
2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12–14, 2003

A Dual Decomposition Approach to the Sum Power
Gaussian Vector Multiple Access Channel Sum Capacity Problem

Wei Yu
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto
10 King’s College Road, Toronto, Ontario M5S 3G4, Canada

Email: weiyu@comm.utoronto.ca

Abstract — The Gaussian vector multiple access

channel with a sum-power constraint across all users,

rather than the usual individual power constraint on

each user, has recently been shown to be the dual of

a Gaussian vector broadcast channel [1] [2]. Further,

a numerical algorithm for the sum capacity under the

sum power constraint has been proposed in [3]. This

paper proposes a different algorithm for this prob-

lem based on a dual decomposition approach. The

proposed algorithm works in the Lagrangian dual do-

main; it is based on a modified iterative water-filling

algorithm for the multiple access channel; and it is

guaranteed to converge to the sum capacity in all

cases. This spectrum optimization problem for the

sum-power multiple access channel is also applicable

to the optimal power allocation problem for an OFDM

system with correlated noise.

I. Introduction

Consider a Gaussian multiple access channel with vector in-
puts and a vector output:

Y =

K∑
k=1

HkXk + Z, (1)

where Xk’s are n× 1 vectors, Hk are m×n channel matrices,
Y is a m× 1 vector, and Z is a m× 1 additive Gaussian ran-
dom vector. The inputs Xk are assumed to be independent.
In a conventional multiple-access channel, a separate input
constraint applies to each input Xk, i.e.

EXkX
T
k ≤ Pk, k = 1, · · · ,K. (2)

This paper, however, deals with a different situation. While
retaining the assumption that Xk are independent, this pa-
per considers a Gaussian multiple access channel with a sum-
power constraint applied to all Xk’s at the same time:

K∑
k=1

EXkX
T
k ≤ P. (3)

The objective is to find an efficient numerical algorithm to
evaluate the sum capacity of the multiple access channel under
the sum power constraint.

The capacity region of a multiple access channel under a
fixed input distribution p(x1) · · · p(xK) is a well-known pen-
tagon region. For example, for a two-user multiple access

channel, the capacity region can be expressed as follows:

R1 ≤ I(X1;Y|X2)

R2 ≤ I(X2;Y|X1) (4)

R1 +R2 ≤ I(X1,X2;Y).

Thus, the sum capacity of the multiple access channel is the
solution to the following mutual information maximization
problem:

C = max
co{p(x1)···p(xK)}

I(X1 · · ·XK;Y), (5)

where the maximization is over the convex hull of all input
distributions that satisfy the input constraint. This maxi-
mization problem is not easy to solve in general, because the
input distribution must be a convex combination of indepen-
dent distributions, and the constraint that the inputs must be
independent is not a convex constraint.

However, for Gaussian vector multiple access channels, the
mutual information maximization problem can be cast as a
convex optimization problem. This is because for Gaussian
channels, Gaussian inputs are optimal and the optimization
over the input distributions becomes an optimization over the
covariance matrices of Xk. More precisely, let Sk = EXkX

T
k

be the input covariance matrix for the user k. The mutual
information maximization problem under separate power con-
straints (2) becomes:

maximize
1

2
log

|∑K

k=1
HkSkH

T
k + Sz|

|Sz| (6)

subject to tr(Sk) ≤ Pk, k = 1, · · · , K,
Sk ≥ 0, k = 1, · · · , K.

Similarly, the maximization problem under the sum power
constraint (3) becomes:

maximize
1

2
log

|∑K

k=1
HkSkH

T
k + Sz|

|Sz| (7)

subject to

K∑
k=1

tr(Sk) ≤ P

Sk ≥ 0, k = 1, · · · , K.

where “tr” denotes the matrix trace operation, and Sz is the
covariance matrix of Z. Because log |·| is a concave function in
the set of positive semi-definite matrices, and constraints are
linear, both problems belong to the class of convex optimiza-
tion problems for which numerical solutions are in principle
easy to obtain.



In fact, with a separate power constraint on each Xk, the
sum capacity problem (6) has an efficient solution called “it-
erative water-filling”. The key observation is that the maxi-
mization problem can be solved by updating one Sk at a time
while keeping all others fixed. Because the constraints are
separable, each update can be done independently, and the
iterative process converges to the sum capacity. However, this
iterative procedure is not directly applicable to the sum-power
problem (3) in which a coupled power constraint applies to all
Xk’s at the same time. The main idea of this paper is that
via a technique called dual decomposition, the sum-power con-
straint may be de-coupled.

