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Abstract—This paper studies the downlink ergodic capacity of
a network multiple-input multiple-output (MIMO) system. The
system model includes base-stations (BSs) randomly distributed
with a fixed density, each equipped with ) antennas, scheduling
K single-antenna users, and forming cooperating clusters via
perfect backhaul links. Intra-cluster interference is eliminated
by joint transmission using zero-forcing beamforming assuming
perfect channel state information (CSI), while inter-cluster inter-
ference remains. This paper shows that although coordinating a
large cluster of BSs eliminates strong interferers, the coordination
gain depends crucially on the loading factor, defined as the ratio
of M and K. In particular, we show that with M/ = K, increasing
the coordination cluster size is only beneficial for the cluster-edge
users, while degrading the ergodic capacity of the users located
close to the cluster center. In contrast, when M > K, increasing
the cluster size potentially improves every user’s ergodic capacity.
In the second part of this paper, we use tools from stochastic
geometry to completely characterize the user ergodic capacity
in network MIMO systems. In this setting, we model the BS
locations according to a homogeneous Poisson point process with
a fixed density, and propose tractable, yet accurate, distribution
functions for the signal and inter-cluster interference powers.
We then derive an efficiently computable expression for the user
ergodic capacity as a function of the distance between a user and
the cluster center.

I. INTRODUCTION

Network multiple-input multiple-output (MIMO) is often
hailed as a promising architecture to mitigate multicell in-
terference and to bring significant improvements to future
wireless cellular networks with dense deployment of base-
stations (BSs) [1]. By coordinating multiple BSs over the back-
haul links, a network MIMO system can spatially distinguish
multiple users across the BSs, thereby completely eliminate
multicell interference. In this paper, we study the downlink
of a network MIMO system where BSs form cooperating
clusters. The main objective of this paper is to accomplish the
following two tasks: (1) investigating the performance gain of
the joint transmission scheme in a network MIMO system as a
function of the given loading factor defined as the ratio of the
transmit and receive antennas within each cluster; (2) deriving
efficiently computable user ergodic capacity expression using
tools from stochastic geometry.

The system model comprises a wireless cellular network
wherein BSs are randomly deployed with a fixed density, and
clustered using a regular lattice. Each BS is equipped with M
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antennas, and schedules K single-antenna users with M >
K. The scheduled users within a cluster are jointly served in
the downlink via zero-forcing (ZF) beamforming under perfect
channel state information (CSI); users are subject to inter-
cluster interference.

In the absence of CSI acquisition overhead and backhaul
capacity/delay constraints, it is widely acknowledged that
increasing the coordination cluster size introduces significant
gain in terms of user ergodic capacity by eliminating the strong
interferers. This paper shows, however, that this gain depends
crucially on the ratio of M and K. In particular, we distinguish
between two distinct regimes: a fully-loaded system where
M = K, and a system with an excess number of antennas
equipped at each BS, ie., M > K.

In a fully-loaded system, establishing joint transmission
across a larger set of BSs brings two competing consequences.
First, the inter-cluster interference power at each user location
decreases. Second, as this paper shows, joint processing using
ZF beamforming also introduces a penalty in terms of the
signal power. Surprisingly, even without accounting for CSI
acquisition overhead and backhaul impairment, the results of
this paper show that as the cluster size goes to infinity, the
ergodic capacity of every user in fact goes to zero asymptoti-
cally in a fully-loaded network MIMO system. In contrast, it
converges to a non-zero constant when M > K. Our results
imply that using an excess number of antennas at each BS
is essential to realizing the cooperation gain of the network
MIMO systems in future wireless networks.

This paper also aims to develop accurate, yet tractable,
mathematical models for network MIMO systems that account
for random locations of the BSs [2]. Although stochastic
geometry has been accepted as a core mathematical tool
to model such randomness in wireless networks [3], and
has been extensively employed to investigate BS coopera-
tion using interference coordination [4], non-coherent joint
transmission [2], and distributed antenna systems [5], the
performance of network MIMO systems has only been studied
either using simplified Wyner models [6] or with extensive
system-level simulations [7]. The main challenge in modeling
network MIMO systems using stochastic geometry is the lack
of tractable signal and interference distribution functions.

