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Noise Analysis for Sampling Mixers Using
Stochastic Differential Equations

Wei Yu and Bosco H. Leung,Senior Member, IEEE

Abstract—We analyze three different sources of noise in a
sampling mixer working at radio frequency (RF) or intermediate
frequency. External RF and intrinsic noise are analyzed using
conventional frequency domain methods. External local oscillator
(LO) noise is analyzed in time domain by solving a stochastic
differential equation. We are able to take into account the time-
varying aspect of the LO noise coupling, and show that LO noise
becomes important at high frequencies. Analytical expression for
LO noise is obtained, which can be used to guide mixer design.
LO noise is in additional to LO jitter, which should be combined
with noise analysis to give a complete picture.

Index Terms—Intermediate frequency (IF), noise, radio fre-
quency (RF), sampling mixer, stochastic differential equation
(SDE).

I. INTRODUCTION

T HE RECENT surge of interests in wireless digital com-
munication has created a demand for implementing com-

pact low-power low-noise wireless receivers in CMOS tech-
nology. In the receiver chain, it is desirable to perform
front-end operations such, as mixing and analog/digital (A/D)
conversion as early as possible, ideally on a radio frequency
(RF) signal directly [1]–[3]. However, early conversion also
puts stringent performance requirements on the A/D converter,
which has to operate at the much higher RF frequency. At high
frequency, noise becomes a significant problem. Theoretical
and experimental results show that one of the key elements
in A/D conversion which limits noise performance is the
front-end track-and-hold sampling mixer, which simultane-
ously performs sampling and mixing. In this paper, we will
concentrate on the noise analysis for the sampling mixer.

Noise enters a circuit via various paths. In a sampling mixer,
noise may come from the external RF port, the switching
local oscillator (LO) port, or from within the mixer itself.
All three sources must be taken into account for a complete
noise analysis. Circuit noise analysis is traditionally done in
frequency domain. Noise sources are assumed to be white
with a flat power spectral density. This approach is simple
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Fig. 1. Track-and-hold sampling mixer.

and effective in cases where the circuit is linear and time-
invariant, or where it can be approximated as such. In the
sampling mixer, this approach is applicable to the analysis of
intrinsic and external RF noise, but not to LO noise. In the case
of LO noise, the system is neither linear nor time-invariant
due to the switching nature of the LO waveform. A rigorous
analysis of LO noise is therefore a challenging problem.

In this paper, we will use the traditional frequency domain
method to solve for RF and intrinsic noise. For LO noise,
we will advocate a time domain approach based on solving a
stochastic differential equation (SDE). The method of SDE’s in
circuit noise analysis was used in [4] from a circuit simulation
point of view. Their approach is based on the linearization of
SDE’s about its simulated deterministic trajectory. In this pa-
per, we will use a different approach from which an analytical
solution to the SDE will be obtained. The analytical solution
will take into account the circuit time-varying nature, and we
will show that LO noise becomes important at high frequency.

The rest of the paper is organized as follows. Section II
classifies different sources of noise in the mixer, and reviews
the conventional method for solving intrinsic and external RF
noise. Section III derives the ordinary differential equation
governing the noise variance process, and solves them in
the sampled data domain. We summarize and conclude in
Section IV.

II. NOISE IN A SAMPLING MIXER

A. Sampling Mixer

We consider a sampling mixer which consists of a MOS
transistor followed by a sampling capacitor (Fig. 1). The
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Fig. 2. Low-pass filtered noise.

input is the RF signal or its mixed-down version at the
intermediate frequency (IF). The switch is designed to have
the time constant formed by the MOS and the capacitor very
small, so that the output tracks the input when the LO
voltage applied at the gate is high. When LO goes low, the
output is sampled and held on the capacitor. This circuit not
only serves as a track-and-hold front-end to A/D conversion,
but also acts as a mixer that mixes down RF or IF signals
to the baseband. Notice that the output should be considered
as sampled data, since the output is to be converted to digital
domain immediately.

