Capacity and Coding for Multi-Antenna Broadcast Channels

Wei Yu

Electrical Engineering Department Stanford University

February 20, 2002

Introduction

• Consider a communication situation involving mutliple transmitters and receivers:

- What is the value of cooperation?

Motivation: Multiuser DSL Environment

• DSL environment is interference-limited.

- Explore the benefit of cooperation.

Gaussian Vector Channel

• Capacity: $C = \max I(\mathbf{X}; \mathbf{Y}).$

• Optimum Spectrum:

maximize
$$\frac{1}{2}\log \frac{|HK_{xx}H^T + K_{zz}|}{|K_{zz}|}$$
subject to
$$\operatorname{tr}(K_{xx}) \leq P,$$
$$K_{xx} \geq 0.$$

Gaussian Vector Broadcast Channel

• Capacity Region: $\{(R_1, \dots, R_K) : \Pr(W_k \neq \hat{W}_k) \rightarrow 0, k = 1, \dots K\}.$

- Capacity is known only in special cases.
 - This talk focuses on sum capacity: $C = \max\{R_1 + \cdots + R_K\}$.

Broadcast Channel: Prior Work

- Introduced by Cover ('72)
 - Superposition coding: Cover ('72).
 - Degraded broadcast channel: Bergman ('74), Gallager ('74)
 - Coding using binning: Marton ('79), El Gamal, van der Meulen ('81)
 - Sum and product channels: El Gamal ('80)
 - Gaussian vector channel, 2×2 case: Caire, Shamai ('00)
- General capacity region remains unknown.

Degraded Broadcast Channel

• Superposition and successive decoding achieve capacity (Cover '72)

$$R_{1} = I(\mathbf{X}_{1}; \mathbf{Y}_{1} | \mathbf{X}_{2}) = \frac{1}{2} \log \left(1 + \frac{P_{1}}{\sigma_{1}^{2}} \right)$$
$$R_{2} = I(\mathbf{X}_{2}; \mathbf{Y}_{2}) = \frac{1}{2} \log \left(1 + \frac{P_{2}}{P_{1} + \sigma_{2}^{2}} \right)$$

Gaussian Vector Broadcast Channel

• Superposition coding gives:

$$R_{1} = I(\mathbf{X}_{1}; \mathbf{Y}_{1}) = \frac{1}{2} \log \frac{|H_{1}K_{1}H_{1}^{T} + H_{1}K_{2}H_{1}^{T} + K_{z_{1}z_{1}}|}{|H_{1}K_{2}H_{1}^{T} + K_{z_{1}z_{1}}|}$$
$$R_{2} = I(\mathbf{X}_{2}; \mathbf{Y}_{2}) = \frac{1}{2} \log \frac{|H_{2}K_{2}H_{2}^{T} + H_{2}K_{1}H_{2}^{T} + K_{z_{2}z_{2}}|}{|H_{2}K_{1}H_{2}^{T} + K_{z_{2}z_{2}}|}$$

Channel with Transmitter Side Information

Writing on Dirty Paper

• A surprising result due to Costa ('83):

• This inspired Caire and Shamai's work on 2x2 broadcast channel ('01).

Channel with Side Information

$$W \in 2^{nR} \longrightarrow X^n(W, S^n) \longrightarrow p(y|x, s) \longrightarrow Y^n \longrightarrow \hat{W}(Y^n)$$

• Gel'fand and Pinsker ('80), Heegard and El Gamal ('83):

$$C = \max_{p(u,x|s)} \{ I(U;Y) - I(U;S) \},\$$

• Key: What is the appropriate auxiliary random variable U?

Random Binning and Joint Typicality

- Randomly choose $u^n(i)$, $i \in 2^{nI(U;Y)}$. Binning using $B: 2^{nI} \to 2^{nC}$.
- Encode: Given s^n and message W, find i such that $(u^n(i), s^n)$ is jointly typical, and B(i) = W. Send: $x^n = u^n(i) - \alpha s^n$. • Decode: Find $(y^n, u^n(\hat{i}))$ jointly typical. Recover $\hat{W} = B(\hat{i})$.