To address this issue, the second part of this paper considers
a network MIMO system as described above wherein the BS
locations are modeled according to a homogeneous Poisson
point process (PPP) with a fixed density. We first develop



Fig. 1. A typical user is shown by the square marker and is located at
distance d from the center of a typical hexagonal cluster approximated by
its inscribed circle of radius R.. The rest of the R? plane is the interference
region.

approximate signal and inter-cluster interference distribution
functions which, unlike the ones presented in [8], [9], are
more amenable to analysis using stochastic geometry. We
then derive an efficiently computable downlink user ergodic
capacity expression in a network MIMO system under the
two described regimes as a function of the user distance to
the cluster center.

II. SYSTEM MODEL

We consider the downlink of a cooperating cellular network
wherein BSs are spatially distributed according to a homoge-
neous point process with a fixed density A over the entire R?
plane, where cooperating BS clusters are defined according
to a regular hexagonal lattice.! Each BS is equipped with M
transmit antennas, schedules K single-antenna users, and has
constrained power Pr.2 The BSs within each cluster form
a network MIMO system wherein intra-cluster interference
cancellation is enabled by joint data transmission to the
scheduled users using ZF beamforming. This paper assumes
that perfect CSI is available at the BSs without incurring any
overhead, and the BSs are connected using infinite-capacity
and delay-free backhaul links. Further, clusters are subject to a
sum-power constraint and allocate their powers equally across
the downlink beams. In this paper, we focus on the ergodic
capacity of a typical user i located at distance d from the center
of cluster /. In addition, for analysis, the typical cluster is
approximated by its inscribed circle of radius R.. A snapshot
of a typical cluster is depicted in Fig. 1.

The channel vector between BS m in cluster j to user
7 in cluster [ is defined as 8ilmj = V/ Bitmihiim; € cM
where hy;,,,; denotes the small-scale Rayleigh channel fading,
and consists of independent and identically distributed (i.i.d.)
CN (0,1) components, Biim; = (14 Tim;j /D) " denotes the
path-loss coefficient with D = 1 indicating the reference
distance, r;,,; is the distance between BS m in cluster j
and the typical user, and o > 2 is the path-loss exponent.
For exposition, we assume that cluster [ comprises B; co-
operating BSs. The composite channel matrix of cluster [
is denoted by G; = [gu,...,8x,] € CBMXK)  where

'Any clustering approach that partitions the network coverage area can be
used.

2We assume that the user density is sufficiently large such that each BS
schedules K users from within its cluster area.

K, = KBy, and g;; = [glu, e ,giTlBZJT € CMB: indicates
the collective channel vector between the B; serving BSs
and user ¢. The downlink ZF beams are designed as the
scaled pseudo-inverse of the channel matrix; w;; denotes the
unit-norm beam assigned for u_ls_er 1 in cluster [. We further

define f;;; = [giTll JTRRRS gl-Tl B, j] as the collective interference
channel vector from the B; BSs in cluster j to the typical user.
The SINR of the typical user is therefore given by
plgiiwil?

ZjGCl Z?:Bf p|fil?jwkj|2 +1
where C; indicates the set of clusters interfering with the users
in cluster [, p = 1552 denotes the signal-to-noise ratio, and o2
is the noise power. Finally, invoking the orthogonality principle
of ZF beamforming, i.e., wy; L span {g}, £ the dimension
of the beamforming space for each user in cluster [ is (; =
B (M —-K)+1.

To analyze the coordination gain of a network MIMO sys-
tem, obtaining the distribution functions of both signal power
|g;'} w;;|? and interference power produced by individual beam
transmissions in interfering clusters |fi'?jij|2 is essential. In
the following section, we revisit the approach proposed in [8]
to obtain approximate signal and interference distributions in
a network MIMO system under a fixed BS deployment.

