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Abstract—This paper considers a Gaussian relay-interference
channel and introduces a generalized hash-and-forward relay
strategy, where the relay sends out a bin index of its quantized
observation, and the receivers first decode the relay quantization
codeword to a list, then use the list to help decode the respective
messages from the transmitters. The main advantage of the
proposed approach is in a scenario where the relay observes
a linear combination of the transmitted signals and broadcasts a
common relay message through a digital relay link of fixed rate
to help both receivers of the interference channel. We show that
when compared to the achievable rates with interference treated
as noise, generalized hash-and-forward can provide one bit of rate
improvement for every relay bit for both users at the same time
in an asymptotic regime where the background noises go down
to zero. The proposed approach is universal, in contrast to the
compress-and-forward or amplify-and-forward strategies which
are not asymptotically optimal for multiple users simultaneously,
if at all.

I. INTRODUCTION

Consider a classic Gaussian interference channel augmented
by an independent relay node as shown in Fig. 1, where the
relay observes a linear combination of the transmitted signals.
Suppose further that the relay output is sent to both receivers
via a common broadcast digital link of rate R0 bits per channel
use. In this paper, we are interested in designing universal relay
strategies that can efficiently help the direct communications
of both users in the interference channel at the same time.

This channel model is particularly interesting in the low
noise regime, where the noise powers Z1, Z2 and Zr tend
to zero. In this case, the relay observation Yr becomes a
deterministic function of both (X1, Y1) and (X2, Y2). To see
this, note that when the noises are zero, we have Y1 =
h11X1+h21X2, Y2 = h22X2+h12X1 and Yr = g1X1+g2X2,
in which case we can write

Yr =
(
g1 − h11

h21
g2

)
X1 +

g2
h21

Y1 (1a)

Yr =
(
g2 − h22

h12
g1

)
X2 +

g1
h12

Y2 (1b)

i.e., Yr = f1(X1, Y1), and Yr = f2(X2, Y2) for some
deterministic functions f1 and f2.

For a discrete memoryless relay channel where the relay
observation is a deterministic function of the direct channel
input and output, Cover and Kim [1] showed a fundamental
result that a digital relay link is cut-set-bound achieving,
i.e. every relay bit provides one bit of rate improvement for
the direct channel. Thus, for the Gaussian relay-interference
channel shown in Fig. 1, when the relay observation Yr is a
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Fig. 1. A two-user Gaussian interference channel with a common broadcast
digital relay link of rate R0 to both receivers.

deterministic function of X1 and Y1 (i.e. when the noises are
zero), one would expect that a digital link of rate R0 to be
able to improve the direct communication rates between X1

and Y1 by exactly R0, provided that X2 is treated as noise.
We now ask the following question: In the relay-interference

channel shown in Fig. 1, as the relay observation Yr is
asymptotically a deterministic function of both (X1, Y1) and
(X2, Y2) at the same time, can the same relay message
improve the asymptotic achievable rates of both users of the
interference channel by R0 at the same time? The main result
of this paper is that this is indeed the case. To establish
this rigorously, we use a generalized hash-and-forward (GHF)
strategy, and show that it is universal and asymptotically
optimal for both users of the interference channel at the same
time.

The proposed GHF strategy is motivated by the hash-
and-forward (HF) strategy originally designed for a discrete
memoryless deterministic relay channel in [1]. In fact, [1]
proposes an entire range of relay strategies to attain the cut-
set-bound achieving performance for the deterministic relay
channel: a compress-and-forward (CF) strategy in which the
relay uses Wyner-Ziv coding to quantize its observation, or
an alternative HF strategy in which the relay simply hashes
its observation and forwards a bin index to the receiver, or a
combination of both.