There are three potential noise sources in the circuit. There
is noise from the RF port, there is device intrinsic noise from
the MOS switch, and there is noise from the LO port, all of
which can potentially be coupled into the output. Each of the
three factors must be analyzed separately.

B. External and Intrinsic Noise

First let us consider the sampling mixer with its gate voltage
fixed at high. This corresponds to a continuous time-invariant
nonmixing operation, where the MOS switch and the capacitor
form a lower pass filter with filter bandwidth approximately
equal to where is the MOS on-
conductance. This neglects the square law nonlinearity in
the MOS device equation, which is justifiable because the
nonlinearity must be small by design to avoid harmonic
and intermodulation distortion. With the assumption of linear
time-invariant operation, we can now use frequency domain
methods to analyze noise from the external and the intrinsic
sources.

Let us suppose that both input and intrinsic noise is white
with combined two-sided power spectral density at

where and are the equivalent
input noise resistor and intrinsic noise resistor, respectively.
Then, the noise at the output will have the power spectral
density shaped in a low-pass fashion with -dB frequency
equal to the bandwidth of the low-pass filter (Fig. 2). The total
noise power at the output can be calculated by summing the
area under the power spectral density curve

(1)

where is the output noise process. The part is
due to intrinsic noise, and it is independent of the MOS on-

conductance. The second part is due to external noise. The
noise variance calculated above is independent of sampling.

The low-pass shape of the power spectral density also
gives us the second-order statistics of the output-random
process. In time domain, this means that the correlation
between consecutive samples in the output process decreases
exponentially with its time constant equal to that formed by
the MOS and the capacitor

(2)

Now we consider the effect of sampling. From (2), we see
that the correlation between samples decreases exponentially.
As noted before, the time constant of the switch is designed to
be much smaller than the period of the input signal to allow
accurate tracking. So, the time constant must also be much
smaller than the switch period, which means that consecutive
samples are mostly uncorrelated. Therefore, in a sampled data
domain, discrete output samples can be considered indepen-
dently identically distributed (i.i.d.), whose discrete power
spectral density is folded into the frequency band from zero
up to where is the sampling frequency. Therefore, if
the signal has bandwidth the total noise power inside the
signal band is

(3)

From the above equation, it can be seen that in the case
of subsampling, although noise variance stays the same, the
amount of noise in the signal band increases by the subsam-
pling ratio. Also, we note that in the case where the sampling
edge has a nonzero fall time, (3) still serves as an upper bound
because the MOS resistance increases as the gate voltage falls;
consequently, the total noise power in this case will be smaller
than that predicted by (3).

We have assumed in the previous derivation that the intrinsic
noise is white. The white noise assumption is only true for
thermal noise, but not for noise, which is also present in
MOS devices. Because noise is low pass, it is unaffected
by the presence of the capacitor. The effect of the sampling
is simply to move its power spectral density by. Since
we are only interested in noise in the signal band, and the
mixed down-signal frequency is usually much higher than the
frequency where noise is large, we can safely neglect

noise in the analysis.



YU AND LEUNG: NOISE ANALYSIS FOR SAMPLING MIXERS 701

C. LO Noise

There are two distinct mechanisms by which noise at LO
can contribute to total noise at the output. First, due to noise
at the LO port, the time at which sampling occurs is random.
This is what we refer to as LO jitter, and it is intrinsic
to the sampling operation. LO jitter has been analyzed in
the literature using discrete stochastic process techniques. For
example, [5] analyzed jitter power spectral density for CMOS
ring oscillators, and [6] showed how jitter power is related to
noise power at the output. The second mechanism is due to
the fact that noise at the LO port causes the MOS conductance
to fluctuate, hence producing noise at the output. We call this
LO noise. LO noise is independent of sampling. In this paper,
we focus on LO noise.

