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Introduction

• Consider a communication situation involving mutliple transmitters and
receivers:
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– What is the value of cooperation?
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Motivation: Multiuser DSL Environment

• DSL environment is interference-limited.
FEXT

NEXT
upstream
downstream

user 1

user 2

user n
central
office

– Explore the benefit of cooperation.
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Gaussian Vector Channel

• Capacity: C = max I(X;Y).

Zn

Xn Y nHW ∈ 2nC Ŵ (Y n)

• Optimum Spectrum:
maximize

1
2
log

|HKxxHT +Kzz|
|Kzz|

subject to tr(Kxx) ≤ P,
Kxx ≥ 0.

Wei Yu 3



Gaussian Vector Broadcast Channel

• Capacity Region: {(R1, · · · , RK) : Pr(Wk 	= Ŵk)→ 0, k = 1, · · ·K}.

Zn

Xn
Y n1

Y nK

H

W1 ∈ 2nR1

WK ∈ 2nRK

Ŵ1(Y n1 )

ŴK(Y nK)

• Capacity is known only in special cases.
– This talk focuses on sum capacity: C = max{R1 + · · ·+RK}.
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Broadcast Channel: Prior Work

• Introduced by Cover (’72)
– Superposition coding: Cover (’72).
– Degraded broadcast channel: Bergman (’74), Gallager (’74)
– Coding using binning: Marton (’79), El Gamal, van der Meulen (’81)
– Sum and product channels: El Gamal (’80)
– Gaussian vector channel, 2× 2 case: Caire, Shamai (’00)

• General capacity region remains unknown.
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Degraded Broadcast Channel

X1 ∼ N (0, P1)

X2 ∼ N (0, P2)

Z1 ∼ N (0, σ2
1) Z2 ∼ N (0, σ2

2 − σ2
1)

Y1 Y2X

• Superposition and successive decoding achieve capacity (Cover ’72)

R1 = I(X1;Y1|X2) =
1
2
log

(
1 +

P1

σ2
1

)

R2 = I(X2;Y2) =
1
2
log

(
1 +

P2

P1 + σ2
2

)
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Gaussian Vector Broadcast Channel

H1

H2

X1 ∼ N (0,K1)

X2 ∼ N (0,K2)

X

Z1

Z2

Y1

Y2

• Superposition coding gives:

R1 = I(X1;Y1) =
1
2
log

|H1K1H
T
1 +H1K2H

T
1 +Kz1z1|

|H1K2HT1 +Kz1z1|

R2 = I(X2;Y2) =
1
2
log

|H2K2H
T
2 +H2K1H

T
2 +Kz2z2|

|H2K1HT2 +Kz2z2|
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Channel with Transmitter Side Information

Gaussian Channel ... with Transmitter Side Information

X X

PP

Y Y

Z ∼ N (0, N) Z ∼ N (0, N)S ∼ N (0, Q)

C =
1
2
log

(
1 +

P

N

)
C =?

Wei Yu 8



Writing on Dirty Paper

• A surprising result due to Costa (’83):

W ∈ 2nR Xn(W,Sn)

Sn ∼ N (0, Q) Zn ∼ N (0, N)

Y n Ŵ (Y n)

C =
1
2
log

(
1 +

P

N

)

• This inspired Caire and Shamai’s work on 2x2 broadcast channel (’01).

Wei Yu 9



Channel with Side Information

W ∈ 2nR Xn(W,Sn) Y n Ŵ (Y n)

Sn

p(y|x, s)

• Gel’fand and Pinsker (’80), Heegard and El Gamal (’83):

C = max
p(u,x|s)

{I(U ;Y )− I(U ;S)},

• Key: What is the appropriate auxiliary random variable U?
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Random Binning and Joint Typicality

XU

S

Q

P + α2Q

• Randomly choose un(i), i ∈ 2nI(U ;Y ). Binning using B : 2nI → 2nC.
• Encode: Given sn and message W , find i such that (un(i), sn) is jointly

typical, and B(i) =W . Send: xn = un(i)− αsn.
• Decode: Find (yn, un(̂i)) jointly typical. Recover Ŵ = B(̂i).
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Costa’s Choice for U

W ∈ 2nR Xn(W,Sn)

Sn ∼ N (0, Q) Zn ∼ N (0, N)

Y n Ŵ (Y n)

• For i.i.d. S and Z:
– Let U = X + αS, where α = P/(P +N).
– Let X be independent of S.
– This gives the optimal joint distribution on (S,X,U, Y, Z).

