 + σ2) − (|G(f)|2 + |H(f)|2)(|G(f)|2|W (f)|2 + σ2)
((|G(f)|+|H(f)|2)|W (f)|2 + σ2)2

= K (14)

The most remarkable aspect of this result is that the optimal
transmit spectrum in a multiuser system with MMSE-LE is
almost exactly the same as that of a single-user system with
MMSE-LE, except by a scaling factor. The scaling factor is

|H(f)|2
|H(f)|2+|G(f)|2 . In many practical systems of interests, the
crosstalk channel gains are always much smaller than the
direct channel gains. In these cases, the scaling factor is almost
1 and the optimal multiuser spectrum and the optimal single-
user spectrum are almost identical.

This is a surprising result, as the scaling factor is inde-
pendent of the noise power level. One would expect that in
situations where the crosstalk channel is much weaker than
the direct channel, but where the background noise is even
smaller, multiuser spectrum optimization would have produced
a different transmit spectrum as compared to the single-user
case. Yet, the two turn out to be near identical, even though
the justifications for the single-user and the multiuser cases
are very different.

IV. MULTIUSER CAPACITY MAXIMIZATION

The second part of this paper deals with a rate maximization
problem for multiuser systems in the presence of crosstalk.
Here, we assume that optimal receivers are used. In this case,
the rate maximization problem becomes the maximization of
mutual information in an interference environment.

Although the capacity region of the interference channel is
still an open problem, in practical systems where the crosstalk
channels are typically weaker than the direct channel, treating
interference as noise is often the most practical communication
strategy. This is the case for digital subscriber line (DSL)
applications, which is the motivating example in this part of
the paper.

When the crosstalk interference is regarded as noise, a K-
user spectrum optimization problem for rate maximization
becomes:

max
K∑

k=1

αk

N∑
n=1

log

(
1 +

Pk(n)|Hkk(n)|2
σ2 +

∑
j �=k Pj(n)|Hjk(n)|2

)

s.t.
N∑

n=1

Pk(n) ≤ Pk k = 1, · · · , K

Pk(n) ≥ 0 k = 1, · · · , K (15)

Here, the objective function is a weighted rate maximization
problem with weighting factor αk. We discretize the entire
frequency range into N tones, corresponding to that of a
practical OFDM modulation system, where Hjk(n) denotes
the channel transfer function from user j to user k in tone n,
and Pk(n) denotes the power spectrum for user k in tone n.
The total power constraint for user k is denoted as Pk. In a
DSL application, the crosstalk channels cannot be assumed to
be symmetric (i.e. Hij(n) �= Hji(n) in general.)

The multiuser rate maximization problem (15) has been
considered extensively in the literature. An early idea, called
iterative water-filling [3], calls for the use a greedy algorithm
to arrive at an approximate solution to this problem. In the
iterative water-filling algorithm, each user iteratively performs
a single-user water-filling, while regarding interference as
noise. As an update of each user’s power spectrum changes the
interference pattern for all other users, the water-filling process
needs to be performed iteratively until the power spectra of all
users converge. While efficient and very easy to implement,
the iterative water-filling algorithm does not attempt to solve
the weighted rate maximization problem optimally. Each user
maximizes its own rate only, with no regard to other users’
rates.

Fundamentally, the weighted rate maximization problem
is a difficult problem to solve numerically, because of the
nonconvex nature of the optimization objective. The best
numerical algorithm to date is known as the optimal spectrum
balancing (OSB) algorithm [4], which relies on a dualization
of the power constraint using a Lagrangian multiplier and an
exhaustive search over each user’s power spectrum for each
fixed value of Lagrangian multipliers. The dual optimization
approach works despite nonconvexity, because the spectrum
optimization problem is separable in the frequency domain
and it satisfies an unusual property that its duality gap is zero
in the limit of large N [5]. Nevertheless, because the optimal
spectrum balancing algorithm involves an exhaustive search
over the user power, the complexity of OSB is exponential
in K , which makes it impractical for systems with a large
number of users.