The numerical solution for the sum-power constrained mul-
tiple access channel was first considered in [3], in which an al-
gorithm based on iterative water-filling was proposed for the
sum-power problem. However, [3] did not fully establish the
convergence of the proposed algorithm. This paper is moti-
vated by the results in [3], but it uses a dual decomposition
approach in network optimization, most recently used in the
work of Xiao and Boyd [4]. The proposed algorithm is based
on a modified iterative water-filling. It is efficient, and it con-
verges in all cases.

The rest of the paper is organized as follows. The motiva-
tion for solving the sum-power sum-capacity multiple access
channel is presented in section 2. Section 3 proposes a nu-
merical solution to the sum-capacity problem based on a dual
decomposition method, and proves its convergence. Section
4 presents simulation results. Section 5 contains concluding
remarks.

II. Motivation

The sum-power multiple access channel capacity problem
arises in two different applications. The primary motivation
for studying the sum-power constraint is that a sum-power
constrained Gaussian vector multiple access channel has the
same sum capacity as a dual Gaussian vector broadcast chan-
nel [1] [2]. The broadcast channel problem is of great interest
as it models a downlink transmission environment in a cellu-
lar wireless system, and the sum-capacity problem has been
unsolved until very recently. The sum-power constrained mul-
tiple access channel also appears in a spectrum optimization
problem for OFDM systems with correlated noise. These two
motivating examples are presented in more details in the fol-
lowing sections.

A. Gaussian Vector Broadcast Channel Sum Capacity

Consider a Gaussian vector broadcast channel:

Y = HX+ Z, (8)

where X is a vector-valued transmit signal, the vector Y =
[Y1 · · ·YK]T represents receive signals for users 1 · · ·K, and
Z = [Z1 · · ·ZK]T is the additive i.i.d. Gaussian noise with unit
variance. Independent information is to be transmitted from
X to each component of Y.

The Gaussian vector broadcast channel is not degraded,
and its capacity region is still an unsolved problem. Recently,
several authors have tackled the problem using a precoding ap-
proach and successfully solved the Gaussian vector broadcast
channel sum-capacity problem [5] [6] [2] [1]. In [6], the author
showed that the optimal precoder is a decision-feedback equal-
izer, and the sum capacity is equal to the following minimax

mutual information:

max
Sx

min
Sz

I(X;Y), (9)

where the maximization is over the input constraint, and the
minimization is over all possible noise covariance matrices Sz

such that the diagonal terms are fixed, and the off-diagonal
terms are allowed to vary. In other words, the minimization is
over all joint distributions Z1, · · ·ZK, while keeping the mar-
ginal distributions fixed. The above optimization problem is
a convex minimax problem, so it is in principle tractable.

Using a completely different technique, the authors of [2]
and [1] showed that the sum capacity of a Gaussian vector
broadcast channel is equal to the sum capacity of a dual
Gaussian vector multiple access channel with X′ = Y as the
transmitters, H ′ = HT as the channel matrix, Y′ = X as the
receiver, and Z′ as the unit variance additive white Gaussian
noise:

Y′ = H ′X′ + Z′. (10)

In addition, the dual vector multiple access channel has a sum
power constraint across all transmitters rather than individ-
ual power constraints. Thus, solving for the sum capacity of a
sum-power constrained Gaussian vector multiple access chan-
nel is equivalent to solving for the Gaussian vector broadcast
channel sum capacity, thus motivating the problem proposed
in this paper.

In fact, it can be shown that solving for the sum-power
multiple access channel capacity (10) is equivalent to solving
the minimax problem (9) [2]. However, such an equivalence
can be established only if the input constraint on the orig-
inal broadcast channel is a linear constraint. For Gaussian
broadcast channels with arbitrary convex input constraints,
the minimax expression appears to be a more general result.
(See [7] for a discussion.)

