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Abstract

This paper investigates the joint design of power control and beamforming codebooks for limited-feedback

multiple-input single-output (MISO) wireless systems. The problem is formulated as the minimization of the

outage probability subject to the transmit power constraint and cardinality constraints on the beamforming

and power codebooks. We show that the two codebooks need to bedesigned jointly in this setup, and

provide a numerical method for the joint optimization. For independent and identically distributed (i.i.d.)

Rayleigh channel, we also propose a low-complexity approach of fixing a uniform beamforming codebook

and optimizing the power codebook for that particular beamformer, and show that it performs very close to

the optimum. Further, this paper investigates the optimal tradeoffs between beamforming and power codebook

sizes. We show that as the outage probability decreases, optimal joint design should use more feedback bits

for power control and fewer feedback bits for beamforming. The jointly optimized beamforming and power

control modules combine the power gain of beamforming and diversity gain of power control, which enable

it to approach the performance of the system with perfect channel state information as the feedback link

capacity increases — something that is not possible with either beamforming or power control alone.
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I. INTRODUCTION

It is well established that the use of multiple antennas can considerably improve the performance

of wireless systems in terms of reliability and capacity. A complete realization of these benefits,

however, requires channel state information at the transmitter (CSIT). This motivates the study of

limited feedbacksystems where the receiver quantizes and sends back the channel state information

needed by the transmitter through a rate-limited feedback link. The study of limited feedback schemes

is especially relevant for frequency division duplex (FDD)systems, where downlink and uplink

transmissions use different frequency bands; hence the transmitter cannot learn the channel via

reciprocity. During the past decade, a great amount of research has been done on limited feedback

systems, both for single-user [1]–[16] and multiuser scenarios [17]–[26].

From a broader perspective, the limited-feedback communication systems can be categorized as

control systems, where the transmitter uses the feedback information provided by the receiver in

order to optimize a certain objective, e.g. maximize the transmission rate or minimize the outage

probability. In this sense, the study of limited-feedback systems can be related to the analysis of

control systems with limited communication capacity between the sensors and controllers [27]–[29].

The readers are referred to [30] for a review of the literature on limited-feedback communication

systems.

This paper focuses on optimal design of single-user limited-feedback systems over multiple-input

single-output (MISO) fading channels. In this regard, the authors of [31]–[33] show that, in order to

maximize the mutual information in each fading block, the transmitter should use Gaussian inputs,

which are completely characterized by their covariance matrices. Therefore, the optimal feedback

strategy is to share a codebook of transmit covariance matrices between the transmitter and the

receiver, where the receiver chooses the best covariance matrix based on the current channel realization

and sends its index to the transmitter.

Unfortunately, the covariance codebook design is a large optimization problem and requires rather

complicated numerical design algorithms [31], [32]. To simplify the design process, researchers

usually resort to rank-one covariance matrices, which can be implemented by a power control module

followed by a beamforming module [1]–[5], [8]–[11]. The rank-one simplification is justified by the

fact that with perfect CSIT and a single-antenna receiver, the optimal transmit covariance matrix is a

rank-one matrix, i.e., joint beamforming and power controlis asymptotically optimal as the number

of feedback bits increases and the limited-feedback systemapproaches perfect-CSIT system.
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In spite of the rank-one simplification, the joint design of beamforming and power control modules

is still a complicated optimization problem itself. As a result, most of the existing literature treats

the beamforming and power control aspects of the problem separately and focuses onindependent

design of these modules. For instance, the papers that focuson power control assume isotropic

beamforming at transmitter and investigate the optimal structure of the power control codebooks

[8]–[11]. The papers that focus on beamforming, on the otherhand, fix the transmission power and

investigate the optimal beamforming codebook [1]–[5].

The independent design of beamforming and power control modules however introduces a sig-

nificant performance loss that is overlooked by the earlier literature. Furthermore, as described in

the next section, such an independent design, even with infinite CSI feedback capacity, will have

a non-zero performance gap with respect to a perfect-CSIT system. In order to address this issues,

this paper takes a fresh look at joint optimization of beamforming and power control modules for

limited-feedback MISO systems. In particular, we study thedesign problem from an outage capacity

perspective, which is the appropriate performance metric for delay-constrained real-time traffic [34],

[35].

We formulate the optimization problem as minimization of the outage probability subject to an

average power constraint at the transmitter. The optimization is over the beamforming and power

control codebooks as well as the corresponding codebook sizes. We first fix the codebook sizes

and express the constrained optimization in a Lagrangian formulation. The resulting unconstrained

problem is then solved using a combination of Lloyd’s algorithm, Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method, and a sequential approximation of the outageprobability function based on Monte

Carlo integration. The main contributions of this paper areas follows:

1) We prove the necessity of jointly optimized beamforming and power control modules by

showing the performance gap incurred by an independent design of these modules.

2) The paper provides an efficient algorithm for joint optimization of the beamforming and power

control codebooks, which is then used to derive the corresponding optimal codebook sizes in

terms of the CSI feedback capacity and the target outage probability.

3) It is shown that as the outage probability decreases, the optimal power codebook size increases

and the optimal beamforming codebook size decreases. Furthermore, the resulting optimal

codebook sizes are shown to be independent of the target rate.

4) Numerical results are provided to show that the jointly optimized feedback scheme combines

the power gain of beamforming and diversity gain of power control. This enables the overall

September 14, 2011 DRAFT



3

system performance to approach the performance of a perfect-CSIT system as the feedback link

capacity increases; something that is not possible with independent beamforming and power

control design.

