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Noise Analysis for Sampling Mixers Using
Stochastic Differential Equations

Wei Yu and Bosco H. LeungSenior Member, IEEE

Abstract—We analyze three different sources of noise in a
sampling mixer working at radio frequency (RF) or intermediate
frequency. External RF and intrinsic noise are analyzed using
conventional frequency domain methods. External local oscillator
(LO) noise is analyzed in time domain by solving a stochastic
differential equation. We are able to take into account the time-
varying aspect of the LO noise coupling, and show that LO noise
becomes important at high frequencies. Analytical expression for
LO noise is obtained, which can be used to guide mixer design. v
LO noise is in additional to LO jitter, which should be combined
with noise analysis to give a complete picture.

Index Terms—Intermediate frequency (IF), noise, radio fre- — C
quency (RF), sampling mixer, stochastic differential equation
(SDE).

I. INTRODUCTION Fig. 1. Track-and-hold sampling mixer.

HE RECENT surge of interests in wireless digital com-
munication has created a demand for implementing comnd effective in cases where the circuit is linear and time-
pact low-power low-noise wireless receivers in CMOS techvariant, or where it can be approximated as such. In the
nology. In the receiver chain, it is desirable to perforriampling mixer, this approach is applicable to the analysis of
front-end operations such, as mixing and analog/digital (A/D)trinsic and external RF noise, but not to LO noise. In the case
conversion as early as possible, ideally on a radio frequeeryLO noise, the system is neither linear nor time-invariant
(RF) signal directly [1]-[3]. However, early conversion alsélue to the switching nature of the LO waveform. A rigorous
puts stringent performance requirements on the A/D convertadfalysis of LO noise is therefore a challenging problem.
which has to operate at the much higher RF frequency. At highln this paper, we will use the traditional frequency domain
frequency, noise becomes a significant problem. Theoreti¢agthod to solve for RF and intrinsic noise. For LO noise,
and experimental results show that one of the key elemek€ Will advocate a time domain approach based on solving a
in A/D conversion which limits noise performance is th&tochastic differential equation (SDE). The method of SDE's in
front-end track-and-hold sampling mixer, which simultanecircuit noise analysis was used in [4] from a circuit simulation
ously performs sampling and mixing. In this paper, we wilpoint of view. Their approach is based on the linearization of
concentrate on the noise analysis for the sampling mixer. SDE'’s about its simulated deterministic trajectory. In this pa-
Noise enters a circuit via various paths. In a sampling mixier, we will use a different approach from which an analytical
noise may come from the external RF port, the switchirgplution to the SDE will be obtained. The analytical solution
local oscillator (LO) port, or from within the mixer itself. il take into account the circuit time-varying nature, and we
All three sources must be taken into account for a complétédll show that LO noise becomes important at high frequency.
noise analysis. Circuit noise analysis is traditionally done in The rest of the paper is organized as follows. Section Il
frequency domain. Noise sources are assumed to be wisikgssifies different sources of noise in the mixer, and reviews
with a flat power Spectra| density_ This approach is Simpme conventional method for solving intrinsic and external RF
noise. Section Il derives the ordinary differential equation
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Fig. 2. Low-pass filtered noise.

input Vrr is the RF signal or its mixed-down version at theonductance. The second part is due to external noise. The
intermediate frequency (IF). The switch is designed to hawwise variance calculated above is independent of sampling.
the time constant formed by the MOS and the capacitor veryThe low-pass shape of the power spectral density also
small, so that the output, tracks the input when the LO gives us the second-order statistics of the output-random
voltage applied at the gate is high. When LO goes low, thpocess. In time domain, this means that the correlation
outputV, is sampled and held on the capacitor. This circuit ndtetween consecutive samples in the output process decreases
only serves as a track-and-hold front-end to A/D conversioexponentially with its time constant equal to that formed by
but also acts as a mixer that mixes down RF or IF signalse MOS and the capacitor
to the baseband. Notice that the output should be considered

as sampled data, since the output is to be converted to digital E[Y,Y,] = kT <1 + ﬂ)e—lt—sl/Rmosc_ )
domain immediately. ¢

There are three potential noise sources in the circuit. ThereNOW we consider the effect of sampling. From (2), we see
'i n(IJ\LIsCe):Sfrom. thhe RF dp%rt, there is def\nce w;fnnsg noise flzo'?at the correlation between samples decreases exponentially.
t e Switc » an there is noise irom the port, all Ok hoteqd before, the time constant of the switch is designed to
which can potentially be coupled into the output. Each of thg, 1,ch smaller than the period of the input signal to allow
three factors must be analyzed separately. accurate tracking. So, the time constant must also be much

smaller than the switch period, which means that consecutive
B. External and Intrinsic Noise samples are mostly uncorrelated. Therefore, in a sampled data