B. OFDM with Correlated Noise

Consider a Gaussian channel with inter-symbol interference
(ISI):

yi =

ν∑
l=0

αlxi−l + ni, (11)

where (α0, · · · , αν) is the set of ISI coefficients, and ni is the
additive Gaussian noise. One way to deal with ISI is to con-
sider a block transmission of N symbols, insert ν guard sym-
bols between the blocks, and use orthogonal frequency division
multiplex (OFDM) modulation. In this case, the equivalent
vector channel


yN

...
y1


 = HC



xN

...
x1


+



nN

...
n1


 (12)

becomes circulant, and a pair of FFT and IFFT matrices can
be used to diagonalize the channel. With an IFFT matrix as
the modulator, and an FFT matrix as the demodulator, the
vector channel is transformed into a set of parallel indepen-
dent scalar channels, onto which independent signaling may
be performed.

The traditional model for OFDM as described above works
well when the noise vector is uncorrelated. This is because an
uncorrelated noise vector remains uncorrelated after an FFT
operation, and the resulting scalar channels will then be in-
dependent. In fact, as the block size goes to infinity, OFDM



with optimal power and bit allocation achieves the capacity of
an ISI channel. However, OFDM modulation is not optimal
if the noise vector is correlated. In this case, the resulting
parallel channel are not independent, and independent signal-
ing is not optimal. However, in many practical applications,
OFDM modulation (and thus independent signaling) is used
regardless of whether noise correlation exists. It is not dif-
ficult to see that in these circumstances the capacity of the
OFDM channel is the solution to the following maximization
problem:

maximize
1

2
log

|DSxD
T + Sz|

|Sz| (13)

subject to Sx is diagonal

tr(Sx) ≤ P
Sx ≥ 0,

where D is the diagonal channel matrix after the FFT opera-
tion, Sz is the noise covariance matrix which is not necessarily
diagonal. The optimization is over all diagonal transmit ma-
trices Sx subject to a power constraint. The above problem
is equivalent to the sum-power multiple access channel sum-
capacity problem with each of the diagonal entries of Sx as a
separate user. This provides another motivation for the pro-
posed problem.

III. Dual Decomposition

Consider the optimization problem (7):

maximize
1

2
log

|∑K

k=1
HkSkH

T
k + Sz|

|Sz| (14)

subject to

K∑
k=1

tr(Sk) ≤ P

Sk ≥ 0, k = 1, · · · ,K,

where the optimization variables are semi-definite matrices
{Sk}. The optimization variable can also be thought of as
S = diag{S1, · · · , SK} with the constraint tr(S) ≤ P . With-
out the constraint that S must be diagonal, the problem is
equivalent to a conventional Gaussian vector channel for which
the well-known water-filling solution applies. But water-filling
does not necessarily give a diagonal transmit covariance ma-
trix. On the other hand, if S is kept as diagonal, but individual
power constraints are applied to each of Sk rather than the
sum power constraint, a numerical algorithm called “iterative
water-filling” can be used to find the sum capacity efficiently
[8]. As mentioned before, the key idea of iterative water-filling
is that each Sk may be optimized individually while keeping
all other Sk’s fixed. The fixed point of the iterative algorithm
is the global optimum. The primary difficulty in solving (14)
is that while the transmit signals must be independent, the
constraint on their covariance matrices {S1, · · ·SK} is cou-
pled. Recently, Jindal, Jafar, Vishwanath and Goldsmith [3]
proposed an algorithm to solve the sum power problem based
on an iterative water-filling approach. However, [3] did not
establish the convergence of the algorithm in full generality.

The central idea in dual decomposition is to introduce a
dual variable to decouple the coupled constraint. This ap-
proach was most recently used by Xiao and Boyd [4] in their
study of joint optimization of routing and resource allocation
in large-scale networks. This paper is inspired by [4]. The

dual decomposition method works as follows: first, introduce
new variables {P1 · · ·PK}, and re-write the optimization prob-
lem into the following form in which only a single constraint
is coupled:

maximize
1

2
log

|∑K

k=1
HkSkH

T
k + Sz|

|Sz| (15)

subject to tr(Sk) ≤ Pk k = 1, · · · , K,
Sk ≥ 0, k = 1, · · · ,K,
K∑

k=1

Pk ≤ P.

Form the Lagrangian of the optimization problem with respect
to the coupled constraint

∑K

k=1
Pk ≤ P only:

L(S1, · · · , SK , P1, · · · , PK , λ) (16)

=
1

2
log

|∑K

k=1
HkSkH

T
k + Sz|

|Sz| − λ
(

K∑
k=1

Pk − P
)
.

