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Abstract— Crosstalk is a major issue in modern DSL systems
such as ADSL and VDSL. Static spectrum management, the
traditional way of ensuring spectral compatibility, employs spec-
tral masks which can be overly conservative and lead to poor
performance.

In this paper we present a centralized algorithm for optimal
spectrum management (OSM) in DSL. The algorithm uses a dual
decomposition to solve the spectrum management problem in an
efficient and computationally tractable way. The algorithm shows
significant performance gains over existing DSM techniques, e.g.
in a downstream ADSL scenario the centralized OSM algorithm
can outperform a distributed DSM algorithm such as iterative
waterfilling by up to 135%

I. I NTRODUCTION

Crosstalk is a major issue in modern DSL systems such as
ADSL and VDSL. Typically 10-20 dB larger than the back-
ground noise, crosstalk isthedominant source of performance
degradation.

Whilst it is possible to docrosstalk cancellation[1][2], in
many scenarios this may not be feasible due to complexity
issues or as a result of unbundling. In this case the effects
of crosstalk must be mitigated throughspectral management.
With spectral management the transmit spectra of the modems
within a network are limited in some way to minimize the
negative effects of crosstalk.

Static spectrum management(SSM) is the traditional ap-
proach. In SSM spectral masks are employed which are
identical for all modems. To ensure widespread deployment,
these masks are based on worst case scenarios[3]. As a result
they can be overly restrictive and lead to poor performance.

Dynamic spectrum management(DSM), a new paradigm,
overcomes this problem by designing the spectra of each
modem to match the specific topology of the network[4].
These spectra are adapted based on the direct and crosstalk
channels seen by the different modems. They are customized
to suit each modem in each particular situation.

A DSM algorithm known asiterative waterfilling(IW) was
recently proposed[5] and demonstrates the spectacular perfor-
mance gains which are possible. An unanswered question at
this point is: How much better can we do?
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In this paper we address this question. We focus on the
problem of spectrum management where a centralized spec-
trum management center (SMC) is responsible for setting the
spectra of the modems within the network. We present an
algorithm for optimal spectrum management(OSM) in the
DSL interference channel. This algorithm can achieve the best
possible trade-offs between the rates of the modems within the
network, allowing operation at any point on the rate region
boundary.

The algorithm is suitable for direct application when a SMC
is available. In the absence of a SMC this algorithm is also
useful as it provides an upper bound on the performance of all
other DSM algorithms, both centralized and distributed. The
spectra generated by the algorithm also give insight into the
design of distributed DSM algorithms.

One may ask, if centralized control is available (via a SMC)
why not do full-blown crosstalk cancellation which leads to
greater performance than with DSM alone. The fundamental
difference between DSM and crosstalk cancellation is com-
plexity. DSM involves only setting the PSD levels of currently-
available modems. This can be done without any change to the
modem hardware. Crosstalk cancellation uses signal level co-
ordination, requiring an entirely new design of theDSL access
multiplexer (DSLAM) and customer premises(CP) modems.
DSM can potentially be applied right now, where-as it may
be several years before systems with crosstalk cancellation
become economically viable.

Optimal spectrum management has been investigated previ-
ously. Unfortunately the resulting optimisation is non-convex
which leads to an exponential complexity in the number of
tonesK in the system. In ADSLK = 256 whilst in VDSL
K = 4096. This results in a computationally intractable
problem.

The fundamental problem is that the total power constraints
on the modems couple the optimisation across frequency.
As such the optimisation must be done jointly across all
tones which leads to an exponential complexity inK. We
overcome this problem through use of the dual decomposition
method. This technique allows us to replace the constrained
optimisation problem with an unconstrained maximization of
a Lagrangian. The Lagrangian incorporates the constraints im-
plicitly into the cost function, removing the need for the con-
straints to be explicitly enforced. As a result the optimisation
can be decoupled across frequency and an optimal solution can
be found in a per-tone fashion. This leads to a linear rather than
exponential complexity inK and a computationally tractable
problem.

In [6] an attempt was made to formulate an optimal spec-
trum management algorithm for VDSL based on simulated



annealing. Due to the complexity of the problem the PSDs of
each modem were forced to be flat within each transmission
band. Only the level of the PSD in each band could be varied
which led to a sub-optimal solution. Even with this restriction
the algorithm had a large complexityO(eK). Furthermore
since the algorithm is based on simulated annealing it is
not possible to guarantee that the global optimum has been
obtained. Sub-optimal DSM algorithms, both distributed [5],
[7], [8] and centralized [9] have also been proposed.