The OSB algorithm depends crucially on the separability of
the rate expression over frequency. Separability in this context
means that frequency tones are independent of each other, and
the power of each user in tone n affects the aggregate rate
only in tone n. While separability holds for (15), the rate
expression of (15) is only an idealization. In practical OFDM
systems where the received OFDM symbol from the direct
channel and that from the crosstalk channel do not perfectly
align with each other, intercarrier interference (ICI) results [6].
In this case, the total crosstalk interference for user k in tone
n has the following expression [6]:

Crosstalk =
∑
j �=k

⎛
⎝ N

2 −1∑
m=−N

2

γ(m)Pj(n − m)|Hjk(n − m)|2
⎞
⎠

(16)
where γ(0) = 1 and γ(m) = 2/(N 2 sin2(πm/N)), for m �=
1, is the tone-to-tone coupling coefficient2 [6]. In this case,

2Note that due to the circulant structure of OFDM modulation, the tone
indices in Hij(n) and Pj(n) in (16) should be regarded as circulant, e.g.
Pj(−1) = Pj(N − 1).



the power of a user in tone n affects its neighbors not only
in tone n, but also in tones n ± 1, n ± 2, etc. The problem
becomes a nonconvex optimization problem with a coupled
utility function. The dual decomposition approach of the OSB
algorithm no longer applies.

The objective of this part of the paper is to find an simple
and effective algorithm to solve the multiuser spectrum opti-
mization problem numerically. Our main idea is an iterative
way of solving the KKT system of the nonconvex optimization
problem, which can be interpreted as a modified iterative
water-filling scheme capable of finding local optimal solutions
to the problem efficiently. The proposed algorithm is useful in
the presence of intercarrier interference as well.

Consider the Lagrangian of the optimization problem (15),
dualized with respect to the power constraint:

max
K∑

k=1

αk

N∑
n=1

log

(
1 +

Pk(n)|Hkk(n)|2
σ2 +

∑
j �=k Pj(n)|Hjk(n)|2

)

+
K∑

k=1

λk

(
Pk −

N∑
n=1

Pk(n)

)

s.t. Pk(n) ≥ 0, k = 1, · · · , K. (17)

We can write down the KKT system of the optimization
problem by taking the derivative of the above with respect
to Pk(n):

αk

Pk(n) +
∑
j �=k

Pj(n)
|Hjk(n)|2
|Hkk(n)|2 +

σ2

|Hkk(n)|2
= λk + tk(n)

(18)
where tk(n) is defined as follows:

tk(n) =
∑
j �=k

αjPj(n)|Hjj(n)|2
Pj(n)|Hjj(n)|2 +

∑
l �=j Pl(n)|Hlj(n)|2 + σ2

·

|Hkj(n)|2∑
l �=j Pl(n)|Hlj(n)|2 + σ2

(19)

Solving the optimization problem (15) can now be thought of
as solving the KKT system (18)-(19) along with the power
constraints and positivity constraints on Pk(n) and the usual
complementary slackness conditions3.

The inclusion of the term tk(n) is the only difference
between the usual iterative water-filling procedure and this new
set of KKT systems. The term tk(n) summarizes the effect of
interference that user k causes to other users. This motivates
us to propose a modified iterative water-filling algorithm for
solving the KKT system.

Our main idea is to fix both tk(n) and the interference term
from other users, denoted by Ik(n), where

Ik(n) =
∑
j �=k

Pj(n)|Hjk(n)|2 (20)

3When Pk(n) = 0, the equality in (18) needs to be replaced by less than
or equal to.

and solve for λk and Pk(n) using (18). We then update the
tk(n) and Ik(n) terms according to the newly obtained Pk(n)
and repeat the process until convergence.

This strategy is numerically efficient because (18) is essen-
tially a modified water-filling step, which can be rewritten as:

Pk(n) +
Ik(n)

|Hkk(n)|2 +
σ2

|Hkk(n)|2 =
αk

λk + tk(n)
(21)

Note that the water-filling level is modified by αk and tk(n)
on a per-tone basis.