The remainder of this paper is organized as follows. SectionII describes the system model and

explains the motivations behind the joint optimization problem. Section III, justifies the necessity of a

joint beamforming and power control codebook design and provides a suboptimal design solution. The

joint codebook optimization problem is then formulated andsolved in Section IV. The corresponding

codebook size optimization problem is addressed in SectionV. Finally, the numerical results are

presented in Section VI followed by conclusions in Section VII.

Notations:C andR+ denote the set of complex numbers and nonnegative real numbers. Bold upper

case and lower case letters denote matrices and vertical vectors.IM denotes theM×M identity matrix.

Tr(·) denotes the trace operation.‖ · ‖ denotes the Euclidean norm of a vector.(·)T , (·)∗, and (·)†

denote respectively the transpose, the complex conjugate,and the transposed complex conjugate of a

vector or a matrix.CN (0, IM) represents a circularly symmetric complex Gaussian distribution with

zero mean and covariance matrixIM . E[·] denotes the expectation operation and Prob[·] denotes the

probability of an event.

II. SYSTEM MODEL

This paper considers limited-feedback single-user multiple-input single-output (MISO) wireless

systems. We assume a block-fading channel model, where the channel realizations are i.i.d. over

different fading blocks. The system is assumed to have perfect channel state information at the

receiver (CSIR). A delay-free noiseless feedback link witha finite capacity ofB bits per fading

block is available from the receiver to the transmitter as illustrated in Fig. 1.

Let h ∈ CM denote the channel vector from the transmitter to the receiver, whereM is the number

of transmit antennas. In each fading block, the receiver perfectly estimates its channelh, chooses

an appropriate transmission power levelP (h) and beamforming vectoru(h) from the corresponding

codebooks, and sends the corresponding codeword indices back to the transmitter. The problem is

to optimize these codebooks and the corresponding codebooksizes with the objective of minimizing

the outage probability subject to a power constraint at the transmitter.

The exact formulation for the joint codebook optimization problem and our solution approach are

presented in Sections IV and V. Here, we emphasize on the motivations behind studying such a

problem. The main motive behind this joint optimization is two-fold:
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1) Mere beamforming or power control, even with perfect CSIT, is not sufficient for the optimal

performance. In other words, one needs both modules to be present and function in order to

approach the optimal performance of a perfect-CSIT system as the feedback rate increases.

2) An independent optimization of the two modules incurs a significant penalty on the system

performance, hence a joint optimization of the modules is necessary.

To verify the first point, Fig. 2 plots the system performancewhen one applies mere beamforming

(with fixed transmission power), as in [1]–[5], or mere powercontrol (with isotropic beamforming),

as in [8]–[11]. It is well established that by applying beamforming, one gains a power gain of

10 log10(M) − κα−B in dB, asymptotically asB → ∞, whereκ > 0 and α > 1 depend on the

system setup andM is the number of transmit antennas [1]–[5]. On the other hand, by applying

power control, it can be shown that the diversity order, i.e.the slope of outage probability vs.

SNR, improves as M
M−1

(

M2B − 1
)

≈M2B asB increases [9]. However, neither the power gain of

beamforming nor the diversity gain of power control is sufficient by itself to approach the optimal

performance of a perfect-CSIT system asB increases, i.e. to traverse the gap between the rightmost

and leftmost curves in Fig. 2. To do so, both beamforming and power control modules should be

present and the feedback bits should be appropriately divided between the two in order to achieve a

combination of power and diversity gains.

The second point in the list of motives above argues that, notonly the beamforming and power

control modules need to be used jointly, they also need to be optimized jointly in the design process.

The necessity of such a joint optimization is addressed in the next section.

III. OPTIMAL POWER CONTROL FORFIXED BEAMFORMING MODULE

In this section, the beamforming module is fixed and the powercontrol module is optimized for

the given fixed beamforming module. The purpose of this optimization is two fold:

1) It is shown through an example that if the power control module is designed independent of the

beamforming module, a considerable power loss is incurred as compared to the performance

of a power controller that is specifically designed and optimized for the given beamforming

module. This proves the necessity of the joint design of the modules.

2) The beamforming module along with the optimized power control module serve as a suboptimal

solution for the joint optimization problem discussed in Section IV.

We first formulate the problem ofpower control with limited feedbackin its general form and

describe the optimization process. Next, we demonstrate the power gains associated with optimizing
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the power controller for the given beamforming module. Finally, we provide a suboptimal solution

for the joint codebook design problem.

A. Power Control with Limited Feedback

Consider the MISO channel in Fig. 3 withM transmit antennas and channel vectorh ∈ C
M .

The vectorx is the output of some fixed beamforming module constrained byTr
(

Qx|h

)

=1, where

Qx|h=E
[

xx†|h
]

is the transmit covariance matrix. The receiver knowsh perfectly and chooses the

power level, to be used by the transmitter, from the power codebookP=
{

P1, P2, · · · , PNpc

}

, where

Npc is the number of available power levels.

We want to optimize the power control module such that the probability of outage is minimized for

a given target rateR. This involves optimizing the power codebookP and the quantization function

P (h) : CM→P that maps the channel realizations to the power codebook:

min
P,P (h)

Prob
[

log2
(

1 + P (h)hTQx|hh
∗
)

< R
]

(1)

s.t. E[P (h)] ≤ SNR.

Here,SNR denotes the normalized transmitter power constraint. The functionP (·) is also referred

to as thepower control functionin this paper.

Define

γ = hTQx|hh
∗ (2)

as the effective channel gain. The dependence ofγ on h is solely determined by the beamforming

module, e.g.:

• Isotropic beamforming:Qx|h=
1
M
IM andγ= 1

M
‖h‖2.

• Matched-channel beamforming:Qx|h=ĥ∗ĥT , whereĥ= h

‖h‖
. For this caseγ=‖h‖2.