II. SYSTEM MODEL

Assuming thatdiscrete multi-tone(DMT) modulation is
employed we can model transmission independently on each
tone

yk = Hkxk + zk (1)

The vectorxk ,
[
x1

k, · · · , xN
k

]
contains transmitted signals

on tonek. There areN lines in the binder andxn
k is the

signal transmitted onto linen at tone k. yk and zk have
similar structures.yk is the vector of received signals on tone
k. zk is the vector of additive noise on tonek and contains
thermal noise, alien crosstalk, RFI etc. Recall that1 ≤ k ≤ K
whereK is the number of tones within the system. We denote
the noise PSD on linen as σn

k , E {|zn
k |2

}
. Hk is the

N ×N channel transfer matrix on tonek. hn,m
k , [Hk]n,m is

the channel from TXm to RX n on tonek. The diagonal
elements ofHk contain the direct-channels whilst the off-
diagonal elements contain the crosstalk channels. We denote
the transmit PSDsn

k , E {|xn
k |2

}
. For convenience we denote

the vector containing the PSD of usern on all tones as
sn , [sn

1 , . . . , sn
K ].

We assume that each modem can only support a maximum
bitloading of bmax. bmax lies in the range 8-15 in current
standards[10]. We also assume that modems can only support
integer bitloading which is typically the case in practice. The
algorithm could also be modified in a straight-forward fashion
to include fractional bitloadings. Under these assumptions the
achievable bitloading of usern on tonek is

bn
k ,

⌊
log2

(
1 +

1
Γ

|hn,n
k |2 sn

k∑
m 6=n |hn,m

k |2 sm
k + σn

k

)⌋
(2)

where bxc is min(x, bmax) rounded down to the nearest
integer. Γ is the SNR-gap to capacity and is a function of
the desired BER, coding gain and noise margin. The data-rate
on line n is thus

Rn =
∑

k

bn
k

III. SPECTRUMMANAGEMENT

A. The Spectrum Management Problem

We restrict our attention to the two user case for ease of
explanation. Extensions to more than two users are straight-
forward. The spectrum management problem for the two user
case is defined as

max
s1,s2

R2 s.t. R1 ≥ Rtarget
1 (3)

B. Constraints

The optimisation (3) is typically subject to atotal power
constrainton each modem

∑

k

sn
k ≤ Pn, n = 1, 2 (4)

This arises from limitations on each modem’s analog front-
end.Spectral mask constraintsmay also apply

sn
k ≤ sn,max

k , ∀k, n = 1, 2 (5)

C. Mapping from Bitloading to Powerloading

Since each modem only supports integer bitloading, we can
reduce our search space to the PSDs corresponding to exact
bitloadings. This reduces complexity considerably without
affecting optimality. To find the PSDs corresponding to a
particular bitloading we proceed as follows. Define

A ,
[

0 α1,2
k

α2,1
k 0

]

where αn,m
k , Γ |hn,m

k |2 |hn,n
k |−2. Also define σk ,

Γ[σ1
k, σ2

k]T andΛk , diag{2b1k − 1, 2b2k − 1}. The PSD pair
required to support a particular bitloading pairb1

k, b2
k is then

[
s1

k
s2

k

]
= (IN − ΛkAk)−1 Λkσk (6)

In the following we usesn
k (b1

k, b2
k) to denote the PSD of user

n corresponding to the bitloadingsb1
k, b2

k as calcu lated by (6).
At this point we could propose a simplistic algorithm

to find the optimal PSDs based on an exhaustive search.
For each possible bitloading pair on each tone calculate the
corresponding PSD pair. Taking all possible combinations of
bitloadings across all tones results in(bmax + 1)2K possible
PSD pairs. Determine the feasibility of each PSD pair based
on any power constraints as described in Sec. III-B, and on the
target rate constraint for user 1. Choose the PSD pair which
maximizes the data-rate of user 2.

Unfortunately whilst this algorithm is simple to implement,
its complexity isO((bmax + 1)2K). With K = 256 in ADSL
and K = 4096 in VDSL, this results in a computationally
intractable problem.