Fixing tk(n) and Ik(n), we propose the following modified
water-filling procedure to find the optimal Pk(n). The first step
is to recognize that given λk, Pk(n) can be obtained from (21)
as follows:

Pk(n) =
(

αk

λk + tk(n)
− Ik(n) + σ2

|Hkk(n)|2
)+

(22)

Here, λk is essentially the inverse of the water-filling level but
modified by tk(n). Next, to find λk , we can sum (22) over n
and get

Pk =
∑

n

(
αk

λk + tk(n)
− Ik(n) + σ2

|Hkk(n)|2
)+

(23)

With tk(n) and Ik(n) fixed, this is now an equation of a single
variable λk. Further, the right-hand side of (23) is a monotonic
function of λk. Thus, (23) can be solved efficiently via a one-
dimensional search (e.g. using bisection). After λk is found,
Pk(n) can then be obtained from (22).

Note that when the optimal Pk(n) involves using less power
than the total power constraint Pk, the optimal λk should be
set to zero. This is the case when no positive λk satisfies (23).

Once the optimum (Pk(n), λk) is obtained for a given user
k, we may then iterate over the users, taking into account the
updated interference term Ik(n), until the process converges.
Finally, in an outer loop, we may then update tk(n) according
to (19) and repeat the process until the entire KKT system is
solved. The algorithm is summarized in the following:

Modified Iterative Water-filling Algorithm

1) Initialize Pk(n) and tk(n).
2) Loop:

a) Fixing tk(n), loop over user k:

i) Calculate Ik(n) according to (20).
ii) Obtain λk via a bisection on (23).
iii) Calculate Pk(n) using (22).

Until Pk(n) converges.
b) Update tk(n) using (19).

Until tk(n) converges.

The idea of using a term tk(n) to take into account the
effect of interference each user causes onto others has been
used in the past (e.g. [7] [8]). The main novelty of the proposed
algorithm is the incorporation of the tk(n) term in the water-
filling process, which allows us to find the water-filling level
λk efficiently using bisection.
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Fig. 3. Water-filling with a modified water level.

The tk(n) term can be interpreted as a taxation term. It
lowers the water-filling level (and hence the transmit power
spectrum density) in frequencies where the effect of its inter-
ference to other users is strong. This is done on a tone-by-tone
basis. The outer loop sets the value of the taxation term. Each
user responds by maximizing the weighted sum rate over its
own power allocation Pk(n). The weighting factor αk also has
an effect of adjusting the overall water-filling level.

As compared to previous work, the proposed algorithm has
the following main advantages:

• In previous work, the update of λk is always done via a
subgradient method [4] [7] [8], which can be slow. The
proposed bisection method is much more efficient.

• The proposed algorithm has an interpretation of being
a modified water-filling process for each user as shown
in Fig. 3. This facilitates distributed implementation, as
tk(n) is the only information that needs to be exchanged
among the users, while the interference term Ik(n) can
be measured by each modem in real time. In addition, a
modification of the water-filling level is the only change
that is required in implementation. This facilitates the
implementation of discrete bit-loading.

• The modified iterative water-filling algorithm can be
easily adapted to asynchronous DSL systems with in-
tercarrier interference [6]. This is a key advantage as
compared to OSB [4] or its derivatives [5] [9], and other
previously proposed algorithm such as SCALE [10]. To
account for intercarrier interference, the crosstalk term
(20) only needs to be modified as (16). The taxation term
(19) only needs to be modified as shown in (25) at the top
of the next page4, while all other parts of the algorithm
remain the same.

As typical in iterative-water-filling-like algorithms, the con-
vergence proof is difficult to establish in full generality. It
is possible to adopt an approach of [7] to show that under
a weak-interference condition, the iterative modified water-
filling inner loop for a fixed tk(n) would converge. However,

4In (25), SINRj(r) is defined to be the signal-to-interference-and-noise
ratio for jth user at the rth tone.
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Fig. 4. Loop topology for two downstream ADSL users. User one is deployed
from the central office (CO). User two is deployed from a remote terminal
(RT). The RT user emits strong crosstalk to the CO user.
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Fig. 5. Comparison between rate regions of the proposed algorithm and
iterative water-filling [3], OSB [4], and two greedy algorithms proposed in
[6] for the two-downstream-ADSL scenario with intercarrier interference. The
OSB performs poorly because the optimal spectrum is derived assuming no
ICI.

in practice, these weak-interference conditions are not always
met, yet convergence is still observed.