Vit = 1)

IITI. SIGNAL AND INTERFERENCE POWER DISTRIBUTIONS:
A FIXED BS DEPLOYMENT

The distributions of the signal and interference powers
in a wireless network where channel vectors are isotropic,
i.e., only consist of i.i.d. components, have been derived
previously (refer to [10, Proof of Theorem 1] for more details).
The importance of the isotropic assumption is twofold. First,
obtaining the distribution of the channel strength becomes
straightforward. Second, deriving the exact distribution of the
power of the channel vector projected onto a ZF beamforming
space becomes tractable.

In a network MIMO system, however, each composite chan-
nel vector is subject to different path-loss components, i.e., the
channel vectors are non-isotropic. As a consequence, charac-
terizing the exact signal and interference power distributions
is much more difficult. In particular, for a fixed realization
of a cellular network as presented in the preceding section,
the intended channel strength ||g;||> = >, ||guw||* and each
interference channel strength ||£;;]|> = > ||gum;l|? are,
respectively, the sum of B; and B, independent, but non-
identically distributed, Gamma random variables. Although
the exact distribution of the sum of non-identically distributed
Gamma random variables does not yield a mathematically
tractable expression, a second-order moment matching ap-
proach proposed in [11] can be employed to obtain an efficient
approximation as follows.

Lemma 1: Let {X;}!", be a set of m independent random
variables such that X; ~ T'(k;,0;). Then, Y = 3. X; has
the same first and second order statistics as a Gamma random
variable with the shape and scale parameters given as
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Approximation 1: Using Lemma 1, the sum of m indepen-
dent but non-identically distributed Gamma random variables
can be approximated as a Gamma random variable with the
effective shape and scale parameters as presented in (2).

By adopting Approximation 1, it follows that ||g;||> ~
T (kila 91'1) and ||filj||2 ~T (kij, 91']') with
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From (3) and (4), it can be shown that k; < M B; and
ki; < M B; with equality if the two vectors were isotropic.
In essence, each spatial dimension (i.e., each component) of
an isotropic vector contributes 1 to the shape parameter of
the power distribution, while the contribution of each spatial
dimension of a non-isotropic vector to the shape parameter is
less than 1.

Based on the above observation and in order to further
facilitate the characterization of power distributions in a net-
work MIMO system, this paper adopts the following additional
approximation pioneered in [8] which treats g; and fj;; as
isotropic vectors, while their shape parameters are modified
to reflect the non-isotropic nature of the channels.

Approximation 2: The intended channel vector g; can
be approximated as an isotropic vector distributed as
CN (0,0; 15 ,) where each spatial dimension adds k;; /M B,
to the shape parameter of the power distribution. Similarly,
the interference channel f;;; can be treated as an isotropic
vector distributed as CA (O, 0:iXnm Bj) where each spatial
dimension adds k;; /M B; to the shape parameter of the power
distribution.

By treating the channel vectors as if their components were
i.i.d., and noting that the ZF beam designed for each user
in cluster [ lies in a B; (M — K) + 1 dimensional subspace,
whereas any interfering beam lies in a one-dimenstional sub-
space [10], the power distribution of the channel projected
onto the ZF beam space can now be characterized as follows:

Lemma 2: Under Approximations 1 and 2, the signal power
of the typical user and interference power produced by trans-
mission of a single beam in cluster j seen at the typical user

are, respectively, distributed as
ky(Bi(M -K)+1
( (BN K+ ),eu) 3)
£ w2 ~T (2 g 6
|iljwkj| ~ MB]" ij | - (6)

MB,

The presented signal distribution function in (5) allows us to
upper bound the ergodic capacity and investigate its limiting
behavior as the cluster size increases under both M = K and
M > K operating regimes.

|ginWil|2 ~T

IV. TwO OPERATING REGIMES: M = K VERSUS M > K

It is well accepted that establishing coordination across a
large number of BSs leads to suppression of strong inter-
cluster interference. This section aims at understanding how

this might affect the received signal power, and therefore the
user ergodic capacity, at each user location. To address this
question, we assume that B; = )\WRE BSs are uniformly
distributed within the typical cluster [. We first focus on user
1 located at the cluster center. The following theorem presents
the expected signal power |gfiw;|? for sufficiently large R..