Intrinsic and external RF noise can be analyzed in frequency
domain because the sampling mixer can be approximated by
a linear time-invariant system from the RF port to the output
port. This is not true for LO noise because the relation from
LO to output is not linear. In addition, the system has two input
ports, so from any one of the input ports to the output port,
the system must be considered time-varying. It is possible to
perform noise simulation for periodically time-varying systems
using two-dimensional impulse responses [7]. However, it is
difficult to obtain analytical expression using this method,
and the approach is only applicable to systems with small
excitation and therefore ill-suited for analyzing LO noise in
the sampling mixer. Traditionally, it has been argued that small
signal from LO to output is small

(4)

since is small, so the amount of noise coupled from LO
to output is also small. This argument is not rigorous because

changes with time. Therefore, to deal with this situation
properly, a time-domain method based on SDE is required.

III. A NALYSIS OF LO NOISE USING SDE’s

A.. Derivation of Noise Variance Process

We now formulate the differential equation governing the
circuit in Fig. 1. The MOS transistor works in the triode region
when the gate voltage is high. Kirchhoff’s current law on the
output node gives

(5)

where is the device constant, is the MOS
threshold voltage, is the sampling capacitor, and ,
and are drain, source, and gate voltages, respectively. Here,
the input is taken as source, and the output as drain. This is
a nonlinear equation, but as mentioned before, the nonlinear
terms are small by design, so we only need to work with its
linear part

(6)

We are interested in the case where is deterministic and
where gate voltage contains the deterministic signal plus

a noise term

(7)

Noise is modeled as white noise because we are interested
in the effect of thermal noise at the gate. White noise is
also chosen for its mathematical tractability. White noise has
the property that each sample is Gaussian distributed (with
infinite variance), and samples from different time points are
uncorrelated.

To write the above equation in the standard SDE form, we
formally multiply both sides by and replace white noise

by its formal integral . As a convention in SDE
literature, we rewrite the output process as and the
input process as . Finally, we define MOS conductance

which can be a function of time, and get

(8)

The first term on the right-hand side is the deterministic
part, which describes the trajectory of the output process
without noise. The second term is the stochastic part, which
modifies the trajectory due to noise. This is a first-order
SDE in the standard form, whose solution is completely
known [8]. Our aim is to extract information such as
and from (8). We highlight the results below. The
mathematical background and detailed derivation are presented
in the Appendix.

First, we formally integrate both sides of (8), then take
expectation

(9)

The second integral is a stochastic integral with respect to
Wiener process whose expectation is 0 for allas noted (21)
in the appendix. In the differential form

(10)

This is the differential equation describing the mean of the
output process, which happens to be exactly the same as the
differential equation for the system without noise.

Next, we evaluate , which requires the full power
of stochastic calculus. As will be shown in the appendix, the
equation governing the expected value of the square of the
process turns out to be

(11)

If we now define the output noise to be ,
then combine (11) with (10) and put the result into differential
form, we have

(12)
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Equations (10) and (12) are the ordinary differential equations
(ODE’s) which describe the mean and the variance of the
output process in the presence of noise at the gate. At this
point, we have turned an SDE into an ordinary differential
equation which, in this case, also happens to be first-order
linear time varying, for which an analytical solution exists.
From this point on, only knowledge of ODE’s is necessary.

contains all we need to know about the second-order
statistics of the output noise variance. Since output is taken
in the sampled data domain and the time constant associated
with the low-pass filter formed by the MOS and the capacitor
is small, consecutive sample points are not correlated. Also
note that since noise amplitude is assumed to be small, i.e.,

term can be neglected in (12).
Equation (12) can be derived in a number of different ways.

For example, without the term, (12) can be derived
using the linearization approach in [4], where the trajectory
without noise is first solved, and noise is modeled as small
signal perturbation about the deterministic trajectory. This
approach assumes that the modulation of the noise source by
the noise part of is small. For sufficient simple systems such
as ours, it is actually possible to solve the SDE directly without
the linearization step. This is the approach presented in the
Appendix. This approach does not work in the full generality
of [4] (for example, it cannot capture the nonlinearity in the
transistor model), but it quantifies the noise-noise modulation
effect, which is the term, whose effect is indeed
small. Further, because our system is sufficiently simple, (12)
can be solved in closed form. This closed-form solution would
allow us to approach the problem from an analytical view
point, from which design intuition may be gained.

