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Abstract

A communication environment with multiple transmitters and multiple receivers is inher-

ently a competitive environment. The aim of this thesis is to illustrate the role of com-

petition and the value of cooperation in a multi-user communication environment from an

information-theoretical perspective. Various scenarios will be treated, including the mul-

tiple access channel where receivers cooperate, the broadcast channel where transmitters

cooperate, and the interference channel where neither transmitters nor receivers cooperate.

There are three main results in this thesis: First, it is shown that in a Gaussian multiple

access channel with multiple transmit and receive antennas, the optimum transmit strategy

that maximizes the sum capacity can be found by an iterative water-filling procedure, where

each user competitively maximizes its own rate while treating interference from other users

as noise. Thus, a competitive optimum in a Gaussian multiple access channel is also a

global optimum. Second, it is shown that in a Gaussian broadcast channel with multiple

transmit and receive antennas, under a certain non-singularity condition, the sum-capacity

can be achieved using a decision-feedback precoder. Further, the sum capacity can be

interpreted as a saddle-point of a mutual information game, where the transmitter chooses

a transmit strategy to maximize the mutual information, and “nature” chooses a fictitious

noise correlation to minimize the mutual information. Thus, the sum capacity of a Gaussian

broadcast channel corresponds to a competitive equilibrium. Third, it is shown that in a

Gaussian interference channel, although a competitive optimum is not necessarily the global

optimum, it leads to a desirable operating point. This suggests a distributed dynamic

spectrum management scheme for digital subscriber line (DSL) applications.
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Chapter 1

Introduction

The modern theory of communications started in 1948 with Claude E. Shannon’s classic

paper “A mathematical theory of communication” [1]. In this ground breaking work, Shan-

non proved the following fundamental result: reliable communication between a transmitter

and a receiver is possible if and only if the rate of communication is below a certain quantity

called channel capacity. Further, Shannon explicitly showed how channel capacity can be

computed from the statistical properties of the communication environment. This result,

known as the noisy channel coding theorem, revealed the fundamental performance limit

in a communication channel and laid down a foundation for the modern science of digital

communications. For the next fifty years, a principal goal of communication engineers has

been to devise practical methods to approach this ultimate limit.

Shannon’s original work focused on communication scenarios between a single trans-

mitter and receiver pair. This communication model is referred to as a single-user channel

for which the capacity is now well-established. Practical communication systems, on the

other hand, often involve multiple transmitters and receivers sharing the same transmission

medium. For these multi-user channels, although the definition of channel capacity can be

easily generalized, the characterization of capacity is much more difficult than for single-user

channels. In fact, Shannon himself started the study of multi-user information theory by

introducing a two-way communication scenario with a transmitter and a receiver at each

end of a channel [2]. The capacity of this seemingly simple channel is still an open problem

to this date.

A multi-user communication environment differs from a single-user environment in sev-

eral crucial aspects. First of all, as multiple transmitters and receivers share the same

1
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communication medium, they cause mutual interference into each other. Interference is

typically detrimental to the system performance, so a multi-user environment is inherently

a competitive environment where users compete for network resources. On the other hand,

the interaction among the users also creates opportunities for the multiple transmitters and

receivers to cooperate. There is an interesting interplay between competition and coopera-

tion in multi-user channels. The purpose of this thesis is to capture some of such interplay

by investigating three specific multi-user channels with varying degrees of cooperation. The

goal is to answer the following two questions: In a communication situation with multiple

transmitters and multiple receivers, what is the role of competition? What is the value of

cooperation?

Compared to a single-user communication environment, multi-user communication is

substantially more complicated for several reasons. First, a multi-user environment is usu-

ally interference limited. Multi-user transmission techniques need to exploit the structure

of the interference. The optimal way to do so, however, is still poorly understood except in

the simplest cases. Second, multiple transmitters and receivers in a multi-user environment

can potentially cooperate. However, it is not always clear what the best form of cooper-

ation is in a given situation. Third, the standard machinery for proving the converse in

the single-user channel capacity theorem is often inadequate for multi-user channels. The

upper bound for multi-user channel capacity is typically more difficult to derive than for the

single-user case. Further, a multi-user communication environment can involve feedback.

The role of feedback has so far resisted rigorous information-theoretical treatment in most

cases. For these and many other reasons, multi-user information theory is largely incom-

plete, and multi-user channel capacity problems represent some of the most challenging

open problems in information theory.