Theorem 1: Under Approximations 1 and 2, and for suffi-
ciently large %, we have that

E [|gSWil|2} =
2 (/\7ng (M- K)+ 1)
RZ(a—1)(a-2)

1+ (@-1R.
(14+R)*!

Proof: Using the signal power distribution function (5),
we have that

B,
a) By (M — K 1
E [|gfiwil’] ) ( )+ Z L+ rap)
b=1
) o
2 (B(M — K) + 1)E[(1+7)"°]

© 2 (/\WRg (M - K) + 1) / (1+7)"“rdr.
0

Here, (a) follows from noting that if X ~ T (k,@), then
E(X) = k6. Relation (b) follows from the law of large
numbers. In (c), we use the fact that with B; uniformly
distributed BSs, the distance probability distribution function
for a user at the center is given by f,. (r) = 2r/R2. Finally,

noting that
x (14+2)'" " (—az+2—1)
—dx =
/(1—1—17) (a—1)(a—2)
the proof is complete. [ ]

Remark 1: For sufficiently large R., Theorem 1 is essen-
tially valid for all users located close to the cluster center. The
distribution of the BS locations, however, is not symmetric
around the cluster-edge users. Therefore, slightly increasing
the cluster size provides them with an opportunity to gain from
more serving BSs, thereby enhancing the ergodic capacity.
However, by further increasing the cluster size, the cluster-
edge users eventually become cluster-center users. Hence,
Theorem 1 eventually applies.

Remark 2: Based on Theorem 1, with M = K, it can be
seen that the expected signal power is a decreasing function in
R.. As aresult, in a fully-loaded system, increasing the cluster
size introduces a penalty in terms of the received signal power.

To elaborate on this result, it should be noted that the signal
power of a typical user |gfw;|? depends on the intended
channel strength and the dimension of the beamforming space.
Therefore, investigating the connection between the cluster
size and these two factors provides further insight. As the first
step, the following theorem shows that the indented channel
strength ||gi||? converges to a constant as the cluster size
Srows.

Theorem 2: Under Approximation 1, and for sufficiently
large R., it follows that

E [[lgall’] =
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Proof:

B
E [||gu||2} @ MZ (14 ram) © MBE [(1 + 7’)_0‘}
b=1

© fre
= 271'/\M/ (1+7)" % rdr
0

(d) 2T AM 1+ Rc(a—1)
- (a-1)(a—2) (1+R.)*

where (a) is based on the expected value of a Gamma distri-
bution presented in (3), and (b) is based on the law of large
numbers. Noting that B; BSs are scattered uniformly within
a cluster, (c) follows using the distance distribution. Using
the integral expression in (7), (d) holds. Finally, assuming
sufficiently large R., the second term can be ignored, which
completes the proof. ]

Remark 3: Theorem 2 states that, while the dimension of
the channel vector increases as more BSs participate in serving
a user, the channel norm becomes a constant. In other words,
the spatial dimensions provided by the BSs located far away
from a user do not contribute to the channel strength.

The second important factor is the dimension of the beam-
forming space (; for each user (Recall that {; = B; (M — K )+
1). When M = K, {; = 1; the intended channel vector and
the ZF beam assigned to a user are therefore independent.

As a consequence, as R. grows, the signal power |gHw;|?
is the power of the inner product of two independent and
constant-norm vectors in spaces of increasing dimension;
hence, the signal power degrades.

Theorem 1 can be adopted to examine the asymptotic
ergodic capacity of a typical user at a finite distance d from the
cluster center C; (d) in a fully-loaded network MIMO system
as follows:

Corollary 1: Under Approximations 1 and 2, the asymp-
totic ergodic capacity of a user located d meters away from
the cluster center in a fully-loaded network MIMO system
with M = K goes to zero as the cluster size goes to infinity.

Proof: We have

(@)
Ci(d) =E[log (1 +7a)] < E [log (1 + plghiwul?)]