The CF strategy, however, is unsuited as a universal relaying
strategy, because in general, the two receivers in the interfer-
ence channel have different side information. Consequently,
different Wyner-Ziv codebooks need to be used for the dif-
ferent receivers in order to attain the optimal cut-set-bound
achieving performance.
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Fig. 2. A single-relay channel with digital relay link of rate R0

The HF strategy, on the other hand, is universal, as it
involves the direct binning of the relay observation. How-
ever, the HF strategy as proposed in [1] applies only to the
deterministic channel. In [2], an extended hash-and-forward
(EHF) strategy is proposed for the general nondeterministic
case. This paper generalizes HF in a different direction, and
proposes a decoding strategy called GHF. For the single-user
relay channel, neither EHF nor GHF provides a higher rate
than CF. For the relay-interference channel, however, GHF has
the attractive property of being asymptotically optimal for two
users at the same time in the low noise limit—something that is
not possible with CF or amplify-and-forward (AF) strategies.

The relay-interference channel has been studied extensively
in the literature [3]–[6], where interference-forwarding tech-
niques involving binning and forwarding part of the interfer-
ence to the receiver have emerged as a central theme. This pa-
per shows that in addition to decoding part of the interference
then forwarding, or compressing part of the interference then
forwarding, it is sometimes advantageous to hash then forward.
The latter strategy has the advantage of being universal with
respect to more than one receiver.

II. GENERALIZED HASH-AND-FORWARD

Consider a three-terminal single-relay channel comprised of
a source, a relay, and a destination node, where the relay can
communicate to the destination using a digital link of rate R0,
as shown in Fig. 2. Denote the source signal as X , and the
relay and destination observations as Yr and Y , respectively.
When the relay cannot decode the source codeword, a sensible
relay strategy is to assist the destination by describing its
observation at rate R0 to the destination. A central question in
the design of relay strategy is how such quantization should
be performed?

In the classic CF scheme [7, Theorem 6], the relay observa-
tion is quantized using a Wyner-Ziv coding technique. In this
case, the relay quantizes Yr using an auxiliary random variable
U then sends a bin index at rate R0 to the destination, so that
using side information Y , the destination can uniquely recover
U then proceed to decode X with the help of U .

This paper proposes a different strategy in which we choose
an auxiliary random variable U and provide its bin index to
the destination. But unlike in CF, even with the use of side
information Y , the destination cannot determine U uniquely,
but only to a list L. Nevertheless, the destination can still
search through all source codewords by testing the joint
typicality of each source codeword with the list L, then decode
a unique X .

For the single-relay channel, the above list decoding strategy
gives no higher rate than CF. In other words, the optimal list
size in the single-relay case is one. For the relay-interference
channel, however, the above strategy opens up the possibility
of using a single universal relay encoding function to serve two
source-destination pairs at the same time. This universality is
our primary motivation for introducing list decoding.

The proposed strategy is called generalized HF, because
it generalizes the HF strategy of [1] which is cut-set-bound
achieving for for a class of deterministic channels where
Yr = f(X,Y ). In this case, we can set U = Yr. The HF
strategy is then equivalent to the joint decoding of X and Yr,
because a successful decoding of X automatically produces
Yr when Yr = f(X,Y ).

GHF generalizes HF in that we allow the conditional
distribution of U to be of a general form, i.e. as p(u|yr).
This provides considerable flexibility in the choice of U . In
particular, for a relay-interference channel in the low noise
limit, a single U can be asymptotically optimal for two source-
destination pairs at the same time, i.e., every relay bit is worth
one bit to two users simultaneously.