D. Dual Decomposition

As we saw in the previous section, an exhaustive search
for the optimal PSDs leads to a computationally intractable
problem. The reason behind this is as follows. The total power
constraint on each line causes the power allocation problem
to become coupled across frequency. As such we must jointly
search the PSDs across all tones. This results in an exponential
complexity inK and an intractable problem.

To overcome this we replace the power constrained optimi-
sation (3), with an unconstrained optimisation of a Lagrangian
(9). In the Lagrangian the total power constraints are enforced
through the use of the Lagrangian multipliersλ1 andλ2 which
form part of the cost function. Whenλ1 and λ2 are chosen
correctly, maximizing the Lagrangian will implicitly enforce
the power constraints. The power constraints need not be
explicitly enforced and the problem can be decoupled across
frequency.



When the problem is decoupled we can solve the optimi-
sation by maximizing the Lagrangian independently on each
tone. This leads to a complexity which is linear rather than
exponential inK and the problem becomes computationally
tractable. This is the main innovation in this paper.

We begin in Sec. III-E by replacing the original optimisation
problem (3), with a weighted rate-sum maximization (7).
With a correctly chosen weightw, maximizing (7) implicitly
enforces the target rate constraint on user 1. The weightw is
in itself a form of Lagrangian multiplier.

In Sec. III-F we append the Lagrangian multipliers to
the weighted rate-sum to form the Lagrangian. We will see
that maximizing this Lagrangian is equivalent to solving the
original optimisation problem (3). We will also see that this
Lagrangian can be decoupled and maximized independently
on each tone.

Using a Lagrangian to solve a constrained optimisation in
an unconstrained way is a commonly used approach in convex
optimisation theory and is known as the dual decomposition
method. The dual decomposition has been applied in other
communication problems with convex cost functions such as
joint routing and resource allocation[11] and power allocation
in the vector multiple access channel[12]. In this work we
show that the dual decomposition method can also be applied
to non-convex optimizations.

E. Rate Regions

The rate region is a plot of all possible operating points (rate
pairs) that can be supported by a multi-user channel. Operating
points on the boundary of the region are said to be optimal.
It is our goal to find the PSDs corresponding to these points.

Theorem 1:In convexrate regions there exists somew such
that

max
s1,s2

wR1 + (1− w)R2 (7)

and (3) are equivalent. That is spectrum management is
equivalent to a weighted rate-sum maximization.

Proof: This proof will be made by illustration. Examin-
ing the convex rate region in Fig. 1 (a) we see that there is
only one point which maximizes the weighted rate-sum for a
givenw. For this particularw we achieve a rateRtarget

1 on line
1. Since the rate region is convex, any higherR2 necessarily
leads to a smallerR1. ThusRmax

2 is the highest rate for line
2 which will allow the target rate for line 1 to be achieved.

Due to this one to one mapping betweenw andRtarget
1 , op-

timality in terms of (7) is a sufficient condition for optimality
in terms of the original spectrum management problem (3).

Consider the converse. Examine the non-convex rate region
in Fig. 1 (b). At pointC the spectrum management problem
(3) is solved for a particularRtarget

1 . However this point has no
correspondingw for which it is optimal in terms of a weighted
rate-sum. PointsA andB are superior in this sense, although
B does not satisfyR1 ≥ Rtarget

1 and A is inferior in terms
of R2. So in non-convex rate regions not all points can be
expressed as weighted rate-sum optimizations.

In the wireline medium there is some correlation between
the channels on neighbouring tones. If we sample the channel
finely enough then neighbouring tones will see almost the
same channels (both direct and crosstalk).

Imagine that the tone spacing is fine enough such that
hn,m

k ' hn,m
k+l , 0 ≤ l ≤ L − 1. Consider two points in

the rate region,A = (Ra
1 , Ra

2) and B = (Rb
1, R

b
2) and their
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Fig. 1. Rate Region Examples

corresponding PSDs(s1,a
k , s2,a

k ) and(s1,b
k , s2,b

k ). It is possible
to operate at a pointD = ( l

LRa
1 + L−l

L Rb
1,

l
LRa

2 + L−l
L Rb

2)
for any 0 ≤ l ≤ L − 1. This is done by setting the PSDs to
(s1,a

k , s2,a
k ) on tonesk ∈ {pL + 1, . . . pL + l} for all integer

values ofp, and to(s1,b
k , s2,b

k ) on all other tones.
For example, to operate at a point 2/3 betweenA andB (on

the side closer toA), we requirel = 2 andL = 3. Thus we set
the PSDs to(s1,a

k , s2,a
k ) on tonesk ∈ {1, 2, 4, 5, 7, 8, . . . , K}

and to (s1,b
k , s2,b

k ) on tonesk ∈ {3, 6, 9, . . . , K}. For this
to work the tone spacing must be small enough such that
the channel is approximately flat overL = 3 neighbouring
tones. That is, we must havehn,m

k ' hn,m
k+1 ' hn,m

k+2, ∀k ∈
{1, 4, . . . , K}.