Costa's Choice for U

- For i.i.d. S and Z:
 - Let $U = X + \alpha S$, where $\alpha = P/(P + N)$.
 - Let X be independent of S.
 - This gives the optimal joint distribution on (S, X, U, Y, Z).

$$C = I(U;Y) - I(U;S) = \frac{1}{2}\log\left(1 + \frac{P}{N}\right)$$

٠

Colored Gaussian Channel with Side Information

$$W \in 2^{nR} \longrightarrow X^n(W, S^n) \longrightarrow \hat{W}(Y^n)$$

• For colored S and Z:

- Let
$$U = X + FS$$
, where $F = K_{xx}(K_{xx} + K_{zz})^{-1}$.

- Let X be independent of S.

$$C = I(U;Y) - I(U;S) = \frac{1}{2}\log\frac{|K_{xx} + K_{zz}|}{|K_{zz}|}$$

Wiener Filtering

• The optimal *non-causal* estimate of X given X + Z is $\hat{X} = F(X + Z)$, where

$$F = K_{xx}(K_{xx} + K_{zz})^{-1}.$$

• The optimal auxiliary random variable for channel with *non-causal* transmitter side information is U = X + FS, where

$$F = K_{xx}(K_{xx} + K_{zz})^{-1}.$$

• Curiously, the two filters are the same.

Writing on Colored Paper

- Capacities are the same if S is known *non-causally* at the transmitter.
 - Several other proofs have been found by Cohen and Lapidoth ('01), and Zamir, Shamai and Erez ('01) under different assumptions

New Achievable Region

$$R_{1} = I(\mathbf{X}_{1}; \mathbf{Y}_{1} | \mathbf{X}_{2}) = \frac{1}{2} \log \frac{|H_{1}K_{1}H_{1}^{T} + K_{z_{1}z_{1}}|}{|K_{z_{1}z_{1}}|}$$
$$R_{2} = I(\mathbf{X}_{2}; \mathbf{Y}_{2}) = \frac{1}{2} \log \frac{|H_{2}K_{2}H_{2}^{T} + H_{2}K_{1}H_{2}^{T} + K_{z_{2}z_{2}}|}{|H_{2}K_{1}H_{2}^{T} + K_{z_{2}z_{2}}|}$$

Converse

• Broadcast capacity does not depend on noise correlation: Sato ('78).

• Thus, sum-capacity
$$C \leq \min_{K_{nn}} \max_{K_{xx}} I(\mathbf{X}; \mathbf{Y}).$$

Strategy for Proving Achievability

- 1. Find the worst-case noise correlation $\mathbf{z} \sim \mathcal{N}(0, K_{zz})$.
- 2. Design an optimal receiver for the vector channel with worst-case noise:

$$\mathbf{y} = H\mathbf{x} + \mathbf{z}$$

- 3. Precode \mathbf{x} so that receiver coordination is not necessary.
- Tools:
 - Convex optimization
 - Generalized Decision-Feedback Equalization (GDFE) Cioffi, Forney ('95), Varanasi, Guess ('97)

Least Favorable Noise

• Fix Gaussian input K_{xx} :

minimize $\frac{1}{2}\log \frac{|HK_{xx}H^T + K_{zz}|}{|K_{zz}|}$ subject to $K_{zz} = \begin{bmatrix} K_{z_1z_1} & \star \\ \star & K_{z_2z_2} \end{bmatrix}$ $K_{zz} \ge 0$

• Minimizing a **convex** function over **convex** constraints.

• Optimality condition:
$$K_{zz}^{-1} - (HK_{xx}H^T + K_{zz})^{-1} = \begin{bmatrix} \Psi_1 & 0 \\ 0 & \Psi_2 \end{bmatrix}$$
.

Generalized Decision Feedback Equalizer

• Key idea: MMSE estimation is capacity-lossless

• Channel can be triangularized: $(H^TH + K_{xx}^{-1})^{-1} = G^{-1}\Delta^{-1}G^{-T}$.

GDFE with Transmit Filter

- Set $\mathbf{z} \sim \mathcal{N}(0, K_{zz})$ to be the least favorable noise.
- Fix $\mathbf{x} \sim \mathcal{N}(0, K_{xx})$, and $\mathbf{u} \sim \mathcal{N}(0, I)$. Choose a transmit filter F.