Theorem 1 (Achievable rate of GHF): For a memoryless
relay channel defined by p(y, yr|x) and with a digital link of
rate R0 per channel use between the relay and the destination,
the rate R is achievable provided that

R < I(X ;Y ) +R0 − I(U ;Yr|X,Y ), (2)

for (X,Y, Yr, U) ∼ p(x)p(y, yr|x)p(u|yr) such that

R0 ≤ I(U ;Yr|Y ). (3)

Remark 1: CF restricts the auxiliary random variable U to
satisfy

R0 ≥ I(U ;Yr|Y ). (4)

This ensures that U is uniquely decoded at the destination.
GHF works in the opposite regime, where the destination can
only decode U to a list. In this case, the overall achievable
rate also takes a penalty. In fact, only by choosing U such that
I(U ;Yr|Y ) = R0, GHF reduces to CF rate, as shown below:

R < I(X ;Y ) + I(U ;Yr|Y ) − I(U ;Yr|X,Y )
= I(X ;Y ) + h(U |Y ) − h(U |X,Y )
= I(X ;Y, U) (5)

where the second equality is due to the Markov chair U−Yr−
(X,Y ). For any other U satisfying (3), the overall achievable
rate would be lower. In fact, as it is clear from (2), the overall
achievable rate R decreases as I(U ;Yr|X,Y ) increases, or as
U more accurately represents Yr.

However, the point of Theorem 1 is not that it provides
a higher overall achievable rate (which it does not). Rather,
Theorem 1 provides a computable achievable rate for all U ’s
satisfying (3). This flexibility of being able to choose any of
these U ’s is an advantage that will be apparent when the relay
assists multiple destinations simultaneously.



Remark 2: For the class of deterministic relay channels
considered in [1], where the relay observation Yr = f(X,Y )
with f being deterministic, we have I(U ;Yr|X,Y ) = 0. Thus,
the rate I(X ;Y ) +R0 is achievable using GHF whenever the
relay quantization scheme satisfies (3). In particular, the GHF
strategy reduces to HF if U = Yr, in which case

R < min{I(X ;Y ) +R0, I(X ;Y ) + I(U ;Yr|Y )}
= min{I(X ;Y ) +R0, I(X ;Y ) + h(Yr|Y )}
= min{I(X ;Y ) +R0, I(X ;Y ) + I(X ;Yr|Y )}
= min{I(X ;Y ) +R0, I(X ;Y, Yr)} (6)

where the second last equality is due to Yr = f(X,Y ). This
recovers the result of [1].

Remark 3: The rate expression for GHF in Theorem 1 is
identical to that of EHF in [2]. However, the decoding strategy
of GHF differs from that of EHF in that list decoding is
performed on U rather thanX . The rate expression in Theorem
1 can also be derived using a joint decoding strategy on (U,X)
as shown in [8], [9]. All of these strategies share the common
feature that unlike CF, U is not decoded exactly first.

Proof of Theorem 1: The source communicates to the
destination at rate nR over B consecutive blocks, each of n
symbols. For the last block, no message is transmitted. As
B → ∞, nR(B − 1)/B tends to nR.

Codebook Generation: Randomly and independently gen-
erate 2nR codewords Xn(w) of length n indexed by w ∈
{1, . . . , 2nR} according to

∏n
i=1 p(xi). Fix a p(u|yr) such

that I(U ;Yr|Y ) ≥ R0. Randomly and independently generate
2n(I(Yr;U)+ε) codewords Un(r), r ∈ {1, . . . , 2n(I(Yr;U)+ε)}
of length n according to

∏n
i=1 p(ui). We shall also need

a random partition of the Un codewords into bins. Ran-
domly partition the set {1, 2, . . . , 2n(I(Yr:U)+ε)} into 2nR0 bins
Bl, l ∈ {1, . . . , 2nR0} each of size 2n(I(Yr:U)−R0+ε).

Encoding: In block i, the source sends Xn(wi). Having
observed Y n

r (i− 1) in block i− 1, the relay finds a codeword
Un(ti), ti ∈ {1, . . . , 2n(I(Yr;U)+ε)}, such that (Un(ti), Y n

r (i−
1)) is ε-strongly typical (see [10, Section 13.6] for definition
of strong typicality). The relay sends k, the bin index of ti over
the digital channel to the destination in block i, (i.e. ti ∈ Bk).