In spite of the lack of a complete understanding in multi-user communication theory,

the recent explosion in information technology has created a large demand for practical

communication solutions that accommodate many users. For example, the mobile wireless

system is inherently a multi-user system as signals from all mobile devices share the same air

interface. A good understanding of multi-user communication is critical in wireless system

design. As another example, in broadband access networks such as digital subscriber lines

(DSL) and Ethernet, the network topology typically involves a central office transmitting

and receiving signals from multiple users at the same time. Signals from multiple users

interfere with each other, so the network is best modeled as a multi-user system. In fact,
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multiple access channel broadcast channel interference channel

Figure 1.1: Multi-user communication models

a multi-user system design for DSL has the potential to bring substantial performance

improvement to the network.

This thesis deals with the design of optimal transmission strategies for multi-user com-

munication situations. An information-theoretical approach is taken. The focus is on

Gaussian channels with multiple transmitters and multiple receivers and with varying de-

grees of cooperation among the transmitters and the receivers. Three specific channel

models are treated, and they are illustrated in Figure 1.1. The first channel model is called

the multiple access channel, where transmitters do not cooperate and receivers cooperate.

In this scenario, each transmitter represents a different user sending independent informa-

tion, and the joint receiver must decode information from all users. The second channel

model is called the broadcast channel, where transmitters cooperate and receivers do not

cooperate. In this scenario, the joint transmitter sends independent information to multiple

receivers at the same time, and each receiver is interested in decoding its own message. The

third channel model is called the interference channel, where neither transmitters nor re-

ceivers cooperate. In this scenario, each transmitter-receiver pair attempts to communicate

in the presence of interference from all other users. These three scenarios are prototypi-

cal examples of multi-user channels, and they capture a variety of practical situations. A

comparative study of the three cases also illustrates the role of competition and the value

of cooperation in multi-user situations. In the rest of this chapter, practical motivations

for the channel models are described in more detail, precise statements of the problems are

presented, and the main results of the thesis are outlined.
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Base Station

User 1

User 2

User N

Figure 1.2: Wireless cellular network

1.1 Motivation

Practical communication systems are often multi-user in nature. This is mainly because

system designs are often constrained by physical resources such as bandwidth, and a system

that allows multiple users to share resources is often the most economical. This is the case

for broadcast systems such as terrestrial television, cable television and satellite systems

where all receivers share the same spectrum, and also for computer networks such as the

original Ethernet where many computers are connected to the same cable. The multi-user

communication situations studied in this thesis are motivated by these examples. Two

particular systems of interest are the wireless system and digital subscriber lines.

1.1.1 Wireless Systems

Wireless communication systems are often designed as cellular systems. Wireless applica-

tions typically require an arbitrary pair of mobile devices to be able to communicate with

each other. The most economical way to ensure such “anywhere” connectivity is to deploy

base-stations that collectively provide coverage to the entire geographical area of interest,

and to let mobile devices communicate with the nearest base-station wherever they are.

The coverage area of each base-station is referred to as a cell. At any given time, a sin-

gle base-station needs to serve potentially many mobile devices. So, the communication

environment between a base-station and mobile devices is a multi-user environment.
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Consider a general system model, where both the base-station and the mobile devices

are equipped with multiple antennas. Multiple antennas create spatial dimensions, and

they are effective means to enhance wireless system performance. In a multiple-antenna

system, the transmit and receive signals are vector valued, and the communication channel

between the base-station and the mobiles may be modeled as a matrix. Note that antennas

at the base-station can always cooperate in the sense that antennas may jointly encode and

decode information. However, at the mobile side, only antennas that belong to the same

mobile may cooperate. Figure 1.2 illustrates a typical multi-antenna wireless environment.

Two-way communication takes place between the base-station and the mobiles. The

direction from the mobiles to the base-station is referred to as the uplink direction. It

can be modeled as a multiple access channel where transmitters belonging to different

mobiles do not cooperate, but receivers cooperate. The direction from the base-station to

the mobiles is referred to as the downlink direction. It can be modeled as a broadcast

channel where receivers belonging to different mobiles do not cooperate, but transmitters

cooperate. Thus, for wireless systems, both the multiple access channel model and the

broadcast channel model are applicable.

1.1.2 Digital Subscriber Lines

Digital subscriber line (DSL) technology brings high-speed data service to home via ordinary

telephone copper twisted-pairs [3]. The DSL environment is traditionally thought of as a

single-user environment, as the communication between each pair of transmit and receive

modems takes place on a dedicated link. However, telephone lines from different customer

sites are bundled together on the way to the central office. Multiple lines within a bundle

create electromagnetic interference into each other. Such electromagnetic coupling is called

crosstalk, and it is often the dominant noise source in a line. For this reason, the DSL

environment is more accurately modeled as a multi-user environment.