First let us consider the sampling mixer with its gate voltagdé®™main, discrete output samples can be considered indepen-
fixed at high. This corresponds to a continuous time-invariaflgntly identically distributed (i.i.d.), whose discrete power
nonmixing operation, where the MOS switch and the capacitgp€ctral density is folded into the frequency band from zero
form a lower pass filter with filter bandwidth approximately/P 0 f/2, where f; is the sampling frequency. Therefore, if
equal to g/C, where g = K(Vg — V,) is the MOS on- the signal ha_s bandwidtlf,, the total noise power inside the
conductance. This neglects the square law nonlinearity $gnal band is
the MOS device equation, which is justifiable because the BT R\ 2f,
nonlinearity must be small by design to avoid harmonic F(l R—I> 7
and intermodulation distortion. With the assumption of linear mos ?
time-invariant operation, we can now use frequency domafom the above equation, it can be seen that in the case
methods to analyze noise from the external and the intringi¢ subsampling, although noise variance stays the same, the

11108

3)

sources. amount of noise in the signal band increases by the subsam-
Let us suppose that both input and intrinsic noise is whifgling ratio. Also, we note that in the case where the sampling
with combined two-sided power spectral density & = edge has a nonzero fall time, (3) still serves as an upper bound

2kT(Rinp + Rumos), Where Ry, and Ry, are the equivalent pecause the MOS resistance increases as the gate voltage falls;
input noise resistor and intrinsic noise resistor, respectiveljonsequently, the total noise power in this case will be smaller
Then, the noise at the output will have the power spectian that predicted by (3).

density shaped in a low-pass fashion witl3-dB frequency  We have assumed in the previous derivation that the intrinsic
equal to the bandwidth of the low-pass filter (Fig. 2). The totgloise is white. The white noise assumption is only true for
noise power at the output can be calculated by summing ti@rmal noise, but not fot/f noise, which is also present in

area under the power spectral density curve MOS devices. Becausk f noise is low pass, it is unaffected
by the presence of the capacitor. The effect of the sampling
E[Nf] _ /f_T<1 + ﬁ) @ is simply to move its power spectral density Kfy. Since
C Rios we are only interested in noise in the signal band, and the

mixed down-signal frequency is usually much higher than the
where N; is the output noise process. TH& /C part is frequency wherel/f noise is large, we can safely neglect
due to intrinsic noise, and it is independent of the MOS on+/ f noise in the analysis.
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C. LO Noise a noise termeé,;

There are two distinct mechanisms by which noise at LO dVp
can contribute to total noise at the Outpl)J/t. First, due to noisg(VG—i_a&_Vt)VD—i_CW = KVe+oG=V)Vs. (1)
at the LO port, the time at which sampling occurs is randorNoise is modeled as white noise because we are interested
This is what we refer to as LO jitter, and it is intrinsicin the effect of thermal noise at the gate. White noise is
to the sampling operation. LO jitter has been analyzed #iso chosen for its mathematical tractability. White noise has
the literature using discrete stochastic process techniques. fhef property that each sample is Gaussian distributed (with
example, [5] analyzed jitter power spectral density for CMOffinite variance), and samples from different time points are
ring oscillators, and [6] showed how jitter power is related tancorrelated.
noise power at the output. The second mechanism is due tdo write the above equation in the standard SDE form, we
the fact that noise at the LO port causes the MOS conductafgemally multiply both sides byit, and replace white noise
to fluctuate, hence producing noise at the output. We call thisdt by its formal integraldW,. As a convention in SDE
LO noise. LO noise is independent of sampling. In this papeiterature, we rewrite the output proce$s as X, and the
we focus on LO noise. input process’s asu,. Finally, we define MOS conductance
Intrinsic and external RF noise can be analyzed in frequengy= K (Vs — V;), which can be a function of time, and get
domain because the sampling mixer can be approximated by gr K
a linear time-invariant system from the RF port to the output dXy = S (we — Xp) dt + = (uy — Xy)o dW,. (8)

port. This is not true for LO noise because the relation fro ¢ ¢

LO to output is not linear. In addition, the system has two inpﬂihe f|rst_ term on the “gh"h‘?‘”d side is the deterministic
Rart, which describes the trajectory of the output process