Decoding: In block i, the destination decodes the source
message of block i− 1 in following steps:

1) Upon receiving k, the destination forms an index list L
of possible Un-codewords by identifying indices r ∈ Bk

such that (Un(r), Y n(i− 1) are ε-strongly typical.
2) Destination finds a source codeword that is consis-

tent with its own observation Y n and L by find-
ing ŵ ∈ {1, . . . , 2nR} such that the three-tuple
(Xn(ŵ), Un(m), Y n(i − 1)) is ε-strongly typical for
some m ∈ L.

Analysis of Probability of Error: Because of symmetry, we
can assume that Xn(1) is sent over all blocks. Since decoding
events in different blocks are independent, we can also focus
on block i to analyze probability of error, and drop the time
indices. The error events are as follows:

E1: (Xn(1), Y n
r , Y

n) is not ε-strongly typical.
E2: �t ∈ {1, . . . , 2n(I(U ;Yr)+ε} such that (Un(t), Y n

r ) is ε-
strongly typical.

E3: �r ∈ Bk such that (Un(r), Y n) is ε-strongly typical,
i.e., L is empty.

E4: �s ∈ L such that
(
Xn(1), Y n, Un(s)

) ∈ A∗
ε
n.

E5: ∃m,w′ : m ∈ L, w′ ∈ {1, . . . , 2R}, w′ 	= 1, such that
(Xn(w′), Un(m), Y n) ∈ A∗

ε
n,

where A∗
ε
n denotes the set of ε-strongly typical three-tuples.

For n sufficiently large, P (E1) ≤ ε for arbitrarily small
ε > 0 [10, Lemma 10.6.1]. Following the argument of [10,
Section 10.6], P (E2 ∩ Ec

1) ≤ ε for sufficiently large n,
since the number of Un codewords is more than 2nI(U ;Yr).
Similarly, P (E3 ∩ Ec

2 ∩ Ec
1) < ε for sufficiently large n,

provided that

I(U ;Yr) −R0 ≥ I(U ;Y ) (7)

or equivalently, since I(U ;Yr) − I(U ;Y ) = I(U ;Yr|Y ) by
the Markov chain U − Yr − Y ,

R0 ≤ I(U ;Yr|Y ). (8)

Assuming that E1 does not occur, by the Markov Lemma
[10, Lemma 15.8.1], since (X,Y ) − Yr − U forms a Markov
chain and (Xn, Y n, Y n

r ) ∈ A∗
ε
n, P (E4 ∩ ⋂3

j=1 Ej) < ε for
sufficiently large n.

To bound the probability of E5, note that for Xn(m) drawn
i.i.d. ∼ ∏

p(xi) and independent of ε-strongly typical pair
(Un(m), Y n), the probability that (Xn(m), Un(m), Y n) ∈
A∗

ε
n is less than 2−n(I(X;Y,U)−ε) for sufficiently large n and

arbitrarily ε > 0 [10, Lemma 10.6.2]. Let A be the event that
(Xn(w′), Un(m), Y n) ∈ A∗

ε
n for some m ∈ L and w′ ∈

{1, . . . , 2nR}, w′ 	= 1, assuming that Ei does not occur for
i = 1, · · · , 4. We have

P

⎛
⎝ 5⋂

j=1

Ej

⎞
⎠ = P (A)

=
∑

l

P
(
A
∣∣∣‖L‖ = l

)
P
(
‖L‖ = l

)

≤
∑

l

P
(‖L‖ = l

) ∑
m∈L,w′

2−n(I(X;Y,U)−ε)

=
∑

l

P
(‖L‖ = l

) · l · 2nR · 2−n(I(X;Y,U)−ε)

= 2nR2−n(I(X;Y,U)−ε)E‖L‖, (9)

where ‖L‖ represents the cardinality of L.
Now, the method employed in [7, Lemma 3] can be used

to find an upper bound on E‖L‖. Recall that L is the list of
Un(r) codewords with r ∈ Bk and (Un, Y ) ε-strongly typical.
Let

ψ(r|Y n) =
{

1 (Un(r), Y n) is ε-strongly typical,
0 otherwise.