C = I(U ;Y )− I(U ;S) = 1
2
log

(
1 +

P

N

)
.
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Colored Gaussian Channel with Side Information

W ∈ 2nR Xn(W,Sn) Y n Ŵ (Y n)

Sn ∼ N (0, Kss) Z
n ∼ N (0, Kzz)

• For colored S and Z:
– Let U = X + FS, where F = Kxx(Kxx +Kzz)−1.
– Let X be independent of S.

C = I(U ;Y )− I(U ;S) = 1
2
log

|Kxx +Kzz|
|Kzz|

Wei Yu 13



Wiener Filtering

• The optimal non-causal estimate of X given X + Z is X̂ = F (X + Z),
where

F = Kxx(Kxx +Kzz)−1.

• The optimal auxiliary random variable for channel with non-causal
transmitter side information is U = X + FS, where

F = Kxx(Kxx +Kzz)−1.

• Curiously, the two filters are the same.
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Writing on Colored Paper

Gaussian Channel ... with Transmitter Side Information

Z ∼ N (0, Kzz) Z ∼ N (0, Kzz)S ∼ N (0, Kss)

XX YY

C =
1
2
log

|Kxx +Kzz|
|Kzz| C =

1
2
log

|Kxx +Kzz|
|Kzz|

• Capacities are the same if S is known non-causally at the transmitter.

– Several other proofs have been found by Cohen and Lapidoth (’01),
and Zamir, Shamai and Erez (’01) under different assumptions
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New Achievable Region

  W1 ∈ 2nR1

W2 ∈ 2nR2

H1

H2

Xn1 (W1, X
n
2 )

Xn2 (W2)

Xn

Zn1

Zn2

Y n1

Y n2

Ŵ1(Y
n
1 )

Ŵ2(Y
n
2 )

R1 = I(X1;Y1|X2) =
1
2
log

|H1K1H
T
1 +Kz1z1|

|Kz1z1|

R2 = I(X2;Y2) =
1
2
log

|H2K2H
T
2 +H2K1H

T
2 +Kz2z2|

|H2K1HT2 +Kz2z2|
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Converse

• Broadcast capacity does not depend on noise correlation: Sato (’78).

x1x1x1

x2x2x2

y1 y1y1

y2 y2y2

z1

z2

z′1z′1

z′2 z′2= ≤

︸ ︷︷ ︸
if

{
p(z1) = p(z′1)
p(z2) = p(z′2)

, not necessarily p(z1, z2) = p(z′1, z
′
2).

• Thus, sum-capacity C ≤ min
Knn

max
Kxx

I(X;Y).
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Strategy for Proving Achievability

1. Find the worst-case noise correlation z ∼ N (0, Kzz).

2. Design an optimal receiver for the vector channel with worst-case noise:

y = Hx+ z

3. Precode x so that receiver coordination is not necessary.

• Tools:
– Convex optimization
– Generalized Decision-Feedback Equalization (GDFE)
Cioffi, Forney (’95), Varanasi, Guess (’97)
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Least Favorable Noise

• Fix Gaussian input Kxx:

minimize
1
2
log

|HKxxHT +Kzz|
|Kzz|

subject to Kzz =
[
Kz1z1 �
� Kz2z2

]

Kzz ≥ 0

• Minimizing a convex function over convex constraints.

• Optimality condition: K−1
zz − (HKxxHT +Kzz)−1 =

[
Ψ1 0
0 Ψ2

]
.
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Generalized Decision Feedback Equalizer

• Key idea: MMSE estimation is capacity-lossless

x xy

ez

x̂
H HT (HTH +K−1

xx )
−1

• Channel can be triangularized: (HTH +K−1
xx )

−1 = G−1∆−1G−T .

y

z

H HT
[

x1

x2

] [
x̂1

x̂2

]
∆−1G−T Decision

I −G
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GDFE with Transmit Filter

u x ∼ N (0, Kxx)

z ∼ N (0, QΛQT )

y
F H 1√

Λ
Q H̃T

H̃ = 1√
Λ
QHF

(H̃H̃T + I)−1
û

︸ ︷︷ ︸ ︸ ︷︷ ︸
MMSE estimation

• Set z ∼ N (0, Kzz) to be the least favorable noise.
• Fix x ∼ N (0, Kxx), and u ∼ N (0, I). Choose a transmit filter F .
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GDFE Precoder

∆−1G−T Decision

I −G

u

z̃

H̃ H̃T
[

û1

û2

]
︸ ︷︷ ︸
feedforward filter

• Decision-feedback may be moved to the transmitter by precoding.
• Least Favorable Noise ⇐⇒ Feedforward/whitening filter is diagonal!

C = min
Knn

I(X;Y) (i.e. with least favorable noise) is achievable.