GDFE Precoder

- Decision-feedback may be moved to the transmitter by precoding.
- Least Favorable Noise \iff Feedforward/whitening filter is diagonal!

$$C = \min_{K_{nn}} I(\mathbf{X}; \mathbf{Y})$$
 (i.e. with least favorable noise) is achievable.

Gaussian Broadcast Channel Sum Capacity

- Achievability: $C \ge \max_{K_{xx}} \min_{K_{zz}} I(\mathbf{X}; \mathbf{Y}).$
- Converse (Sato): $C \leq \min_{K_{zz}} \max_{K_{xx}} I(\mathbf{X}; \mathbf{Y}).$
- (Diggavi, Cover '98): $\min_{K_{zz}} \max_{K_{xx}} I(\mathbf{X}; \mathbf{Y}) = \max_{K_{xx}} \min_{K_{zz}} I(\mathbf{X}; \mathbf{Y}).$

Theorem 1. Gaussian vector broadcast channel sum capacity is:

$$C = \max_{K_{xx}} \min_{K_{zz}} \frac{1}{2} \log \frac{|HK_{xx}H^T + K_{zz}|}{|K_{zz}|}$$

Gaussian Mutual Information Game

Fictitious	\downarrow_{K} \cdot_{K} _	$K_{z_1z_1}$	*		$I(\mathbf{V}, \mathbf{V})$
Noise Player	$\Lambda_{zz}:\Lambda_{zz}=$	*	$K_{z_0 z_0}$	$ \geq 0$	$ = \min I(\mathbf{A}; \mathbf{I}) $
5	C I		~2~2	י ו ע	

Nash equilibrium exists.

Saddle-Point is the Broadcast Capacity

Broadcast Channel Sum Capacity = Nash Equilibrium

The Value of Cooperation

Application: Vector Transmission in DSL

- If interference is known in advance, it can be pre-subtracted:
 - Send $X'_1 = X_1 X_2 X_3$.
- Problem: energy enhancement $||X'_1||^2 = ||X_1||^2 + ||X_2||^2 + ||X_3||^2$.

Reducing Energy Enhancement: Tomlinson Precoder

- Key idea: Use modulo operation to reduce energy enhancement
 - X is uniformly distributed in $\left[-\frac{M}{2}, \frac{M}{2}\right]$.
- Capacity loss due to shaping: 1.53dB. (Erez, Shamai, Zamir '00)

Shaping Loss

- Gaussian input distribution is optimum in a Gaussian channel.
 - But, Tomlinson-Harashima precoding produces uniform distribution.
- Need to use shaping techniques to recover shaping loss.

Shaping: Modulo a Sphere

- High dimensional Gaussian = Uniform distribution in a sphere.
 - Uniform distribution can be produced by modulo operation

• Shaping can be done by expanding the constellation modulo a sphere.

Precoding with Spherical Shape

- Precoding the entire S^n sequence.
 - X^n is uniformly distributed in the sphere = Gaussian distribution.

Precoding via Vector Quantization

- Use the Voronoi region of a vector quantizer as the sphere.
 - Quantization is a generalization of Modulo-M operation.
 - Special case of lattice precoding by Zamir, Shamai, Erez ('01).
- At high SNR, shaping gain is completely recovered.

Voronoi Shaping using Nested Trellis Codes

• Inner trellis error correcting code + Outer trellis shaping code.

• Use the Voronoi region of shaping code to approximate the sphere.

Trellis Precoding

Trellis shaping (Forney, Eyuboglu '92): 1dB shaping gain with 4-state code.

Summary

• Sum capacity of a Gaussian vector broadcast channel is:

$$C = \max_{K_{xx}} \min_{K_{zz}} \frac{1}{2} \log \frac{|HK_{xx}H^T + K_{zz}|}{|K_{zz}|}$$

- "Dirty-paper" coding is applicable to non-degraded channels.
- Generalized decision-feedback equalizer is an optimal receiver.
- Practical precoding methods are proposed:
 - Tomlinson precoder gets within 1.53dB of capacity.
 - Trellis shaping codes can be used to approach capacity.