Then, ‖L‖ can be expressed as:

‖L‖ =
∑
r∈Bk

ψ(r|Y n). (10)



We have

E‖L‖ = Eψ(t|Y n) +
∑

r �=t,r∈Bk

Eψ(r|Y n)

= P
(
ψ(t|Y n) = 1

)
+

∑
r �=t,r∈Bk

P
(
ψ(r|Y n) = 1

)
(∗)
≤ 1 + (2‖Bk‖ − 1)2−n(I(U ;Y )−γ)

≤ 1 + 2n(I(U ;Yr)−R0−I(U ;Y )+ε+γ)

= 1 + 2n(I(U ;Yr|Y )−R0+ε+γ), (11)

where (∗) follows from [10, Lemma 10.6.2] for sufficiently
large n and arbitrarily small γ > 0.

Combining (9) and (11), along with (8), gives us the
following criteria for the probability of error to asymptotically
approach zero for large n:

R < I(X ;Y, U) (12)

R < I(X ;Y, U)− (I(U ;Yr|Y ) −R0) (13)

R0 ≤ I(U ;Yr|Y ). (14)

Note that (13) and (14) imply (12), so (12) is redundant.
Further, (13) can be simplified as follows

R < I(X ;Y ) + I(X ;U |Y ) +R0 − I(U ;Yr|Y )
(a)
= I(X ;Y ) + I(X ;U |Y ) +R0 − h(U |Y ) + h(U |Yr)
(b)
= I(X ;Y ) +R0 −

(
h(U |X,Y ) − h(U |Yr, X, Y )

)
= I(X ;Y ) +R0 − I(U ;Yr|X,Y ),

where (a) and (b) follow from the Markov chain U − Yr −
(X,Y ). This proves (2).

III. UNIVERSAL RELAYING FOR THE GAUSSIAN

RELAY-INTERFERENCE CHANNEL

The real advantage of GHF lies in a relay-interference
channel, where a single relay simultaneously assists more than
one receivers. The CF strategy requires the auxiliary random
variable U to be decoded uniquely at the receiver at the first
step. Because the two receivers in the interference channel
may have different side information for Wyner-Ziv decoding,
the optimal U for different receivers are in general different. In
contrast, GHF provides the possibility of quantizing the relay
observation with a single U , which, although not optimal for
either receiver at any finite noise level, becomes optimal for
both receivers asymptotically as noises go down to zero (i.e.
as the channel becomes deterministic).

Consider a Gaussian interference channel as shown in Fig. 1

Y1 = h11X1 + h21X2 + Z1 (15a)

Y2 = h12X1 + h22X2 + Z2, (15b)

where the relay observes

Yr = g1X1 + g2X2 + Zr (16)

and has a common broadcast digital relay link of rate R0 to
both Y1 and Y2, where the noises Z1, Z2, Zr are i.i.d. Gaussian

random variables with zero mean and variance N , and where
the powers of X1 and X2 are constrained to be less than P1

and P2 respectively.
To avoid the case where the relay observation degenerates

into one of Y1 and Y2, we further assume

g1
g2

	= h11

h21
,

g1
g2

	= h12

h22
. (17)

We compare the rate improvement due to the relay against
the baseline rates where independent Gaussian codebooks with
X1 ∼ N (0, P1), X2 ∼ N (0, P2) are used at the transmitters
and where interference is always treated as noise:

R1 = I(X1;Y1) =
1
2

log
(

1 +
h2

11P1

h2
21P2 +N

)
(18a)

R2 = I(X2;Y2) =
1
2

log
(

1 +
h2

11P1

h2
21P2 +N

)
(18b)

The main result of this section is that using a common digital
relay link of rate R0, GHF can provide R0 bits of rate
improvement to both users at the same time asymptotically as
N → 0, while hij , gi and Pi are kept fixed. This is in contrast
to CF or AF strategies which do not provide the maximal R0

bits of rate improvement.