For largeL (small tone spacing), practically any operating
point betweenA and B can be achieved. Thus for any two
points in the rate region, any point between them is also within
the rate region. This is the definition of a convex set. As such
the rate region is convex in DMT systems with small tone
spacings. In ADSL and VDSL the tone spacing is 4.3125 kHz.
In both measured and empirical wireline channels we have
found this tone spacing to be small enough such that the rate
regions are convex.

F. The Lagrangian

We can incorporate the total power constraints (4) into the
optimization problem by defining the Lagrangian

L , wR1+(1−w)R2+λ1(P1−
∑

k

s1
k)+λ2(P2−

∑

k

s2
k) (8)

Hereλn is the Lagrangian multiplier for usern and is chosen
such that either the power constraint on usern is tight∑

k sn
k = Pn or λn = 0. The constrained optimization (7)

can now be solved via the unconstrained optimization

max
s1,s2

L(w, λ1, λ2, s
1
k, s2

k) (9)

Define the Lagrangian on tonek

Lk , wb1
k + (1− w)b2

k − λ1s
1
k(b1

k, b2
k)− λ2s

2
k(b1

k, b2
k)

Clearly the Lagrangian (8) can be decomposed into a sum
across tones ofLk and a term which is independent ofs1

k and
s2

k

L =
∑

k

Lk + λ1P1 + λ2P2



As a result we can split the optimization intoK per-tone
optimizations which are coupled only throughw, λ1 andλ2.

IV. OPTIMAL SPECTRUM MANAGEMENT

The optimal spectrum management(OSM) algorithm is
listed as Alg. 1. Spectral mask constraints can be incorporated
into the optimisation by settingLk to −∞ if s1

k > s1,max
k or

s2
k > s2,max

k .
The algorithm operates as follows. We need to search

through bothλ1 andλ2 to find values which place sufficient
importance on the total power constraint terms within the
Lagrangian (8). We must also search throughw to find the
value which achieves the right trade-off between the rates of
the two users, thereby maximizing the rate of user 2 whilst still
achieving the target rate of user 1. The algorithm contains three
loops, an outer loop which searches forw, an intermediate
loop which searches forλ1 and an inner loop which searches
for λ2. Bisection is used in each of these searches.

When searching forλn, we first find a value ofλn which
ensures that the power constraint of usern is satisfied. This
value is stored inλmax

n . Note that a largerλn places more
emphasis on the power constraint of usern in the Lagrangian.
As a result, using a largerλn will result in a lower total power
for usern.

Once λmax
n is found the algorithm proceeds to bisection.

Note that after the algorithm has completed, for each user
either

∑
k sn

k = Pn or the corresponding Lagrangian multiplier
is driven to zero (λn = 0). Thus the Lagrangian and the
original objective become equivalent. More rigorously,

Theorem 2:For convex rate regions Alg. 1 converges. At
convergence Alg. 1 yields the optimal PSDs for the spectrum
management problem (3), that is

s1, s2 = arg max
s1,s2

R2 (10)

s.t. R1 ≥ Rtarget
1∑

k

sn
k ≤ Pn, ∀n

Proof: See [13]
Note that by solving the optimization independently on each
tone we require onlyK(bmax + 1)2 evaluations ofLk each
time the functionoptimize_s is called, so the complexity
becomes linear rather than exponential inK. In contrast solv-
ing the problem jointly across all tones would have required
(bmax + 1)2K evaluations ofs1

k(b1
k, b2

k) and s2
k(b1

k, b2
k) which

is computationally intractable.
In this paper we have only presented the algorithm and

optimality proof for 2 user channels. Extensions to more than
2 users are straight-forward and follow naturally from the
algorithm and proof presented here.