Let the dual objective be

g(λ) = max
S1,···,SK ,P1,···,PK

L(S1, · · · , SK , P1, · · · , PK , λ), (17)

where the maximization is under the constraints tr(Sk) ≤ Pk

and Sk ≥ 0. Because the original optimization problem is
convex, the dual objective reaches a minimum at the optimal
value of the primal problem. Thus, the sum-power multiple
access channel sum capacity problem reduces to:

minimize g(λ) (18)

subject to λ ≥ 0.

The key observation is that g(λ) is easy to compute, and the
above minimization problem can be solved much more effi-
ciently than the original problem. Consider first the evalua-
tion of g(λ). By definition, g(λ) is the solution to the following
optimization problem:

maximize
1

2
log

|∑K

k=1
HkSkH

T
k + Sz|

|Sz|

−λ
(

K∑
k=1

Pk − P
)

(19)

subject to tr(Sk) − Pk ≤ 0, k = 1, · · · ,K
Sk ≥ 0, k = 1, · · · ,K

Notice that the above maximization problem has de-coupled
constraints. Therefore, an iterative water-filling like algorithm
can be used to solve the problem efficiently. The iterative algo-
rithm works as follows: in each step, maximize the objective
over one pair of (Sk, Pk), while keeping all other (Sk, Pk)’s
fixed. Since the objective is non-decreasing with each itera-
tion, it must converge to a fixed point. At the fixed point, the
set of (Sk, Pk) satisfies the KKT condition of the optimization
problem (19). Thus, the fixed point is precisely the optimal
solution.1

In fact, each step of the iterative algorithm is just a trivial
evaluation of water-filling with a fixed water level λ. Without
loss of generality, consider the optimization over (S1, P1) while

1A similar argument has been used in [8].



keeping all other (Sk, Pk) fixed. The Karush-Kuhn-Tucker
condition for the optimization problem (19) is just:

1

2
HT

1

(
K∑

k=1

HkSkH
T
k + Sz

)−1

H1 = λI + Φk, (20)

where Φk is the dual variable associated with the constraint
Sk ≥ 0. Notice that this is exactly the water-filling condition
for a Gaussian vector channel, except that in this case, λ is
fixed. Thus, the usual water-filling procedure only needs to
be modified slightly in order to find the optimal (Sk, Pk). The
idea is to fill up transmit power to a fixed water level, rather
than water-filling with a fixed total power. More precisely, let(

K∑
k=2

HkSkH
T
k + Sz

)
= QT ΛQ (21)

be an eigenvalue decomposition. The maximization problem
(19) is equivalent to the maximization of

1

2
log

∣∣∣Λ− 1
2QH1S1H

T
1 Q

T Λ− 1
2 + I

∣∣∣− λP1. (22)

Let

Λ− 1
2QH1 = U



s1

. . .

sK


V T (23)

be a singular-value decomposition. Then, the optimal S1 is
just:

S1 = V



(

1
2λ

− 1
s2
1

)
+

. . . (
1
2λ

− 1
s2

K

)
+


 V T . (24)

The optimal P1 is just:

P1 =

K∑
k=1

(
1

2λ
− 1

s2K

)
+

. (25)

The next step is to use the same procedure to find the optimal
(S2, P2), while keeping (S1, P1), (S3, P3), · · · , (SK , PK) fixed.
The next step is to update (S3, P3) and (S4, P4), · · ·, then
(S1, P1), (S2, P2) · · ·. The iterative procedure is very efficient.
It is guaranteed to converge, and it converges to the optimal
value of (19) and thus g(λ).

It remains to minimize g(λ) subject to the constraint λ ≥ 0.
g(λ) is a concave function. Further, the constraint set is a
one-dimensional interval. Thus, a standard search algorithm
on λ yields satisfactory results. Unfortunately, g(λ) is not
necessarily differentiable, so it is not always possible to take
its gradient. Nevertheless, the structure of g(λ) (i.e. (19))
still reveals information on the possible search direction. In
particular, it is possible to find a subgradient h such that for
all λ′,

g(λ′) ≥ g(λ) + h · (λ′ − λ). (26)

Since the objective functions of g(λ) and g(λ′) differ in only

(λ′ − λ)(P −∑K

k=1
Pk), the following choice of h

h = P −
K∑

k=1

Pk (27)

satisfies the subgradient condition (26). The subgradient
search suggests that

increase λ if

K∑
k=1

Pk > P

decrease λ if

K∑
k=1

Pk < P.