\Q/gthout noise. The second term is the stochastic part, which

the system must be considered time-varying. It is possible . . : o :
4 ying P odifies the trajectory due to noise. This is a first-order

perform noise simulation for periodically time-varying system DE in the standard f h luti : letel
using two-dimensional impulse responses [7]. However, it m8 %S andar tormi Wt (_)sfe Soti' lon |shcorr;?e €y
difficult to obtain analytical expression using this metho ,nown [8]. Our aim is to extract information such &#4.,|

5 e
and the approach is only applicable to systems with smgﬁ]d E[Xt]. from (8). We h|ghl|ght_the regult_s below. The
excitation and therefore ill-suited for analyzing LO noise iIEnathemancal background and detailed derivation are presented

. ; L : the Appendix.
the sampling mixer. Traditionally, it has been argued that smih ! . .
signal g,,, from LO to output is small First, we formally integrate both sides of (8), then take

expectation
olp

9m = oy = KVDS (4)

Ve B = B+ B O, - X, ds
0

since Vpg is small, so the amount of noise coupled from LO e

to output is also small. This argument is not rigorous because +/ —(us — X))o dWs|. (9)

gm Changes with time. Therefore, to deal with this situation o ¢

properly, a time-domain method based on SDE is required.The second integral is a stochastic integral with respect to
Wiener process whose expectation is 0 fortadls noted (21)

lll. ANALYSIS OF LO NOISE USING SDE’s in the appendix. In the differential form
d gt Ot
A.. Derivation of Noise Variance Process EE[Xt] + GE[Xt] o' (10)

We now formulate the differential equation governing théhis is the differential equation describing the mean of the
circuit in Fig. 1. The MOS transistor works in the triode regio@utput process, which happens to be exactly the same as the
when the gate voltage is high. Kirchhoff's current law on théifferential equation for the system without noise.

output node gives Next, we evaluateE[X?], which requires the full power
K av of stochastic calculus. As will be shown in the appendix, the
K(Vgs — Vi) Vps — EVDQS = Cd—tD (5) equation governing the expected value of the square of the

process turns out to be
where K = uC,W/L is the device constant; is the MOS t9g
t

threshold voltage(” is the sampling capacitor, arldp, Vs, E[X]] = E[X{] +/ F(E[Xs]us — E[X?2])ds
andVg are drain, source, and gate voltages, respectively. Here, 0 st
the input is taken as source, and the output as drain. This is +ff K / El(us — X,)%ds. (11)
a nonlinear equation, but as mentioned before, the nonlinear C? Jo ’ ’
terms are small by design, so we only need to work with i{§ e now define the output noise to b§, = X, — E[X,],
linear part then combine (11) with (10) and put the result into differential
dVp form, we have
KV -V)Vp+(C——=K{Vg - V) Vs. (6) . 979
it iE[N2]+<%—"K )E[NQ]—i(E[X]—u)2
We are interested in the case whéfe is deterministic and dt © ° C C? tiT 2 e
where gate voltage contains the deterministic sighal plus (12)
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Equations (10) and (12) are the ordinary differential equationsNext we consider the case where there is switching. In

(ODE’s) which describe the mean and the variance of tlparticular, we are interested in the case when the LO voltage

output process in the presence of noise at the gate. At thias a finite fall time. Fall time is technology limited, and it

point, we have turned an SDE into an ordinary differentiaan be much larger than the filter time constant. So essentially,

equation which, in this case, also happens to be first-ordee have the case wherg decreases linearly to zero prior to

linear time varying, for which an analytical solution existscutoff, i.e., g = —at, wherea = KV /T, as in Fig. 1.

From this point on, only knowledge of ODE’s is necessarylo solve for noise variance in this case, we recognize that

E[N?] contains all we need to know about the second-ordéx0) and (12) are linear ODE'’s, whose solutions are well

statistics of the output noise variance. Since output is takknown, as shown in (14), at the bottom of the page, where for

in the sampled data domain and the time constant associatedvenience, we define@ = «/2C. The explicit evaluation

with the low-pass filter formed by the MOS and the capacitaf this integral is difficult for a sinusoidal(¢), however,

is small, consecutive sample points are not correlated. AlB® integral can be simplified if we recognize that filter time

note that since noise amplitude is assumed to be small, i@nstant is small, so only points within a few time constants are

2g,/C > o2K?/C?, 02 K?/C? term can be neglected in (12).of interest, and hence the sinusoid#t) can be approximated
Equation (12) can be derived in a number of different wayby its Taylor series right before the time of cutoff. The key