V. PERFORMANCE

We now examine the performance of OSM when compared
with other spectrum management techniques. We simulate
downstream transmission in ADSL with a 5 km CO distributed
line and a 3 km RT distributed line. The RT is located 4
km from the CO as depicted in Fig. 2. A maximum transmit
power of 20.4 dBm is applied to each modem. The usual
PSD constraint is not applied. Background noise includes
crosstalk from 10 ISDN, 4 HDSL, and 10 SSM (legacy) ADSL
disturbers. We use 0.5 mm (24-Gauge) lines and the target

Algorithm 1 Optimal Spectrum Management
Main Function

wmin = 0, wmax = 1
while |R1 −Rtarget

1 | > ε
w = (wmax + wmin)/2
s1, s2 = optimize_λ1(w)
if R1(s1, s2) > Rtarget

1 , thenwmax = w, elsewmin = w
end

Function s1, s2 = optimize_λ1(w)
λmax

1 = 1, λmin
1 = 0

while
∑

k s1
k > P1

λmax
1 = 2λmax

1
s1, s2 = optimize_λ2(w, λmax

1 )
end
repeat

λ1 = (λmax
1 + λmin

1 )/2
s1, s2 = optimize_λ2(w, λ1)
if

∑
k s1

k > P1, thenλmin
1 = λ1, elseλmax

1 = λ1

until convergence

Function s1, s2 = optimize_λ2(w,λ1)
λmax

2 = 1, λmin
2 = 0

while
∑

k s2
k > P2

λmax
2 = 2λmax

2
s1, s2 = optimize_s(w, λ1, λ

max
2 )

end
repeat

λ2 = (λmax
2 + λmin

2 )/2
s1, s2 = optimize_s(w, λ1, λ2)
if

∑
k s2

k > P2, thenλmin
2 = λ2, elseλmax

2 = λ2

until convergence

Function s1, s2= optimize_s(w, λ1, λ2)
for k = 1 . . . K

b1
k, b2

k = arg maxb1k,b2k
Lk(b1

k, b2
k, w, λ1, λ2)

s1
k = s1

k(b1
k, b2

k), s2
k = s2

k(b1
k, b2

k)
end

symbol error probability is10−7 or less. The coding gain and
noise margin are set to 3 dB and 6 dB respectively.

Fig. 3 shows the rate regions corresponding to various spec-
trum management algorithms. For comparison the rate regions
with IW and flat PBO are shown. No PBO method for RT
distributed ADSL modems has been defined in standardization
and this is still an open issue[3].

Examining the PSDs derived with the OSM algorithm
allows us to gain some intuition into how it operates. The
PSDs corresponding to a 1 Mbps service on the CO distributed
line are depicted in Fig. 4 and Fig. 5. The main goal is to
protect the performance of the CO line. Crosstalk coupling
increases with frequency. As a result we see that the PSD on
the RT line decreases with frequency to protect the CO. In the
high frequencies above 430 kHz the CO line cannot reliably
communicate even in the absence of crosstalk due to its large
direct channel attenuation. As a result it is not necessary for
the RT to do PBO in frequencies above 430 kHz and we see
a sudden increase in the PSD on the RT line.

As shown in Tab. I using OSM instead of IW allows us
to increase the data-rate on the RT distributed line from 3.1
Mbps to 7.3 Mbps whilst still maintaining a 1 Mbps service
on the CO distributed line.
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VI. CONCLUSIONS

In this paper we presented an algorithm for optimal spec-
trum management (OSM) in DSL. This algorithm calculates
the spectra required for the modems within a network to
achieve maximal performance, thereby operating on the rate
region boundary. The algorithm can operate under a combina-
tion of total power and/or spectral mask constraints.

Through the use of a dual decomposition the algorithm
solves the spectrum management problem independently on
each tone. The result is a computationally tractable and
efficient algorithm.

Simulations show that the algorithm yields significant gains
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Fig. 4. PSDs on CO line (CO Line @ 1 Mbps)
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Scheme CO Rate RT Rate
Flat PBO 1.0 Mbps 0.0 Mbps

IW 1.0 Mbps 3.1 Mbps
OSM 1.0 Mbps 7.3 Mbps

TABLE I
ACHIEVABLE RATES

over existing spectrum management techniques, e.g. in a
downstream ADSL scenario the OSM algorithm can outper-
form another DSM algorithmiterative waterfilling by up to
135%.
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