B. Solution of Noise Variance

We proceed to solve (12). First consider the case where
is constant, i.e., there is no switching. We assume that

is a deterministic sinusoidal so is also a
sinusoidal with a gain and a phase shift as in (10). Assuming
a small system time constant from (10), we know that the gain
is close to one, and the phase shift is . This allows us to
work out the right-hand side of (12), which is a sinusoid with
twice the input frequency plus a dc term. Then, by solving (12),
we are able to conclude that the noise variance is periodically
time varying with of the input frequency. The dc term of the
variance is

(13)

This is the variance of the output due to a noisy LO when
the deterministic part of LO is constant. The solution also
applies to the case where switching LO voltage has zero fall
time. Comparing to the magnitude of noise variance
is actually much smaller, and for practical purposes, it can be
ignored.

Next we consider the case where there is switching. In
particular, we are interested in the case when the LO voltage
has a finite fall time. Fall time is technology limited, and it
can be much larger than the filter time constant. So essentially,
we have the case where decreases linearly to zero prior to
cutoff, i.e., where as in Fig. 1.
To solve for noise variance in this case, we recognize that
(10) and (12) are linear ODE’s, whose solutions are well
known, as shown in (14), at the bottom of the page, where for
convenience, we defined . The explicit evaluation
of this integral is difficult for a sinusoidal , however,
the integral can be simplified if we recognize that filter time
constant is small, so only points within a few time constants are
of interest, and hence the sinusoidal can be approximated
by its Taylor series right before the time of cutoff. The key
observation is that we may solve the equation for each sample
and interpret the result in the sampled data domain.

Let the sample time be 0, and let the sinusoidal input be

Define , i.e. the input signal level at time 0,
then the Taylor series approximation of is

(15)

It is now possible to evaluate (14) by substituting (15). The
evaluation is laborious, and it involves numerical evaluation of
error integrals. Fortunately, we only need to solve for
since cutoff occurs at time 0 and we are only interested in
sampled data. It turns out that the final expression is

(16)

where the numerical constant comes from the evaluation of a
definite integral. We observe that noise variance is frequency
dependent. Noise variance also depends on, therefore it
is time varying, with its maximum achieved when the input
crosses zero. In other words, (16) gives a bound on noise
variance when is set of 0. Again, the noise power calculated
above is independent of sampling. In the subsampling case,
noise power for each sample is the same, but more noise is
folded into the signal band, as in the case for intrinsic noise.

We will work out a numerical example that compares the
effects of noise from various noise sources. At low frequency,
intrinsic noise is much larger than LO noise. However,
as frequency goes higher, LO noise due to finite fall time
becomes significant. If the noise power at LO has equivalent
resistance equal to 500, take the typical values for

V, V, pF, ps, filter time
constant ps, and LO noise power becomes comparable
to at about 2 GHz. In mixer design, jitter noise must
also be taken into consideration. If we assume a typical phase
noise figure for the oscillator at dBc, one channel away

(14)
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TABLE I
COMPARISON AMONG INTRINSIC, LO, AND JITTER NOISE

from the center frequency with channel width 1.7 MHz, and
take LO frequency to be very close to the input frequency, jitter
noise power is found to be comparable to intrinsic or LO noise
at high frequency [5]. Here, we have not taken the spectral
characteristics of jitter noise into consideration because this
necessarily depends on the design of the oscillator. Table I
summarizes the numerical example.

C. Discussion on Time-Varying Noise

In the sampled data domain, variance of the LO noise
varies with time at twice the input frequency; so, LO noise
is cyclostationary. We can think of it as a low-pass noise
modulated by . Because LO noise is not wide-sense
stationary, it does not make sense to talk about its power
spectral density. In fact, the time-varying property is intrinsic
to the noise process because the time-varying frequency is the
same as the signal frequency; hence, there is no way to filter
out the time-varying part without also filtering out the signal
itself at the same time.