• Limited-feedback beamforming:Qx|h = u(h)u(h)†, where the unit vectoru(h) belongs to some

fixed beamforming codebook. For this caseγ =
∣

∣hTu(h)
∣

∣

2
.

With this definition of the random variableγ, the quantization functionP (h) can be equivalently

reformulated asP (γ):R+→P, and the problem (1) simplifies to the following:

min
P,P (γ)

Prob[P (γ) · γ < c] (3)

s.t. E[P (γ)] ≤ SNR,
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wherec=2R−1, γ≥0 is the quantization variable. It can be easily verified that changing the domain

of the quantization functionP (·) from h in (1) to γ in (3) does not change the problem solution, i.e.

the two problems give the same optimal codebook and outage probability.

The general approach to codebook design problems, as in (3),is the Lloyd’s algorithm, which calls

for repeated updates of the codebook and the quantization function (or equivalently the quantization

regions1) in an iterative process. The Lloyd’s algorithm, however, is not needed for solving problem

(3), because given the codebookP, the structure of the optimal quantization (or power control)

function P (γ) can be derived using fairly simple arguments [10], [11]. These arguments are based

on two facts: 1) when outage is inevitable, we should use the smallest power level in the codebook;

2) in order to prevent an outage, we should use the smallest power level needed to do so.

Fig. 4 shows the structure of the optimal power control function for power levels ordered in

ascending order0 ≤ P1 ≤ P2 ≤ · · · ≤ PNpc
. The optimal power control functionP (γ) can, in fact,

be considered as a step-like approximation of the optimal power control function with perfect CSIT,

PCSIT(γ), which is shown in [35], [36] to be thetruncated channel inverting function(Fig. 4). This

justifies, for example, whyP (γ) uses the smallest power level both for very small and very large

values ofγ.

Having identified the power control function in Fig. 4, the outage probability and average power

can be expressed as

Prob[P (γ) · γ < c] = Prob[γ ∈ [0, c/PNpc
]] = Prob[γ < c/PNpc

] = FΓ

(

c/PNpc

)

, (4)

E[P (γ)] = P1FΓ

(

c/PNpc

)

+ P1 (1− FΓ (c/P1)) +

Npc
∑

k=2

Pk (FΓ (c/Pk−1)− FΓ (c/Pk)), (5)

whereFΓ(·) is the cumulative distribution function (CDF) ofγ. Combining (3), (4), and (5), the

problem is now directly expressed in terms of the power levels. To solve this problem, however,

we need the CDF ofγ, which is not available in most cases. For example, for limited feedback

beamforming case, it would be very difficult, if not impossible, to find a closed-form expression for

the CDF ofγ=
∣

∣hTu(h)
∣

∣

2
given the CDF ofh and definition ofu(h).

To resolve this matter, this paper proposes an approach based on the interpolation of the CDF. In

order to preserve the monotonicity and continuity of the first derivative, we use monotone piecewise

cubic Hermite interpolation [37]. With the interpolation of FΓ(·) in place, we then solve (3) using

the primal-dual interior-point method [38].

1The quantization regions or cells are the inverse image of the codebookP under the mappingP (·).
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In the following sections, the process of optimizing the power control module for a fixed beam-

forming module, as described in this section, will be referred to asmatchingthe power control module

to the beamforming module.

B. Gain of Matching the Power Control Module to the Beamforming Module

In this section, we present an example to show the gain associated with a matched power controller

in comparison with a general (unmatched) power controller.

Consider thematched-channel beamforming modulewith γ1(h)=‖h‖2 and a power controller

matched to this module. Let us denote these modules as BF1 and PC1. Assume that we are bound

to use PC1 as the power controller no matter what the beamforming module is.

Consider, as the second beamformer, alimited-feedback beamforming moduleBF2 with the beam-

forming codebookU= {e1, e2, e3, e4}, the columns ofI4, and beamforming function

u(h) = argmax
u∈U

∣

∣hTu
∣

∣

2
.

Denote the effective channel gain of BF2 asγ2(h) and the corresponding matched power controller

as PC2.

We want to compare the performance of the matched pair(BF2,PC2) with the performance of the

unmatched pair(BF2,PC1). In order to make PC1 applicable to BF2, the transmitter should compen-

sate for the power loss of limited-feedback beamforming BF2 with respect to the matched-channel

beamforming BF1. Since the exact channel is not known at the transmitter, it should compensate for

the maximum possible loss, which isL=maxh γ1(h)/γ2(h). Therefore, when PC1 is used with BF2,

the output of the beamforming codebook needs to be multiplied by
√
L. In this exampleL=4≈6dB.

Fig. 5 compares the performance of matched and unmatched modules for Rayleigh i.i.d. channel

h ∼ CN (0, IM), M=4 antennas,B=2 bits, andR=1 bits/sec/Hz. As Fig. 5 shows, we gain almost

3dB by using the matched power controller for BF2, i.e. using PC2 instead of PC1. This example shows

that there is a considerable gain associated with optimizing the power controller for the beamforming

module and this illustrates the necessity of the joint design of the beamforming and power control

modules.

C. Suboptimal Joint Codebook Design

The discussion above motivates a suboptimal joint codebookdesign, where we fix an appropriate

beamforming codebook and match the power control codebook to it.
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As an example, for i.i.d. Rayleigh channel,h ∼ CN (0, IM), the channel direction̂h = h

‖h‖
is

uniformly distributed on the unit complex hypersphere. Therefore, roughly speaking, the beamforming

vectors should be uniformly spread on the hypersphere2.