Figure 1.3 illustrates a typical DSL environment. There are two types of crosstalk.

Near-end crosstalk (NEXT) refers to the interference emitted by transmitters located on

the same side as the receiver. Far-end crosstalk (FEXT) refers to the interference emitted by

transmitters located on the opposite end of the line. Note that cooperation is not possible

at the remote terminals, as they are located in different geographical locations. Cooperation

at the central office is potentially possible, and if it is done, the upstream direction can be

modeled as a multiple access channel and the downstream direction can be modeled as a
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Figure 1.3: Digital subscriber lines

broadcast channel. However, cooperation at the central office is possible in practice only if

all lines are owned by the same service provider, which might not be the case, especially in a

unbundled environment where different service providers compete commercially in the local

access market. In this scenario, the DSL environment must be modeled as an interference

channel where neither transmitters nor receivers cooperate. Thus, for DSL applications, all

three multi-user channel models considered in this thesis are applicable.

1.2 Overview of Thesis

The objective of this thesis is to characterize the channel capacity, optimal spectrum and

optimal coding techniques for a vector Gaussian channel with varying degrees of cooperation

among the transmitters and the receivers. As a first step, it is instructive to consider the

case where both transmitters and receivers cooperate. This single-user Gaussian vector

channel can be modeled as

y = Hx+ z, (1.1)

where x and y are vector-valued signals, H is a matrix channel, and z is the vector Gaussian

noise. The input signal must satisfy a power constraint: E[XTX] ≤ P . Figure 1.4 illustrates

a Gaussian vector channel. The information-theoretical capacity of the channel is defined

as follows: Let a (n, 2nR) codebook consist of an encoding function Xn(W ), where W ∈
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Zn

Xn Yn
HW ∈ 2nC Ŵ (Yn)

Figure 1.4: Gaussian vector channel

{1, · · · , 2nR}, and a decoding function Ŵ (Yn). The probability of error Pn
e is defined as

the probability: Pr{W �= Ŵ}, averaged over the entire codebook. A rate R is achievable if

there exists a sequence of (n, 2nR) codebooks for which Pn
e → 0 as n → ∞. The channel

capacity C is defined to be the supremum of all achievable rates.

Shannon’s noisy channel coding theorem states that the capacity of a discrete memo-

ryless channel is the maximum mutual information between the input terminals and the

output terminals, maximized over all possible input distributions. For the vector Gaussian

channel, this implies that C = max I(X;Y), where the maximization is over all input

distributions that satisfy the power constraint [4]. It is not difficult to show that the max-

imum mutual information is achieved with Gaussian inputs, and in this case the mutual

information can be evaluated as:

I(X;Y) =
1
2
log

|HSxxH
T + Szz|

|Szz| , (1.2)

where | · | denotes matrix determinant, and Sxx and Szz denote the covariance matrices of

the input X and the noise Z, respectively. The power constraint becomes a constraint on

the input covariance matrix: trace(Sxx) ≤ P .

The mutual information maximization problem has a well-known solution based on the

singular-value decomposition of H called water-filling [5]. Assuming that Szz is the identity

matrix, the optimum Sxx must have its eigenvectors equal to the right singular-vectors of

H, and its eigenvalues follow a water-filling power allocation on the singular-values of H. To

achieve the vector channel capacity, coordination is necessary among the transmit terminals

of x and among the receive terminals of y. Transmitter coordination is necessary because

the capacity-achieving transmit covariance matrix is not necessarily diagonal. The optimal
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transmit signals from different transmit terminals may need to be correlated, and producing

such a correlated signal requires coordination at the transmitter. Receiver coordination

is necessary because an optimal detector is required to process signals from all receive

terminals jointly. With full coordination, it is possible to choose a transmit filter to match

the right singular-vectors of H and to choose a receive filter to match the left singular-

vectors of H, so that the vector Gaussian channel is diagonalized [5]. Such diagonalization

decomposes the Gaussian vector channel into a series of independent Gaussian scalar sub-

channels so that Gaussian scalar codes can be used on each sub-channel to collectively

achieve the vector channel capacity.