Because LO noise is not stationary, it is not possible to
determine the amount of noise that falls in the signal band.
Nevertheless, we may visualize time-varying noise by looking
at its sample paths. Because each sample path is modulated by

the noise spectrum is shifted by but still maintains
the low-pass shape. In this case, after noise folding due to
sampling, the output spectrum is approximately white.

For time-varying LO noise, we also see that the noise power
is maximum at zero-crossing, which we can regard as an upper
bound. This bound is tight for applications where frequency
or phase modulation schemes are used (e.g., QPSK). This is
because in such modulation schemes, information is carried
precisely at the zero-crossing points.

It should be stressed that the above conclusions are drawn
with the simplest MOS model, without taking into account
many of the second-order effects. A full transistor model
would involve solving differential equations higher than first
order, for which a closed-form solution is difficult to obtain.
However, we expect the first-order model to capture the major
effects.

IV. CONCLUSION

Noise in a sampling mixer is analyzed. Noise due to
external RF and intrinsic sources are analyzed using frequency
domain methods. LO noise is characterized by solving a
SDE analytically in time domain. The closed-form solution
is obtained, which can be used to guide the design process.
It is shown that LO noise becomes comparable to other noise
sources at high frequencies, and when the LO voltage has a
large fall time. This effect is in addition to LO jitter, which

has to be combined with noise analysis to obtain a complete
picture of sampling mixer noise.

APPENDIX

DERIVATION OF IN THE SDE

In this Appendix, we will derive (11). The necessary back-
ground is introduced to make this section as self-contained as
possible.

Thermal noise is often modeled as white noise (denoted as
), whose power spectral density is flat across all frequencies

up to infinity. However, white noise is not a physical process
because it has infinite power. To treat white noise rigorously,
we need to define its integral, called a Wiener process, which
can be approximated by physical processes

(17)

A Wiener process has a continuous sample path and indepen-
dent Gaussian increments. However, sample paths of a Wiener
process have unbounded variation (or infinite length), so it is
difficult to define integration with respect to a Wiener process.
Ito’s stochastic calculus is invented precisely to solve this
problem [8]–[10].

Central to Ito’s theory is a characterization of the variance
of a Wiener process. The quadratic variation process, denoted
by can be thought of as the limit

(18)

For a Wiener process .
In the study of SDE’s such as

(19)

we need to deal with stochastic integrals. If we formally
integrate the SDE, the right-hand side consists of two types of
integrals. The integral with respect to time is straightforward
because it can be defined for each sample path. The integral
with respect to a Wiener process is more problematic,
for which it is necessary to go back to the Riemann–Stieltjes
definition

(20)

Note here that the intermediate point in the Riemann sum is
chosen to be the first end point of the interval. The calculus
developed from the approximating sum (20) is said to be a
stochastic integral in Ito’s sense.

Stochastic integrals have a number of properties. First,
notice that

(21)
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Also, the integral has unbounded variation, so it, too, has a
quadratic variation process

(22)

where, in the second equality, we used (18). A slight gener-
alization of the above equation can actually be taken as the
definition of stochastic integration.

This definition of stochastic integral requires the following
modification to the fundamental theorem of calculus

(23)

where is any twice-differentiable function with continu-
ous second derivatives. The above equation is known as Ito’s
formula, and is a fundamental tool in stochastic calculus. Ito’s
formula allows us to manipulate nonlinear transformations
of stochastic processes. Because of the last correction term
which involves the quadratic variation process, normal rules
of solving differential equations need to be modified.

We now use stochastic calculus to solve for in (8)

(24)

The evaluation of requires Ito’s formula (23), where
we set

(25)

We need to work out the quadratic variation process . If
we write out explicitly by formally integrating (24)

(26)

we see that consists of two parts. The time integral is of
bounded variation, so it does not contribute to the quadratic
variation of . The second integral is with respect to a Wiener
process, and by (22)

(27)

Now, substitute (24) and (27) into (25), take expectation
on both side, recognize the fact that the expectation of the
stochastic integral of with respect to Wiener process is
zero, i.e., (21), we have

(28)

which is (11).
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