Wei Yu 22



Gaussian Broadcast Channel Sum Capacity

• Achievability: C ≥ max
Kxx

min
Kzz

I(X;Y).

• Converse (Sato): C ≤ min
Kzz

max
Kxx

I(X;Y).

• (Diggavi, Cover ’98): min
Kzz

max
Kxx

I(X;Y) = max
Kxx

min
Kzz

I(X;Y).

Theorem 1. Gaussian vector broadcast channel sum capacity is:

C = max
Kxx

min
Kzz

1
2
log

|HKxxHT +Kzz|
|Kzz|
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Gaussian Mutual Information Game

X ∼ N (0, Kxx) Y

Z ∼ N (0,Kzz)

H

Strategy Objective

Signal Player {Kxx : trace(Kxx) ≤ P} max I(X;Y)

Fictitious
Noise Player

{
Kzz : Kzz =

[
Kz1z1 �
� Kz2z2

]
≥ 0

}
min I(X;Y)

Nash equilibrium exists.
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Saddle-Point is the Broadcast Capacity

• The optimum K∗
xx is a water-

filling covariance against K∗
zz.

• The optimum K∗
zz is a least-

favorable noise for K∗
xx.

Kxx

Kzz

C(Kxx, Kzz)

(K∗
xx, K

∗
zz)

Broadcast Channel Sum Capacity = Nash Equilibrium

Wei Yu 25



The Value of Cooperation

x1x1x1

x2x2x2

y1y1y1

y2y2y2

z1z1z1

z2z2z2

max
Kxx

I(X;X+ Z) max
Kxx

I(X;X+ Z) min
Kzz

max
Kxx

I(X;X+ Z)

s.t. trace(Kxx) ≤ P s.t.
Kxx =

[
K1 0
0 K2

]

trace(Ki) ≤ Pi,
s.t.
Kzz =

[
Kz1z1 �
� Kz2z2

]

trace(Kxx) ≤ P
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Application: Vector Transmission in DSL

−

−

X1

X2

X3

Y1

Y2

Y3

Z

• If interference is known in advance, it can be pre-subtracted:
– Send X ′

1 = X1 −X2 −X3.

• Problem: energy enhancement ||X ′
1||2 = ||X1||2 + ||X2||2 + ||X3||2.
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Reducing Energy Enhancement: Tomlinson Precoder

X Y
U Û

−
S Z

3M
2

M
2

−M
2

−3M
2

Mod-M Mod-M
Equivalent
Points

• Key idea: Use modulo operation to reduce energy enhancement
– X is uniformly distributed in [−M2 ,M2 ].

• Capacity loss due to shaping: 1.53dB. (Erez, Shamai, Zamir ’00)
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Shaping Loss

Optimal

Tomlinson
Precoding

X Y

Z ∼ N (0, σ2)

• Gaussian input distribution is optimum in a Gaussian channel.
– But, Tomlinson-Harashima precoding produces uniform distribution.

• Need to use shaping techniques to recover shaping loss.
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Shaping: Modulo a Sphere

• High dimensional Gaussian = Uniform distribution in a sphere.
– Uniform distribution can be produced by modulo operation

• Shaping can be done by expanding the constellation modulo a sphere.
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Precoding with Spherical Shape

Xn

Sn

Y n

Zn

• Precoding the entire Sn sequence.
– Xn is uniformly distributed in the sphere = Gaussian distribution.
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Precoding via Vector Quantization

− − −
VQVQ

Xn
Un Ûn

Sn

Y n

Zn

• Use the Voronoi region of a vector quantizer as the sphere.
– Quantization is a generalization of Modulo-M operation.
– Special case of lattice precoding by Zamir, Shamai, Erez (’01).

• At high SNR, shaping gain is completely recovered.
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Voronoi Shaping using Nested Trellis Codes

• Inner trellis error correcting code + Outer trellis shaping code.

• Use the Voronoi region of shaping code to approximate the sphere.
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Trellis Precoding

Gc

H−T
s

ConstellationConstellation
MappingMapping

Viterbi Alg.
for Cs

−

t(D)

kc

rs

sk zk

ns

nc

q − kc

Trellis shaping (Forney, Eyuboglu ’92): 1dB shaping gain with 4-state code.
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Summary

• Sum capacity of a Gaussian vector broadcast channel is:

C = max
Kxx

min
Kzz

1
2
log

|HKxxHT +Kzz|
|Kzz|

– “Dirty-paper” coding is applicable to non-degraded channels.
– Generalized decision-feedback equalizer is an optimal receiver.

• Practical precoding methods are proposed:
– Tomlinson precoder gets within 1.53dB of capacity.
– Trellis shaping codes can be used to approach capacity.
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