A. Rate Improvement using GHF

We evaluate the achievable rate using GHF by assuming
a joint Gaussian auxiliary variable U = Yr + η with η ∼
N (0, Q). By Theorem 1, the following rates are achievable
using GHF

R1 = I(X1;Y1) +R0 − I(U ;Yr|X1, Y1); (19a)

R2 = I(X2;Y2) +R0 − I(U ;Yr|X2, Y2). (19b)

subject to the condition that p(u|yr) must satisfy

R0 ≤ I(U ;Yr|Y1); (20a)

R0 ≤ I(U ;Yr|Y2). (20b)

First, we evaluate

I(U ;Yr|X1, Y1)
= h(U |X1, Y1) − h(U |Yr)

=
1
2

log
(
2πe(σ2

Ũ
− σŨ Ỹ1

(σ2
Ỹ1

)−1σỸ1Ũ )
)
− 1

2
log(2πeQ)

=
1
2

log

(
1 +

(
(g2

2 + h2
21)P2 +N

)
N

(h2
21P2 +N)Q

)
(21)

where Ũ = g2X2 + Zr and Ỹ1 = h21X2 + Z1. Similarly,

I(U ;Yr|X2, Y2) =
1
2

log

(
1 +

(
(g2

1 + h2
12)P1 +N

)
N

(h2
12P1 +N)Q

)
(22)

We also need to evaluate

I(U ;Yr|Y1) = h(U |Y1) − h(U |Yr)

=
1
2

log
(
2πe(σ2

U − σUY1 (σ
2
Y1

)−1σY1U )
)− 1

2
log(2πeQ)

=
1
2

log
(

1 +
(g1h21 − g2h11)2P1P2 + c1N

(h2
11P1 + h2

21P2 +N)Q

)
(23)



where c1 = (g2
1 + h2

11)P1 + (g2
2 + h2

21)P2 +N . Similarly,

I(U ;Yr|Y2) =
1
2

log
(

1 +
(g1h22 − g2h12)2P1P2 + c2N

(h2
12P1 + h2

22P2 +N)Q

)
(24)

where c2 = (g2
1 + h2

12)P1 + (g2
2 + h2

22)P2 +N .
For any fixed R0, we can always find Q that satisfies both

constraints in (20). In addition, as long as (17) is satisfied, we
can find values for Q that satisfy (20) and do not go to zero as
N → 0. In fact, the largest GHF rate is obtained by choosing
Q to satisfy the more stringent of (20) with equality. In this
case, by (23) and (24), the limiting value of Q as N → 0 is

Q =
1

22R0 − 1
min{a, b}, (25)

where

a =
(g1h21 − g2h11)2P1P2

(h2
11P1 + h2

21P2)
, (26a)

b =
(g1h22 − g2h12)2P1P2

(h2
12P1 + h2

22P2)
. (26b)

This value for Q is a constant bounded away from zero.
Substituting thisQ into (21) and (22), we see that asN → 0,

both I(U ;Yr|X1, Y1) and I(U ;Yr|X2, Y2) vanish, implying
that GHF achieves exactly R0 bits in rate improvement for
both users at the same time.