The search direction is intuitively obvious as λ is the water-
filling level, and it should be adjusted according to whether the
total power constraint is exceeded. Because such adjustment
occurs in a one-dimensional space, it can be done efficiently
using a bisection method.

The proposed algorithm is summarized as follows:

Algorithm 1 Sum-power multiple access channel capacity
via dual decomposition:

1. Initialize λmin and λmax.

2. Let λ = (λmin + λmax)/2.

3. Solve for (Sk, Pk)K
k=1 in the optimization problem (19)

by iteratively optimizing each of (Sk, Pk) using (21)-(25)
while keeping all other (Sk, Pk) fixed.

4. If
∑K

k=1
Pk > P , then set λmin = λ, else set λmax = λ.

5. If |λmin − λmax| ≤ ε, stop. Otherwise, goto step 2.

The proposed algorithm can also be viewed as an iterative
method to solve the KKT condition of the original optimiza-
tion problem. The KKT condition of the sum-power multiple
access channel sum capacity problem (7) consists of the sta-
tionarity condition:

1

2
HT

i

(
K∑

k=1

HkSkH
T
k + Sz

)−1

Hi = λI + Φi, (28)

for i = 1, · · · ,K, λ ≥ 0, Φi ≥ 0, and the power constraint:

K∑
k=1

tr(Sk) ≤ P, Sk ≥ 0. (29)

The dual decomposition method starts with a fixed λ, solves
(28) for each i = 1, · · · ,K, then adjusts λ according to the
search direction suggested by the power constraint.

IV. Numerical Results

A numerical example with a 50 transmitters each with a
single antenna and a receiver with three antennas is presented.
Each entry in the 50 × 3 channel matrix is an i.i.d. Gaussian
random variable with mean 0 and variance 1. The total power
constraint is set to be 5. The iterative algorithm is run with
a guaranteed error gap less than 10−5. The convergence be-
havior of the algorithm is plotted in Figure 1. Each iteration
of the algorithm consists of a set of 50 water-fillings with a
fixed water level. Horizontal segments of the curve represent
the number of iterations for each fixed λ. The step shape of
the curve is indicative of the bisection algorithm on λ.

The proposed algorithm can have a slower convergence rate
as compared to the algorithm proposed by Jindal, Jafar, Vish-
wanath and Goldsmith in [3]. The main advantage of the cur-
rent approach is that it guarantees convergence in all cases.
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Fig. 1: Convergence of the dual decomposition method

V. Conclusion

This paper proposes a numerical solution to solve the sum
capacity in a sum-power constrained multiple access channel.
The sum-power constraint is decoupled in the dual domain
using a dual decomposition method. The algorithm is based
on a modified iterative water-filling method. It is guaranteed
to converge to the sum capacity.

References

[1] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achiev-
able rates and sum-rate capacity of Gaussian MIMO broadcast
channels,” submitted to IEEE Trans. Info. Theory, August
2002.

[2] P. Viswanath and D. Tse, “Sum capacity of the multiple an-
tenna Gaussian broadcast channel and uplink-downlink dual-
ity,” submitted to IEEE Trans. Info. Theory, July 2002.

[3] N. Jindal, S. Jafar, S. Vishwanath, and A. Goldsmith, “Sum
power iterative water-filling for multi-antenna Gaussian broad-
cast channels,” in Asilomar Conf., 2002.

[4] L. Xiao, Dual decomposition method in network routing and
resource allocation, Ph.D. thesis, Stanford University, 2003.

[5] G. Caire and S. Shamai, “On achievable rates in a multi-
antenna broadcast downlink,” in Allerton Conf. on Comm.,
Control Comp., 2000.

[6] W. Yu and J. M. Cioffi, “Sum capacity of Gaussian
vector broadcast channels,” submitted to IEEE
Trans. Info. Theory, Nov. 2001, available at
http://www.comm.utoronto.ca/∼weiyu/publications.

[7] W. Yu, “Uplink-downlink duality under convex covariance con-
straints,” in Canadian Workshop on Information Theory, 2003.

[8] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-
filling for gaussian vector multiple access channels,” to appear
in IEEE Trans. Info. Theory, Also in Proc. Int. Symp. Info.
Theory (ISIT), 2001.