(b)
< log (1 + pE [IgZWuFD

(© 2p 1+ (a—1)R.
_10g<1+R§(a—1)(a—2) [1— )

(1+R.)*!

where (a) is obtained by ignoring the inter-cluster interference,
(b) is obtained by the Jensen’s inequality, and (c) follows from
Theorem 1 with M = K. The final expression converges to
zero as R, increases. Thus, limpg, o C; (d) = 0. [ |

Our result illustrates that by increasing the cluster size,
the ergodic capacity of every user reduces in a fully-loaded
network MIMO system. In particular, the signal power penalty
eventually outweighs the gain in reducing interference power
as the cluster size increases.

In contrast, from Theorem 1, for sufficiently large R, the
expected signal power converges to a constant when M > K

as
27\ (M — K)

(a—1)(a—2)

The reason is that while the channel strength becomes a
constant as R, increases, (; grows at the same rate as the
number of coordinating BSs. Therefore, the unit-norm ZF
beam lies in a subspace whose dimension becomes larger as
R, increases. As a consequence, when excess antennas are
available at the BSs, increasing the cluster size, up to the point
where the signal power becomes a constant and interference
power reaches the noise level, improves the ergodic capacity
of each user. The user ergodic capacity essentially becomes a
constant beyond this point.

E (|g5Wz‘l|2) =

V. USER ERGODIC CAPACITY: A STOCHASTIC GEOMETRY
APPROACH

The previous section investigated the properties of the
users ergodic capacity in two distinct operating regimes in a
network MIMO system. This section of the paper develops an
efficiently computable formulae for a user’s ergodic capacity
(averaged over both BS locations and fading) using tools from
stochastic geometry. We assume that the BSs are distributed
according to a homogeneous PPP & with density A. Since the
parameters of the approximate distributions presented in (5)
and (6) are functions of the joint distances between the typical
user and a set of cooperating BSs, a tractable characterization
of ergodic capacity using these distributions is not feasible.
To tackle this issue, we first propose alternative signal and
interference power distributions.

A. Proposed Signal Power Distribution

Let us consider a fixed realization of the PPP & with B;
BSs in a typical cluster. The following proposition introduces
an alternative signal power distribution function in a network
MIMO system.

) . . . d
Proposition 1: Using Approximation 1, |ghw;[? =
Oty Ban Sy, wh

> b1 Bawi Sy’ , where

Sy~ T <w71>, ®)
B

Proof: Applying Approximation 1, it can be shown that
Zf:ll Bt Sp 1s distributed as the Gamma random variable
in (5). [ |

The distribution of each term in 25:11 Bip1 Sy is now a
function of the distance between the typical user and only
one of the serving BSs. However, B; is a (Poisson) random
variable. Hence, the signal power distribution is still a func-
tion of individual realizations of ®, making further analysis
intractable. To address this issue, we further replace B; by its
expected value.

Approximation 3: We approximate | gSWuP as
Sty Birei Sb, where
G B (M -K)+1
et <l(§f)+ 1) ©)
l

3The equivalence in distribution is indicated by =.



where B; = /\ng denotes the expected number of BSs in
cluster [.

The remainder of this section is devoted to obtaining an
efficient interference power distribution function.

B. Proposed Interference Power Distribution

Since interference produced by different clusters are inde-
pendent, we focus on the interference power from the B;
cooperating BSs in cluster j.

First, note that the typical user receives K B; interfering
beams from cluster j during each time slot denoted as I, =
SEBIEH. Wi |2. Since the K B; ZF beams are not necessarily
orthogonal, I}, is not, in general, a summation of independent
terms. Obtaining its distribution therefore is not mathemati-
cally feasible. To obtain an approximate distribution, however,
similar to the related works, e.g., [8]-[11], we approximate the
interfering beams as orthogonal vectors.*

Approximation 4: We approximate Ifl as the summation of
K Bj iid. Gamma random variables, where the kP term is
distributed as in (6).