B. Rate Improvement using CF

For a CF strategy to help both receivers in an interference
channel at the same time, we need a single U that is uniquely
decodable at both receivers. In this case, the achievable rate
using CF is

R1 = I(X1;Y1, U) (27a)

R2 = I(X2;Y2, U) (27b)

subject to the condition that p(u|yr) must satisfy

R0 ≥ I(U ;Yr|Y1); (28a)

R0 ≥ I(U ;Yr|Y2). (28b)

The key observation here is that for a general relay-
interference channel, I(U ;Yr|Y1) 	= I(U ;Yr|Y2). Thus, we
must set U to be such that

R0 = max{I(U ;Yr|Y1), I(U ;Yr|Y2)}. (29)

Without loss of generality, assume that I(U ;Yr|Y1) <
I(U ;Yr|Y2). Then for R2, CF is asymptotically optimal. This
is because R0 = I(U ;Yr|Y2), so CF and GHF are equivalent
as shown in (5), i.e. both provide R0 bits of rate improvement
as N → 0. However, this is not so for R1. Let

RΔ = |I(U ;Yr|Y1) − I(U ;Yr|Y2)|. (30)

Then, the CF rate for R1 can be computed as

R1 = I(X1;Y1, U)
= I(X1;Y1) + I(U ;Yr|Y1) − I(U ;Yr|X1, Y1)
= I(X1;Y1) +R0 −RΔ − I(U ;Yr|X1, Y1) (31)

where the second equality follows from (5). Assume again
a Gaussian Wyner-Ziv quantizer U = Yr + η where η ∼
N (0, Q). When (17) is satisfied, we can find Q that satisfies
(28) and is bounded away from zero, as can be seen from (24).
Thus, the I(U ;Yr|X1, Y1) term in (31) vanishes as N → 0, as
computed in (21). Therefore asymptotically, CF achieves a rate
improvement of R0 − RΔ. This is not the maximal possible
rate improvement unless RΔ = 0.

We can in fact quantify the asymptotic gap by noting that
the asymptotic value of Q can be computed as

Q =
1

22R0 − 1
max{a, b}, (32)

where a and b are as defined in (26). Again, assuming
I(U ;Yr|Y1) < I(U ;Yr|Y2), then a < b. It follows that

RΔ =
1
2

log

(
1 +

b+ a
1

22R0−1
b+ a

)
(33)

asymptotically as N → 0.
To summarize, because CF requires the auxiliary random

variable to be decodable uniquely at both receivers, the relay
quantizer has to be designed for the receiver with the worse
side information. This introduces inefficiency at the other
receiver. In contrast, GHF provides flexibility in the choice
of auxiliary random variable. It allows the relay quantizer to
be designed for the receiver with the better side information.
This quantizer also happens to be asymptotically optimal for
the other receiver, thus giving us the universality of GHF.

C. Rate Improvement using AF

Finally, consider the AF relay strategy. For fair comparison,
we assume that the relay link is now an orthogonal analog
broadcast channel from the relay to the two receivers with
noises Z ′

1 ∼ N (0, 1) and Z ′
2 ∼ N (0, 1). The power constraint

at the relay P is such that

R0 =
1
2

log (1 + P ) . (34)

In AF, the relay simply amplifies its observation Yr by a factor
λ and sends it through the analog broadcast channel. To satisfy
the power constraint at the relay, λ is set as

λ =

√
P

EY 2
r

=

√
22R0 − 1

g2
1P1 + g2

2P2 +N
. (35)

The achievable rate for the first user is then given by

R1 = I(X1;Y1, λYr + Z ′
1)

= 1
2 log

∣∣∣∣ h2
11P1 + h2

21P2 +N λ(h11g1P1 + h21g2P2)
λ(h11g1P1 + h21g2P2) λ2(g2

1P1 + g2
2P2 +N) + 1

∣∣∣∣∣∣∣∣ h2
21P2 +N λh21g2P2

λh21g2P2 λ2(g2
2P2 +N) + 1

∣∣∣∣
where X2 is treated as noise. The rate improvement is now
given by R1 − I(X1;Y1). A similar expression can be found
for R2. It can be shown numerically that the rate improvement
is always strictly less than R0, even as N → 0. This is because
AF does not digitize the relay link, hence is always affected
by the noise in it.
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Fig. 3. Sum rate improvement of GHF, CF, and AF as a function of SNR
for R0 = 1, P = 10, h11 = h22 = 1, h12 = h21 = 0.5, g1 = 0.5, and
various values for g2. The GHF and CF curves are identical for g2 = 0.5.