Define the uniform codebook asU(uni) =
{

u1,u2, · · · ,uNbf

}

that maximizes the expected value

of received signal-to-noise ratio (with fixed transmissionpower):

E
[

∣

∣hTu(h)
∣

∣

2
]

,

where

u(h) = arg max
u∈U(uni)

∣

∣hTu
∣

∣

2
. (6)

Lloyd’s algorithm can then be easily used to obtain such a uniform codebook, since there is a closed-

form expression for the optimum beamforming vectors for fixed quantization regions3. Alternatively,

one could use any other meaningful criterion, as in [1]–[5],for the definition of the uniform codebook.

Let H be a training set withS realizations of the channel vector and letNbf andNpc denote the

beamforming and power control codebook sizes. We now propose a suboptimal algorithm for joint

power control and beamforming codebook design as follows:

Algorithm 1:

1) Generate a uniform beamforming codebookU
(uni) of sizeNbf .

2) GenerateS values of the variableγ =
∣

∣hTu(h)
∣

∣

2
for h ∈ H andu(h) defined in (6).

3) InterpolateFΓ(γ), the CDF ofγ.

4) Solve problem (3) with the objective and the constraint functions defined in (4) and (5) with

multiple random start points.

The cubic Hermite interpolating function in step 3 is a monotonically increasing piecewise cubic

function with continuous derivatives at the extremes of theinterpolation intervals.

By using Algorithm 1 with different values ofSNR, we can derive the suboptimal curve of outage

probability vs.SNR. As it is shown in Section IV, this algorithm performs very close to the joint

2This, in part, justifies why the beamforming codebook designproblems in the literature with different performance criteria lead to

similar design criteria [2]–[4].

3If the channel vectors of a quantization region are placed into the columns of a matrixA, the optimum beamforming vector for

that region is the dominant eigenvector ofA
∗

A
T .
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optimization algorithm. This result is attractive numerically, since the joint optimization is much more

complex than merely optimizing the power codebook for a fixedchosen beamforming codebook.

IV. JOINTLY OPTIMAL POWER CONTROL AND BEAMFORMING

In this section, we formulate the general problem of joint optimization of the power control and

beamforming modules and present our numerical solution. The codebook sizes are assumed fixed in

this section. The optimization of the codebook sizes is deferred to Section V.

A. Problem Formulation

Consider the limited-feedback system withM transmit antennas in Fig. 6. The transmitter and

receiver share a power codebook

P =
{

P1, P2, · · · , PNpc

}

and a beamforming codebook

U =
{

u1,u2, · · · ,uNbf

}

⊂ UM ,

whereUM is the unit hypersphere inCM andNbf andNpc are the beamforming and power codebook

sizes, respectively.

The receiver has perfect CSIR and chooses the appropriate beamforming vectoru(h) ∈ U and

power levelP (h) ∈ P and sends the index of the corresponding(P (h),u(h)) pair back to the

transmitter. The transmitter multiplies the output of its scalar encoder by
√

P (h)u(h) and transmits

it through its antennas. Note that we needNbfNpc≤2B so that the transmitter can distinguish between

different (P (h),u(h)) pairs.

The problem is to optimize the beamforming codebookU, the power codebookP, the beamforming

function u(h) : CM → U, and the power control functionP (h) : CM → P, such that the outage

probability is minimized. Following the same line as problem (1), this problem can be formulated as

min
U,P,u(h),P (h)

Prob
[

P (h) ·
∣

∣hTu(h)
∣

∣

2
< c

]

(7)

s.t. E[P (h)] ≤ SNR,

wherec = 2R − 1 and the beamforming vectors are constrained by‖ui‖ = 1, 1≤i≤Nbf .

Our approach for solving (7) is based on the Lloyd’s algorithm applied to a Lagrangian formulation

of the constrained problem. The norm constraint on the beamforming vectors can be eliminated by

the change of variablesui=
vi

‖vi‖
for 1≤i≤Nbf , wherevi’s are unconstrained vectors. In order to
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incorporate the transmit power constraint into the objective we introduce a Lagrange multiplierλ

and rewrite the problem as

min
U,P,u(h),P (h)

Prob
[

P (h)
∣

∣hTu(h)
∣

∣

2
< c

]

+ λE[P (h)]. (8)

This is a natural approach for constrained quantization, e.g. see entropy/memory-constrained vector

quantization in [39], [40]. The validity of this approach depends on the convexity structure of the

optimization problem (7). For the Lagrangian approach to work, the minimized outage probability in

the objective function in (7) needs to be a convex function ofthe constraintSNR.

Unfortunately, the convexity structure for (7) appears to be difficult to establish. Nevertheless, it is

possible to prove that convexity does hold asB →∞. This is shown in the Appendix and it justifies

the asymptotic optimality of the proposed approach.

B. Numerical Solution

Let us define the outage probability and average power functions as

pout=Prob
[

P (h)
∣

∣hTu(h)
∣

∣

2
< c

]

, (9)

Pave =E[P (h)]. (10)

In order to apply the Lloyd’s algorithm to problem (8), we need to express the objective in the

form of anaverage distortion function:

pout + λPave = E [D(h)] , (11)

where

D(h) = 1c

(

P (h)
∣

∣hTu(h)
∣

∣

2
)

+ λP (h) (12)

and the indicator function1c(·) is defined as

1c(x) =







1 if x < c,

0 if x ≥ c.
(13)

The Lloyd’s algorithm starts with a random codebook and iteratively updates the quantization

regions and the quantization codebook. Assume that we have atotal of S realizations of the channel

vector and denote the set of realizations byH. The two steps of the Lloyd’s algorithm are described

in the following:
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1. Updating the regions:The beamforming and power codebooksU, P are fixed. For eachh ∈ H,

the beamforming vector and the power level are chosen such that the distortion function is minimized:

u(h) = argmax
u∈U

∣

∣hTu
∣

∣

2
, (14)

P (h)= argmin
P∈P

1c

(

P
∣

∣hTu(h)
∣

∣

2
)

+ λP , (15)

and based on this, the quantization regions are formed as

Hij = {h ∈ H|u(h) = ui andP (h) = Pj} , (16)

where1≤i ≤ Nbf , 1≤j≤Npc, andH is the set of channel vector realizations.