Under Approximation 4, we therefore have

; K
Bt (K,

Again, since the parameters of the approximate interference
power distribution in (10) are complex functions of distances
between a user and the BSs in cluster j, it cannot be di-
rectly used to obtain the ergodic capacity expression through
stochastic geometry approach. Hence, we propose to further
approximate the interference power distribution as follows:
Proposition 2: Under Approximations 1 and 4, we have

Bj
d
I < E Bitmj Litm
m=1

where L ~ T (K, 1).

Proof: Using Approximation 1, it can be shown that
Zﬁ;l Bitmjliim; is distributed as the Gamma random vari-
able in (10). [ |

Remark 4: From Proposition 2, I fl is equal in distribution to
the interference power produced by the same set of BSs as in
cluster j where each BS independently serves its K scheduled
users using ZF beamforming. We therefore have that

Bj
Z Z Bitmg Litm 4

je€rm=1

(10)

Z (1 +7’ilm)70‘ Xilm

med\ P,

(1)

where X, ~ T'(K,1), ®; is the set of cooperating BSs in
cluster [, and 7;;,,, denotes the distance between the interfering
BS m and the typical user.

Based on the proposed approximate signal and interference
power distributions, the next section characterizes the ergodic
capacity expression in a network MIMO system.

“In fact, scheduling a set of semi-orthogonal users enhances the perfor-
mance of a network under ZF beamforming [12].

C. User Ergodic Capacity Expression

We now derive the ergodic capacity expression for a user
located at distance d from the cluster center. It is notable
that this expression would allow a theoretically rigorous way
of investigating the achievable ergodic capacity of a network
MIMO system at every location of a cluster.

Theorem 3: For the given system parameters M, K, A\, and
«a, the ergodic capacity of a user located at the distance d < R,
from the cluster center is given by

Ci(d) = /OOO e;z exp <—A/% /OO [1— v (2,7)] rdrcw)
{1< Y A Tdrde)}dz

12)

1+pz(1+7)"%) , w indicates the

shape parameter in (9), and [ (§) = \/R2 — d? cos? 6 + dsin

indicates the distance of the typical user from the cluster edge
for a given angle 0 as depicted in Fig. 1.

Proof: The proof is presented in Eq. (13) on the
next page, where (a) follows from using log(1+z) =
I el (1—e®)dt [13] In (b), we use the change of
variable t = z (Zyecl Zk ¢ Pl ws? + 1) Further, since
the integrand is non-negative, the order of integration and
expectation can be exchanged. The expression in (13b) in-
volves moment generating functions (MGF) of the signal
and interference powers. Therefore, in (c¢), we replace the
signal and interference powers with their equivalent terms (in
distribution) as, respectively presented in (9) and (11). Since
® is independent of both X;;,,, and Sp, we have relation (d).
Noting that S, and X;,, are Gamma random variables, (e)
follows from the MGF of the Gamma distribution. Finally,
using the probability generating functional of a homogenous
PPP with density A [3] as given by

g (:v)] — exp (—)\/Rz [ v ()] d:v)

zed
and converting the coordinates from Cartesian to polar, we
have the expression in (12).

where ¥, (z,r) = (

VI. NUMERICAL VALIDATION

We now present numerical results to validate the main con-
clusions and analytical results of this paper. In our numerical
simulations, the number of cooperating BSs within each cluster
is drawn according to a Poisson process with density A. The
average number of cooperating BSs ranges from 5 at cluster
radius of 400 meters to 31 at cluster radius of 1000 meters.
Each BS is equipped with M antennas and schedules K single
antenna users. Joint downlink transmission takes place over the
shared spectrum of bandwidth W with frequency reuse factor
of one. The ergodic capacity of a fixed typical user is averaged
over different realizations of the Poisson process, BS locations,
other users’ locations, and channel fading. The analytical
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dt (13a)

1 —exp

KB;

® [Fe” H 2
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MGEF of aggregate interference power
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results are derived using (12). The system parameters are
summarized in Table I.