IV. NUMERICAL EXAMPLE

Fig. 3 shows a numerical example of the sum rate improve-
ments using GHF, CF, and AF, as a function of the signal-
to-noise ratio (SNR), defined as 10 log

(
h2

11P/N
)
, for a relay-

interference channel with R0 = 1, P = 10, h11 = h22 = 1,
h12 = h21 = 0.5, g1 = 0.5, and with various values for g2.

When the channel is symmetric, i.e., g2 = g1 = 0.5, GHF
and CF are identical. Both are asymptotically optimal, i.e.,
the rate for each user is asymptotically improved by R0. As
asymmetry is introduced, e.g., for g2 = 0.1 and g2 = 0, GHF
remains asymptotically optimal, while CF fails to be so.

When g2 = 0.1, we have Yr = 0.5X1 + 0.1X2 +Zr. Thus,
Yr has a higher correlation with Y1 = X1 + 0.5X2 + Z1 as
compared to Y2 = X2 + 0.5X1 + Z2. In this case, it is easier
for the relay to describe its observation to Y1 than to Y2 using
Wyner-Ziv coding. But, a CF strategy designed for both Y1

and Y2 cannot take advantage of the better correlation at Y1.
It has to accommodate the user with worse side information,
as otherwise, the relay quantization codeword would not be
decodable at Y2. In fact, a CF strategy designed for both Y1

and Y2 largely helps Y2. The rate of the first user is improved
asymptotically by about 0.2 bits, while the rate of the second
user is improved asymptotically by 1 bit. In contrast, by taking
advantage of list decoding which does not require unique
decoding of the relay quantization codeword, GHF is able to
asymptotically improve the rates of both users by 1 bit even
when the channel is asymmetric.

An interesting scenario is the case of g2 = 0, where the relay
observes X1 only. Since the second user treats X1 as noise,
the ideal relay strategy for the second user is a CF strategy
that describes the interference. The first user, however, would
likely benefit more from a decode-and-forward (DF) strategy,
since the relay observesX1 with no interference. Conventional

CF and DF strategies clearly cannot be implemented simul-
taneously by the same relay. The quantize-then-hash strategy
of GHF resolves this tension. Asymptotically, it appears like
a DF strategy to the first user, while simultaneously appearing
like a CF strategy to the second user. As Fig. 3 shows, GHF
asymptotically improves the rates of both users by 1 bit.

Fig. 3 also shows the rate improvement due to AF. Asymp-
totically at high SNR, AF is inferior to both CF and GHF.

V. CONCLUDING REMARKS

This paper proposes a relay strategy called generalized hash-
and-forward, which combines the features of CF and HF
relay strategies. Just as in CF, the relay in GHF quantizes
its observation then sends out a bin index. But unlike in CF,
the destination in GHF does not decode the relay quantization
codeword uniquely first, but only to a list. A joint decoding
strategy is then used to recover the source codeword.

A key advantage of GHF is that it provides flexibility in the
design of the relay quantizer. This makes GHF particularly
suited for the relay-interference channel considered in this
paper where a single relay needs to assist two users simul-
taneously. It is shown that in an asymptotic low-noise regime,
when compared to the achievable rates with interference
treated as noise, GHF can provides one bit of rate improvement
for every relay bit for both users at the same time.

As a final remark, we note that the assumption that inter-
ference is always treated as noise is crucial for the above
result to hold. Treating interference as noise is, however,
not always optimal. This is particularly so when the noise
powers approach zero, in which case introducing common
message decoding in a Han-Kobayashi strategy [11] can be
quite beneficial. Nevertheless, the result of this paper is still
useful for the vast number of practical situations, where private
messages only are transmitted.
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