For example, without the?K?/C? term, (12) can be derived observation is that we may solve the equation for each sample

using the linearization approach in [4], where the trajectoand interpret the result in the sampled data domain.

without noise is first solved, and noise is modeled as smallLet the sample time be 0, and let the sinusoidal input be

signal perturbation about the deterministic trajectory. This

approach assumes that the modulation of the noise source by u(t) = A - cos(w(t — to))-

the noise_ part ok, is small_. For sufficient simple s_ystems _SUC'befineuo — A-cos(who), i.e. the input signal level at time O,

as ours, |t.|s a_ctually pOSSI.ble. to solve the SDE directly W't_ho%en the Taylor series approximation «ft) is

the linearization step. This is the approach presented in the

Appendix. This apprpach does not work in the_full gen_erality w(t) = uo + /1 — w2 - wt. (15)

of [4] (for example, it cannot capture the nonlinearity in the

transistor model), but it quantifies the noise-noise modulatidnis now possible to evaluate (14) by substituting (15). The

effect, which is thes? K?/C? term, whose effect is indeed evaluation is laborious, and it involves numerical evaluation of

small. Further, because our system is sufficiently simple, (1&jyror integrals. Fortunately, we only need to solve EjiV?]

can be solved in closed form. This closed-form solution wouklince cutoff occurs at time 0 and we are only interested in

allow us to approach the problem from an analytical viewampled data. It turns out that the final expression is

point, from which design intuition may be gained.

2 2 2 K Tf 52 2 2
EINg| = (A" —w)\/ = | o w”-0--0443 (16)
B. Solution of Noise Variance [No] = o) ¢ <VG>

We proceed to solve (12). First consider the case whesdere the numerical constant comes from the evaluation of a
g¢ IS constant, i.e., there is no switching. We assume #hat definite integral. We observe that noise variance is frequency
is a deterministic sinusoidal - cos(wt), so E[X,] is also a dependent. Noise variance also dependsugntherefore it
sinusoidal with a gain and a phase shift as in (10). Assumiigtime varying, with its maximum achieved when the input
a small system time constant from (10), we know that the gadnosses zero. In other words, (16) gives a bound on noise
is close to one, and the phase shifti€'/g. This allows us to variance wheny is set of 0. Again, the noise power calculated
work out the right-hand side of (12), which is a sinusoid witbbove is independent of sampling. In the subsampling case,
twice the input frequency plus a dc term. Then, by solving (12)pise power for each sample is the same, but more noise is
we are able to conclude that the noise variance is periodicdityded into the signal band, as in the case for intrinsic noise.
time varying with of the input frequency. The dc term of the We will work out a numerical example that compares the
variance is effects of noise from various noise sources. At low frequency,
A2 G20 ) intrinsic £7°/C noise is_ much Iarger_than LO noi;e_. Howev_er,
e m "o (13) as frequen_cy goes higher, LQ noise due to finite faII_ time

i becomes significant. If the noise power at LO has equivalent
This is the variance of the output due to a noisy LO whemsistance equal to 50Q, take the typical values fov; =
the deterministic part of LO is constant. The solution alsd5V, A = 0.5V, C = 0.4 pF, Ty = 200 ps, filter time
applies to the case where switching LO voltage has zero fabinstant- = 10 ps, and LO noise power becomes comparable
time. Comparing tat7’/C, the magnitude of noise varianceto ¥7°/C at about 2 GHz. In mixer design, jitter noise must
is actually much smaller, and for practical purposes, it can héso be taken into consideration. If we assume a typical phase
ignored. noise figure for the oscillator at120 dBc, one channel away

E[N?] =

oo

2K2 t T1 2
E[NtQ] =2 2 / 28T <e’82712 / 23279 X e_'BZTQZU(TQ)dTQ + u(Tl)) dry (14)
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TABLE | has to be combined with noise analysis to obtain a complete
CoMPARISON AMONG INTRINSIC, LO, AND JTTER NOISE picture of sampling mixer noise.
Input Intrinsic LO Jitter
Frequency | noise power (V2) | noise power (V?) | noise power (V?) APPENDIX
200MHz le-8 1.3Ge-10 728 DERIVATION OF E[X?] IN THE SDE
2GHz le-8 1.36e-8 72¢9 In this Appendix, we will derive (11). The necessary back-