Single Cluster Network: First, we consider a single circular
cluster, i.e., inter-cluster interference is ignored. For this
example, the user is located at the cluster center. Fig. 2 shows
the ergodic capacity of this user as a function of cluster radius.
As can be seen from the figure, the user ergodic capacity
improves, then saturates as . grows in a network MIMO
system with excess number of antennas at each BS. However,
when M = K, increasing the cluster size reduces the ergodic
capacity. Fig. 2 also presents the analytical results. Note that
in using expression (12), the interference power is set to zero
to ignore inter-cluster interference. As shown in the figure,
the analytical and numerical results perfectly match when
M > K. With M = K, although there is a gap, both
numerical and analytical results illustrate that ergodic capacity
degrades as cluster size increases. This is due to the penalty
in terms of the signal power imposed by increasing the cluster
size.

Multi-Cluster Network: Next, we consider a network MIMO
system comprising 19 hexagonal clusters, and study the er-
godic capacity of a typical user located, respectively, at d = 0
and d = 350 meters away from the center (a cluster-edge user)
of the typical cluster as a function of ..

As shown in Fig. 3, in a fully-loaded system, increasing
R, to up to 600 meters improves the ergodic capacity of the
cluster-edge user by reducing inter-cluster interference. How-
ever, with further increasing R, the penalty in signal power
eventually outweighs the reduction in interference. Therefore,
ergodic capacity eventually decreases. For the cluster-center
user, reduction in interference by increasing the cluster radius
is not sufficient to compensate for the reduction in the signal
power. As a result, its ergodic capacity decreases as R,
increases.

With M > K, the ergodic capacity is enhanced with
increasing I?.. However, as seen from the figure, this gain
is diminishing. The reason is that the improvement in terms

1 —Eg g [exp (—2zplgfiwal®)] | dz (13b)
MGEF of the signal power
1=Eg 5, |exp | —2p Z (L +ram) * S dz (13c¢)

bed,;

H Ex,,. [exp (—zp (1 + 7im)” Xilm)] 1—Eo H Eg, [exp (—zp (1 +rap)” S’b)} dz

bed,;
(13d)
—a\ "W
1=Eo | T (1+ 20 (14 ran) ™) dz. (13¢)
bed,;
TABLE I
NETWORK DESIGN PARAMETERS
BS density A=10"°"m?
Total bandwidth W = 20 MHz
BS Max available power 43 dBm
Background noise No, = —174 dBm/Hz
Center to corner distance of hexagonal clusters L=2/ V3R,
Scheduled users per BS K =3
BS antennas M =3 and 5

of signal power introduced by increasing R, is negligible (as
shown in Fig. 2). Therefore, increasing R. beyond the point
that the interference power reaches the noise level does not
yield any performance gain.

Similar to the previous case, the analytical results obtained
from the expression in (12) are accurate and support and
confirm the main conclusions of this paper.

VII. CONCLUDING REMARKS

This paper investigates two distinct operating regimes of a
downlink network MIMO system: a fully-loaded system with
the same number of transmit and receive antennas within each
cluster, and a system with an excess number of antennas at
each BS. We show that increasing the cluster size causes two
competing effects in a fully-loaded system. First, it reduces
interference at the scheduled users. Second, it causes a penalty
in terms of the signal power. Therefore, while increasing the
cluster size improves the ergodic capacity of the cluster-edge
users which are more prone to strong interference, the signal
power penalty outweighs the gain in interference reduction
at the users closer to the cluster center, thereby decreasing
the center users’ ergodic capacity. With M > K, however,
increasing the cluster area is beneficial.

We further use tools from stochastic geometry to account
for the random BS locations in characterizing the downlink
ergodic capacity of network MIMO systems. In contrast to
prior studies which rely on either simplified Wyner models
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Fig. 2. Ergodic capacity of the user located at the cluster center as a function
of cluster radius R, in a single-cluster network.
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Fig. 3. User’s ergodic capacity as a function of cluster radius R. for d = 0
and d = 350 meters in a multi-cluster network.

or extensive numerical simulations, this paper models the BS
locations according to a homogeneous Poisson point process
with a fixed density, and derives an efficiently computable
ergodic capacity expression as a function of the distance
between a user and the cluster center. This ergodic capacity
expression is found to match the simulation results, and can
be utilized to examine the performance of the network MIMO
systems under various system parameters.
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