2. Updating the codebooks:In this step, the regions are fixed and the beamforming and power

codebooks are optimized such that the average distortion in(11) is minimized. We use the Monte

Carlo integration to approximate the average distortion:

pout + λPave≈
1

S

∑

h∈H

1c

(

P (h)
∣

∣hTu(h)
∣

∣

2
)

+ λP (h)

=
1

S

Nbf
∑

i=1

Npc
∑

j=1

∑

h∈Hij

1c

(

Pj

∣

∣hTui

∣

∣

2
)

+ λPj.

(17)

In order to minimize (17) in terms ofui’s and Pj ’s, we replace the indicator function with a

differentiable approximation:

1c(x) ≈ σk,c(x)
def
= σ(k(x− c)), (18)

where σ(x) = 1
1+exp(x)

is the sigmoid function. The parameterk determines the dropping slope

of σk,c(x) and controls the sharpness of the approximation, i.e. the higher thek the better the

approximation. Fig. 7 shows the effect ofk on the approximation.

Using (18), the objective function in (17) can be approximated by the following sequence of

functions ask →∞:

fk(U,P) =
1

S

Nbf
∑

i=1

Npc
∑

j=1

∑

h∈Hij

σk,c

(

Pj

∣

∣hTui

∣

∣

2
)

+ λPj. (19)

Let us define

(Uk,Pk) = argmin
U,P

fk(U,P). (20)

In order to minimize the approximate average distortion function in (17), we start with a smallk

and minimizefk(U,P) and use the resulting optimum(Uk,Pk) as a start point for a largerk. This
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is repeated until increasingk does not make a considerable change in the objective. The following

subroutine provides the details:

Subroutine 1:

Inputs: Initial codebooks(Uin,Pin), Quantization regionsHij ’s.

1) Choosek0, rk > 1, ǫ1 ≪ 1, rǫ < 1, ǫ2 ≪ 1, fold ≫ 1, andfnew = 0.

2) Setk = k0 and (Ustrt,Pstrt) = (Uin,Pin).

3) Apply a numerical unconstrained optimization method such as Newton’s method with BFGS

updates of Hessian matrix [41] with the start point(Ustrt,Pstrt) and the stopping criterion

‖∇fk‖ < ǫ1 to solve (20).

Setfnew ← fk(Uk,Pk).

4) If |fnew − fold|/fold > ǫ2, then

Set (Ustrt,Pstrt)← (Uk,Pk).

k ← rkk, ǫ1 ← rǫǫ1, fold ← fnew.

Go to step 3.

Otherwise, stop.

Output: (Uout,Pout) = (Uk,Pk).

For our numerical results, we usek0=20, rk=1.5, ǫ1=0.1, rǫ=0.6, andǫ2=0.005.

Subroutine 1 has the same flavor of the interior-point methodfor constrained optimization using

barrier functions. Although a large value ofk would give a more exact approximation of the distortion

function, it also increases the magnitude of the derivatives and can make the numerical convergence

more difficult. We therefore start with a smallk and increase it gradually until convergence. It should

also be noted that, for smallk, we do not need an exact minimization offk. Therefore, we start

with a loose stopping criterion and tighten it by reducingǫ1 ask increases. Loosely speaking, ask

increases to infinity, Subroutine 1 converges to a local minimum of (17). This concludes the second

step of the Lloyd’s algorithm, i.e. updating the codebooks.

The overall algorithm for minimizing the average distortion function (11) for fixedλ works as

follows. We start withT random starting points, run the Lloyd’s algorithm on each starting point,

and choose the best among them:

Subroutine 2:

September 14, 2011 DRAFT



13

• For t = 1, 2, · · · , T :

1) Generate a random start point(Ut,Pt).

2) Repeat until convergence:

a) Update the regions:

FindHij ’s for (Ut,Pt) using (14), (15), and (16).

b) Update the codebooks:

Run Subroutine 1 withHij ’s and (Uin,Pin) = (Ut,Pt) as input.

Set (Ut,Pt)← (Uout,Pout).

• Choose the codebook pair(Us,Ps), 1≤s≤T , with minimum average distortionpout+λPave given

by (17).

An example of a solution sequence generated by Subroutine 2 is presented in the numerical results

in Section VI.

The final step is to varyλ and run Subroutine 2 for eachλ to derive the optimal curve of outage

probability vs.SNR:

Algorithm 2:

1) Chooseλ0, rλ<1, andq≪1.

2) Setλ = λ0 andp⋆out = 1.

3) Repeat untilp⋆out < q:

a) Run Subroutine 2 (with multiple starting points) for current λ and record the optimum

point (P ⋆
ave, p

⋆
out).

b) Setλ← rλλ.

4) Take the convex hull of the(P ⋆
ave, p

⋆
out) points.

The performance of Algorithm 2 and its comparison with Algorithm 1 in Section III-C is studied

numerically in Section VI.

V. OPTIMAL POWER CONTROL AND BEAMFORMING CODEBOOK SIZES

Section IV studies the joint beamforming and power codebookdesign problem with fixed codebook

sizesNbf andNpc. In order to derive the optimal design given a fixed feedback link capacityB, we
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also need to find the optimal values ofNbf andNpc. In this section, we optimize the codebook sizes

numerically by searching over all integer pairs(Nbf , Npc) satisfyingNbfNpc≤2B, then choosing the

pair with the best performance.