The convergence of tk(n) in the outer loop is also not easy
to establish. However, one may ensure convergence by slowing
down the update of tk(n) by incorporating a memory term.
For example, let t̂k(n) be the taxation term as computed by
(19), the following update rule can be used to slow down the
update

tnew
k (n) = βtoldk (n) + (1 − β)t̂k(n). (26)

for some 0 < β < 1.
Finally, we note that since the proposed algorithm solves the

KKT system directly. When it converges, it always converges
to a KKT point, which is guaranteed to be at least a local
optimum solution to the original problem (15).

Note that the proposed algorithm reduces to the original
iterative water-filling algorithm [3] when the taxation terms are
set to be tk(n) = 0. Thus, the proposed algorithm is attractive
from an implementation point of view, as it allows legacy
systems to be upgraded gradually.



tk(n) =
∑
j �=k

αj |Hkj(n)|2
N
2 −1∑

r=−N
2

Pj(r)|Hjj(r)|2
Pj(r)|Hjj(r)|2 +

∑
l �=j

∑N
2 −1

m=−N
2

γ(m)Pl(r − m)|Hlj(r − m)|2 + σ2
·

γ(r − n)∑
l �=j

∑N
2 −1

m=−N
2

γ(m)Pl(r − m)|Hlj(r − m)|2 + σ2
(24)

=
∑
j �=k

αj |Hkj(n)|2
N
2 −1∑

r=−N
2

[SINRj(r)]2

1 + SINRj(r)
· γ(r − n)
Pj(r)|Hjj(r)|2 (25)

V. NUMERICAL SIMULATION

In this section, we present a simulation example to illustrate
the effectiveness of the proposed modified iterative water-
filling algorithm. We choose a particularly strong crosstalk
scenario in asymmetric digital subscriber lines (ADSL) as
shown in Fig. 4, where the line deployed from a remote
terminal (RT) emits a strong crosstalk signal to the line
deployed from a central office (CO). In addition, intercarrier
interference is assumed to be present.

The achievable rate region for the proposed algorithm as
compared to the iterative water-filling algorithm [3], the OSB
algorithm [4], and two greedy algorithms proposed in [6]
is presented in Fig. 5. As shown, because of the presence
of ICI, the OSB algorithm performs rather poorly. This is
expected as OSB optimizes spectrum assuming no ICI, and
the optimized spectrum typically involves frequency-division
multiplexing, which leads to poor performance when ICI is
present. The iterative water-filling algorithm also does not
perform particularly well, because it does not take into account
the effect of strong interference from the RT user to the CO
user. The two greedy algorithms proposed in [6] are based
on local greedy subtraction or addition of bits starting from
some initial spectrum. While outperforming OSB and iterative
water-filling, they still do not perform particularly well. The
proposed algorithm produces a larger achievable rate than all
previous algorithms. In Fig. 5, an outer bound, which is com-
puted without the ICI terms, is also plotted. Clearly, the outer
bound is not achievable. Although the proposed algorithm only
achieves local optimal solutions, the local optimum obtained
appears to be fairly close to the global optimum for this
particular example. Finally, we note that simulation experience
shows that the proposed algorithm is also more efficient than
OSB and the greedy algorithms proposed in [6].

VI. CONCLUDING REMARKS

While the performance of a single-user system is not
necessarily a very sensitive function of the input spectrum,
the performances of multiuser systems often are because
of the presence of interference. For this reason, spectrum
optimization has become an important part of the overall
communications system design in many practical multiuser
systems.

However, spectrum optimization in the presence of crosstalk
interference is a challenging problem. For a general multiuser
channel setting, the problem formulation leads to nonconvex
structures which are often analytical intractable and numer-
ically difficult to solve. This paper investigated two specific
examples of practical importance in which either analytic or
efficient numerical solutions are available. Interestingly, both
solutions resembles a single-user water-filling solution, except
with a modified water-filling level. These single-user-water-
filling-like solutions are attractive, because they are efficient,
robust, and are often amendable to distributed implementation.
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