ground is introduced to make this section as self-contained as

from the center frequency with channel width 1.7 MHz, anao_ls_f]'ble' | noise is oft deled hit ise (denoted
take LO frequency to be very close to the input frequency, jitter ermal noise IS often modeled as white noise (denote as
noise power is found to be comparable to intrinsic or LO noi ), W*_‘O?‘e_ power spectral c_jensn_y |s_flat across aI_I frequencies
at high frequency [5]. Here, we have not taken the spectll’éﬁ) to mﬁmty. H(_)vv_e\_/er, white noise is not_a thS'Ca.I process
characteristics of jitter noise into consideration because ﬂlﬁgcause it has infinite power. To treat white noise rigorously,

necessarily depends on the design of the oscillator. Tabl¥'§ need to deflne its integral, F:alled a Wiener process, which
summarizes the numerical example. can be approximated by physical processes

t
C. Discussion on Time-Varying Noise W, = / &s ds. (17)
0

In the sampled data domain, variance of the LO noise
varies with time at twice the input frequency; so, LO nois& Wiener process has a continuous sample path and indepen-
is cyclostationary. We can think of it as a low-pass noisgent Gaussian increments. However, sample paths of a Wiener
modulated bycos(wt). Because LO noise is not wide-sens@rocess have unbounded variation (or infinite length), so it is
stationary, it does not make sense to talk about its powdifficult to define integration with respect to a Wiener process.
spectral density. In fact, the time-varying property is intrinsito’s stochastic calculus is invented precisely to solve this
to the noise process because the time-varying frequency is piieblem [8]-[10].
same as the signal frequency; hence, there is no way to filteCentral to Ito’s theory is a characterization of the variance
out the time-varying part without also filtering out the signabf a Wiener process. The quadratic variation process, denoted
itself at the same time. by (W},, can be thought of as the limit

Because LO noise is not stationary, it is not possible to
determine the amount of noise that falls in the signal band.
Nevertheless, we may visualize time-varying noise by looking
at its sample paths. Because each sample path is modulated by
cos(wt), the noise spectrum is shifted hy but still maintains For a Wiener proceséiv), = t.
the low-pass shape. In this case, after noise folding due ton the study of SDE’s such as
sampling, the output spectrum is approximately white.

For time-varying LO noise, we also see that the noise power dX; = a(Xy, t)dt + b(X,, t)dW, (19)
is maximum at zero-crossing, which we can regard as an upper
bound. This bound is tight for applications where frequenaye need to deal with stochastic integrals. If we formally
or phase modulation schemes are used (e.g., QPSK). Thisniegrate the SDE, the right-hand side consists of two types of
because in such modulation schemes, information is carrigtegrals. The integral with respect to time is straightforward
precisely at the zero-crossing points. because it can be defined for each sample path. The integral

It should be stressed that the above conclusions are drawith respect to a Wiener proces¥, is more problematic,
with the simplest MOS model, without taking into accountor which it is necessary to go back to the Riemann-Stieltjes
many of the second-order effects. A full transistor modeefinition
would involve solving differential equations higher than first ,
order, for which a closed-form solution is difficult to obtain. .
However, we expect the first-order model to capture the major/0 F(Way5) dW, = hm; F(We i) (Wi = Wiy).
effects. = (20)

(W), = 1im§n: (W, =W, )° (18)

=1

n—1

IV.- CONCLUSION Note here that the intermediate point in the Riemann sum is

Noise in a sampling mixer is analyzed. Noise due tchosen to be the first end point of the interval. The calculus
external RF and intrinsic sources are analyzed using frequenteyeloped from the approximating sum (20) is said to be a
domain methods. LO noise is characterized by solving sdochastic integral in Ito’s sense.

SDE analytically in time domain. The closed-form solution Stochastic integrals have a number of properties. First,
is obtained, which can be used to guide the design processtice that

It is shown that LO noise becomes comparable to other noise .

sources at high frequencies, and when the LO voltage has a E[/ F(Wy,s) dWS} —0. (21)
large fall time. This effect is in addition to LO jitter, which 0
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X7 = X3+ / 2X, dX, + (X),. (25)
0

We need to work out the quadratic variation procéxs,. If
we write outXX; explicitly by formally integrating (24)

+ t
K
th/ &(uS—Xs)der/ — (us — X,)o dW, (26)
o ¢ o €

we see thatX, consists of two parts. The time integral is ot
bounded variation, so it does not contribute to the quadratic
variation of X;. The second integral is with respect to a Wiener
process, and by (22)

</§<u —Xs>o—dWS>t

2K2 t
_ ”7/0 (s — X.)% ds. 27)

Now, substitute (24) and (27) into (25), take expectatid
on both side, recognize the fact that the expectation of t
stochastic integral ofX; with respect to Wiener process is
zero, i.e., (21), we have

(X
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