First we describe some constraints that can be imposed on thesearch set
{

(Nbf , Npc)
∣

∣NbfNpc≤2B
}

.

One constraint to consider isNbf≥M . This is justified by noting that rank-one beamforming is not

appropriate when the beamforming codebook size is less thanthe number of transmit antennas, at

least for i.i.d. Rayleigh fading channels. To see this, consider a codebook withNbf<M beamforming

vectors, which spans anNbf -dimensional subspace in theM-dimensional complex space. Since the

channel direction is uniformly distributed in space, this codebook should have the same performance

as any rotated version of it. By appropriately rotating the codebook, we can get a codebook, the vectors

of which are all perpendicular to sayeM = [0, 0, · · · , 0, 1]T . This means that none of the vectors use

theM th antenna or equivalently, this antenna is permanently turned off. The joint codebook design

problem, therefore, reduces to a problem with smaller number of antennas. This loss of degrees of

freedom considerably reduces the diversity gain, which should be avoided.

The search set can be further restricted by noting that if(m1, n1)≤(m2, n2) element-wise, then

the optimal beamforming and power codebooks with sizesm2 andn2 would clearly outperform the

optimal codebooks with sizesm1 andn1.

Definiton 1: We say the integer pair(m2, n2) dominatesthe pair (m1, n1) if (m1, n1)≤(m2, n2)

element-wise.

Definiton 2: For any integer numberN , let

BN =
{

(m,n) ∈ N
2
∣

∣mn≤N
}

.

We define themaximal subsetAN as a subset ofBN such that any pair inBN is dominated by a

pair in AN and no pair inAN can be dominated by another pair inAN .

The following is a characterization of the maximal subset. The proof is omitted for brevity.

Proposition 1: For any integerN , the maximal subset ofBN is given by

AN =
{

(i, ⌊N/i⌋), (⌊N/i⌋ , i)
∣

∣

∣
1 ≤ i ≤ ⌊

√
N⌋

}

, (21)

where⌊·⌋ is the floor function.

Considering these constraints, we can now restrict the search of the optimal codebook sizes to the

following set:

C(B,M) = {(Nbf , Npc) ∈ A2B |Nbf ≥M} ∪
{(

0, 2B
)}

. (22)
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Here we have added the pair
(

0, 2B
)

to represent the case where all the feedback bits are used for

power control — there is no beamforming codebook for this case, i.e. the transmission is isotropic

or Qx|h = 1
M
IM (see Section III). As an example, forB = 5 andM = 4, we have

C(5, 4) =

{(32, 1), (16, 2), (10, 3), (8, 4), (6, 5), (5, 6), (4, 8), (0, 32)} .

The optimal codebook sizes, found by searching overC(B,M) for different values ofB andM ,

as well as the corresponding system performance results arepresented in the next section.

VI. NUMERICAL RESULTS

This section presents the numerical results for the joint beamforming and power control optimiza-

tion problem and the corresponding optimal codebook sizes.

A. Performance of Subroutine 2

We start by showing an example of the solution sequence generated by Subroutine 2 in Section

IV-B. Fig. 8 shows the performance of Subroutine 2 for a fixedλ and a single start point shown by

the filled circle on the(Pave, pout) plane. The solution sequence converges to a point on the optimal

curve, where the slope of the tangent line is equal to−λ.

B. Performance of the Joint Optimization Algorithms

We start with Algorithm 2 in Section IV-B. For our numerical results, we setλ0 = 2, rλ = 0.8,

q = 10−4, and use10 random starts for eachλ. It should be noted that, one needs to increase

the number of channel realizations,S, as the outage probability decreases. In order to ensure the

reliability of computed outage probabilities, for eachλ, we setS = 100
p⋆out

, wherep⋆out is the outage

probability for the previousλ. Note that the convexity structure of the problem implies that the

optimum curve (in linear scale) is a convex curve asymptotically. Therefore, we take the convex hull

of the points in the last step.

Algorithm 2 is a general algorithm in the sense that it can be applied to any arbitrary channel

statistics if we are provided with sufficient number of channel realizations. This algorithm, in spite

of its complexity, works well with modest values of outage probability, number of antennas, and

codebook sizes. For small values of outage probability, however, the number of channel realizations

(training size) must be large and this increases the cost of updating the quantization regions. Moreover,
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for updating the codebooks in Subroutine 1, we have to go through the summations in (19) to compute

the gradient of the objective and repeat this for different values ofk. Although the codebook design

process is done offline with no real-time implication in the actual system implementation, the design

process can be time-consuming when the training sizeS, and the codebook sizes,Nbf , Npc, are large.

For i.i.d. Rayleigh channels, however, we can use the less complex Algorithm 1 in Section III. The

main advantage of Algorithm 1 is that its speed is controlledby the number of interpolation points,

i.e. the complexity of the interpolating function, rather the training size. In our numerical results for

Algorithm 1, we use100 random starting points,100 interpolation points, and training sizeS in the

range of106-107.

Fig. 9 compares the performance of Algorithms 1 and 2 forM=3, Nbf=5, Npc=3, andR=1 (or

c=1). Algorithm 1 slightly outperforms Algorithm 2, possibly because of more start points used. The

figure also shows the performance of Algorithm 2 when it relies on the output of Algorithm 1 as

its starting point. This only slightly improves the performance of Algorithm 1, suggesting that the

output of Algorithm 1 is already close to a local optimum of the joint optimization problem. We

therefore rely on Algorithm 1 for deriving the optimal beamforming and power control codebook

sizes as explained in the next section.

C. Optimal Beamforming and Power Control Codebook Sizes

In order to find the optimal codebook sizes, we use Algorithm 1in Section III to compare the

performance of different codebook size pairs in (22). Fig. 10 shows the comparison results forM=4

antennas,B=5 bits, andR=1 bits/sec/Hz. The minimum outage probability recorded is10−6. For

this case, the optimum codebook size pair is(8, 4) for outage probabilitiespout<6×10−3 and (4, 8)

otherwise. The minimum of the outage curves associated withthese two pairs outperforms all other

pairs inC(5, 4) and therefore the performance of the other pairs is not included in the figure.

The figure also includes the performance of the(0, 32) pair (no-beamforming case), which shows

that we can gain a considerable gain by joint beamforming andpower control with optimal codebook

sizes, e.g. almost2.5dB for pout=10−3.

Fig. 11 shows the performance of joint beamforming and powercontrol with optimal codebook

sizes forM = 4 and different values ofB. The different line widths on each curve imply that different

codebook size pairs are optimal for different ranges of the outage probability. The figure shows that

the joint design provides a combined power and diversity gain which enables it to approach the

performance of the perfect CSIT case, as the number of feedback bits increases to infinity.
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Table I summarizes the optimal codebook sizes for the outageprobability range10−1 to 10−6 and

different values ofM andB. In each cell of the table, the first row is the optimal size pair (Nbf , Npc)

and the second row is the range of outage probabilities over which this size pair is optimal. It should

be noted that the optimal codebook sizes and the corresponding outage ranges in Table I, although

originally derived for the target rateR=1, hold for any rate. This is justified by considering the

original joint design problem (7), wherec=2R−1 andSNR is the power constraint. If we scaleP (h)

andSNR by c, we get the joint design problem withc=1 (or R=1). This means that we can apply

all our results, originally derived forR=1, for any rateR, as long as we horizontally shift the outage

vs. SNR curves by10 log10
(

2R−1
)

dB, and this would not change the outage probability ranges and

the corresponding codebook sizes.

The results in Table I also show that as the outage probability decreases, the optimal size of

the power codebook increases and the optimal size of the beamforming codebook decreases. This

is to be expected based on the discussion in Section II, according to which power control provides

diversity gain, which is the dominant factor for higherSNR values (small outage probabilities), while

beamforming provides power gain which is an important factor for lower SNR values (higher outage

probabilities). Joint beamforming and power control realizes both the power gain of the beamforming

and the diversity gain of the power control, enabling the limited-feedback system to approach the

optimal perfect-CSIT system performance as the feedback capacity increases.

VII. CONCLUSIONS

A limited-feedback system requires both beamforming and power control modules in order to

approach the performance of the perfect-CSIT system as the feedback link capacity increases. This

paper shows that the two modules should also be designed and optimized jointly. Based on a convexity

structure of the problem, we propose a joint design of the beamforming and power control codebooks

using Monte Carlo integration, Lloyd’s algorithm, and BFGSoptimization method. For i.i.d. Rayleigh

channels, we propose a less complex algorithm, where a uniform beamforming codebook is chosen

and fixed and only the power codebook is optimized. The two algorithms are shown to have a close

performance in terms of the outage probability vs. SNR.

We further investigate the optimal beamforming and power control codebook sizes, given a fixed

feedback link capacity constraint. The results provide theoptimal codebook sizes as a function of

target outage probability and independent of the target rate. The optimal performance curves show

that the joint beamforming and power control provides a combined power and diversity gain, which
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enables the system to approach the performance of a perfect-CSIT system as the feedback link

capacity increases.

APPENDIX

In this Appendix, we first present a sufficient condition under which a general constrained optimiza-

tion problem possesses certain convexity structure. Such astructure allows us to derive the solution

of the optimization problem by optimizing the corresponding Lagrange formulation parameterized

by a dual variable. Next, we show that the joint beamforming and power control codebook design

problem possesses this convexity structure in the asymptotic case ofB →∞.

Consider the following optimization problem parameterized by θ ∈ R:

min
x

f(x) (23)

s.t. g(x) ≤ θ,

wherex ∈ R
n, andf(x) andg(x) are real scalar functions. Letx⋆

θ denote the optimum of (23).

Definiton 3: The problem (23) is said to be aconvex-likeproblem, if the minimized objective

function f(x⋆
θ) is a strictly convex function of the constraint parameterθ.

Theorem 1:For aconvex-likeproblem (23), the inequality constraint is active at the optimum, i.e.

g(x⋆
θ) = θ. Moreover, for any value ofθ, there exists a real numberλ, such thatx⋆

θ is the optimum

point for the following problem:

min
x

f(x) + λg(x). (24)

Proof: The proof results from a direct application of Definition 3 and some convexity arguments

as in [42].

Theorem 1 implies that the solution set{(θ, f(x⋆
θ))| θ} is the same as{(g(x⋆

θ), f(x
⋆
θ))| θ} and

that the latter set can be found by solving (24) for the corresponding values ofλ. Assuming that

the problem (7) isconvex-like, this implies that we can fully derive the optimal curve of outage

probability (objective of (7)) vs.SNR by solving (8) for appropriate values ofλ.

In the following we prove that the joint beamforming and power control codebook design problem

is convex-likeasymptotically asB →∞. This guarantees that minimizing the Lagrangian formulation

(8), and therefore Algorithm 2 in Section IV, is asymptotically optimal. In order to avoid the

degenerate case of zero outage probability, an upper bound is imposed onSNR.
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Theorem 2:The joint codebook design problem (7) isconvex-likeasymptotically asB → ∞
provided that

SNR <

∫ ∞

0

c

γ
dFΓ(γ) (25)

andFΓ(γ) is an strictly increasing function. HereFΓ(γ) is the CDF of the effective channel gainγ.

Proof: The asymptotic case ofB → ∞ is equivalent to perfect CSIT and, according to the

discussion in Section III, for this caseγ = ‖h‖2, the optimal beamforming function is matched-

channel beamformingu(h)=h∗/‖h‖, and the optimal power control function is given by

P (γ) =







0 if γ < γ0
c
γ

if γ ≥ γ0
, (26)

whereγ0 is the transmission threshold.

The corresponding outage probability and average transmission power are given by

pout =Prob[P (γ) · γ < c] = FΓ(γ0), (27)

Pave=E[P (γ)] =

∫ ∞

γ0

c

γ
dFΓ(γ) ≤ SNR. (28)

In order to minimizepout, the transmission thresholdγ0 should satisfy (28) with equality and therefore

SNR=Pave. Note that the condition (25) guarantees thatγ0>0 andpout>0 and therefore the degenerate

case of zero outage is excluded from discussion.

In order to prove the convexity structure, we have to show that

∂2pout

∂SNR2 =
∂2pout

∂Pave
2 > 0.

DefinefΓ(γ) = ∂FΓ(γ)/∂γ > 0. From (28) we have

∂γ0
∂Pave

=
1

∂Pave/∂γ0
=
−γ0

cfΓ(γ0)
, (29)

By using (27), (28), (29), and the chain rule, we have

∂pout
∂Pave

=
∂FΓ(γ0)

∂γ0
· ∂γ0
∂Pave

= −γ0
c
.

Finally,
∂2pout
∂P 2

ave

= −1
c

∂γ0
∂Pave

=
γ0

c2fΓ(γ0)
> 0.
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TABLE I

THE OPTIMAL BEAMFORMING AND POWER CONTROL CODEBOOK SIZES(Nbf , Npc) FOR DIFFERENT VALUES OF FEEDBACK LINK

CAPACITY B AND NUMBER OF TRANSMIT ANTENNASM .

M = 2 M = 3 M = 4

B=1
(0, 2) (0, 2) (0, 2)

10−1−10−6 10−1−10−6 10−1−10−6

B=2

(2, 2)
(0, 4) (0, 4)

10−1−3.1×10−2

10−1−10−6 10−1−10−6

(0, 4)

3.1×10−2−10−6

B=3

(2, 4) (4, 2) (4, 2)

10−1−3.7×10−4 10−1−5.8×10−3 10−1−1.3×10−3

(0, 8) (0, 8) (0, 8)

3.7×10−4−10−6 5.8×10−3−10−6 1.3×10−3−10−6

B=4

(3, 5) (4, 4)
(4, 4)

10−1−1.9×10−2 10−1−1.2×10−3

10−1−10−6

(2, 8) (3, 5)

1.9×10−2−10−6 1.2×10−3−10−6

B=5

(4, 8)
(6, 5) (8, 4)

10−1−3.0×10−3

10−1−1.6×10−2 10−1−6.1×10−3

(3, 10)

3.0×10−3−7.3×10−5

(2, 16) (4, 8) (4, 8)

7.3×10−5−10−6 1.6×10−2−10−6 6.1×10−3−10−6

Se lect t ra nsmiss ion powe r leve la nd beamfo rming vecto rf romt he co rres pond ing codebooksbitsS cal ar E ncod er
Fig. 1. Limited-feedback MISO system; the capacity of the feedback link isB bits per fading block.

September 14, 2011 DRAFT



23

−10 −5 0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

No BF, no PC
BF only, Perfect CSIT
PC only, Perfect CSIT
Joint BF and PC, Perfect CSIT
BF only, B=3 bits
PC only, B=3 bits

Fig. 2. Outage probability vs. SNR forM = 4 transmit antennas and target rate ofR = 1 bit/sec/Hz. For high enough SNR values,

power control (PC) outperforms beamforming (BF).
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Fig. 3. Power control with limited feedback. The vectorx is the output of an arbitrary (fixed) beamforming module.
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Fig. 4. (a) Optimal power control (or quantization) function with Npc power levels; outage only occurs whenγ< c
PNpc

. (b) Optimal

power control with perfect CSIT: truncated channel inversion. The threshold valueγ0 is determined by the transmit power constraint.
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Fig. 5. Matched module pair(BF2,PC2) vs. unmatched pair(BF2,PC1) for M=4 antennas,B=2 bits, andR=1 bits/sec/Hz.
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Fig. 6. Beamforming and power control with limited feedback; NbfNpc ≤ 2B . The scalar encoder is constrained byE

[

|x|2
]

=1.

−2 −1 0 1 2 3 4
0  

0.5

1  

x

σk,c (x) = σ (k (x −c ) )
k = 1

k = 5

k = 10

1c( x )

Fig. 7. 1c(x) andσk,c(x) for c = 1 andk = 1, 5, 10.
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Fig. 8. The solution sequence of Subroutine 2 forλ = 0.3, M = 3, Nbf = 5, Npc = 3, R = 1, andS = 104 realizations of the

channelh ∼ CN (0, IM ). The filled circle shows the random start point on(Pave, pout) plane. Both axes are in linear scale. The

optimum curve(P ⋆
ave, p

⋆
out) is generated by Algorithm 2.
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Fig. 9. The performance of Algorithms 1 and 2 forM = 3 antennas,Nbf = 5 beamforming vectors,Npc = 3 power levels, and

R = 1 bits/sec/Hz.
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Fig. 10. The performance of different codebook size pairs for M=4 antennas,B=5 bits, andR=1 bits/sec/Hz.
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Fig. 11. Outage probability vs.SNR for joint beamforming and power control with optimal codebook sizes forM = 4 antennas.

The optimal codebook sizes differ for different outage probability ranges; this is shown by changing the line width on each curve.
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