When coordination is possible only among the receive terminals, but not among the

transmit terminals, the vector channel becomes a multiple access channel. The Gaussian

vector multiple access channel is the focus of Chapter 2 of this thesis. In a multiple access

channel, the maximum sum capacity can still be computed in terms of the maximum mutual

information I(X;Y). But, because the different transmit terminals of x are required to

be uncorrelated, the water-filling covariance, which is optimum for a coordinated vector

channel, can no longer be used. The main result of Chapter 2 is an extension of single-user

water-filling to the multiple access case. The proposed optimization routine is iterative in

nature, and it has a game-theory interpretation. In a Gaussian multiple access channel, the

sum capacity is achieved with each user choosing an input distribution to maximize its own

rate while treating interference from all other users as noise. Thus, in a Gaussian multiple

access channel, a competitive optimum is also a global optimum.

When coordination is possible only among the transmit terminals, but not among the

receive terminals, the Gaussian vector channel becomes a broadcast channel. The Gaussian

vector broadcast channel is the focus of Chapter 3 of this thesis. Unlike the multiple

access channel, the capacity region for a broadcast channel is still not known in general

[6]. The main difficulty is that a broadcast channel distributes information across several

receive terminals, and without joint processing of the received signals, a data rate equal

to I(X;Y) cannot be supported. The main result of Chapter 3 is a characterization of

the sum capacity for a Gaussian vector broadcast channel under a certain non-singularity

condition. It is shown that the sum capacity is achieved using a precoding scheme for

Gaussian channels with additive side information non-causally known at the transmitter.

Further, the optimal precoding structure corresponds to a decision-feedback equalizer that

decomposes the broadcast channel into a series of single-user channels with interference
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pre-subtracted at the transmitter. In fact, the sum capacity is a saddle-point of a Gaussian

mutual information game, where a signal player chooses a transmit covariance matrix to

maximize the mutual information, and a noise player chooses a fictitious noise correlation to

minimize the mutual information. Thus, in a Gaussian broadcast channel, the sum capacity

corresponds to a competitive equilibrium.

When coordination is possible neither among the transmit terminals nor among the re-

ceive terminals, the Gaussian vector channel becomes an interference channel. The Gaussian

interference channel is the focus of Chapter 4 of this thesis. The capacity region for the

Gaussian interference channel is still poorly understood. Instead of dealing with Shannon

capacity, Chapter 4 of this thesis looks at practical digital subscriber line channels and pro-

poses a dynamic power allocation scheme for this interference network. The proposed power

allocation scheme is based on a game-theory formulation of the problem. The main result is

that under certain conditions, a competitive equilibrium exists and is unique in a two-user

Gaussian interference channel game. Further, a competitive equilibrium corresponds to a

power allocation that gives better performance than the current static power allocation ap-

proach. Thus, although competitive equilibrium is not optimal in an interference channel,

it corresponds to a desirable operating point for DSL applications.

Chapter 5 summarizes the main points of the thesis. Competition and cooperation are

key features in multi-user communication. A game-theoretical perspective can give useful

insights into the capacity and optimal transmission problems for multi-user channels.

1.3 Notations

The notation used in this thesis is as follows: Lower case letters are used to denote scalar

signals, e.g. x, y. Upper case letters are used to denote scalar random variables, e.g. X,

Y , or matrices, e.g. H, where the distinction should be clear from the context. Bold face

letters are used to denote vector signals, e.g. x, y, or vector random variables, e.g. X, Y.

For a random vector X, p(x) denotes its probability law, E[X] denotes its expectation, and

Sxx denotes its covariance matrix. For matrices, ·T denotes the transpose operation, | · |
denotes the determinant operation, and tr(·) denotes the trace operation. The operator ≥ 0

is used to denote that a matrix is positive semi-definite. An n-dimensional identity matrix

is denoted as either In×n or I.
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Multiple Access Channel

A communication situation where multiple uncoordinated transmitters send independent

information to a common receiver is referred to as a multiple access channel. Figure 2.1

illustrates a two-user multiple access channel, where X1 andX2 are uncoordinated transmit-

ters encoding independent messagesW1 andW2, respectively, and the receiver is responsible

for decoding both messages at the same time. A (n, 2nR1 , 2nR2) codebook for a multiple

access channel consists of encoding functions Xn
1 (W1), Xn

2 (W2), where W1 ∈ {1, · · · , 2nR1}
and W2 ∈ {1, · · · , 2nR2}, and decoding functions Ŵ1(Y n), Ŵ2(Y n). An error occurs when

W1 �= Ŵ1 or W2 �= Ŵ2. A rate pair (R1, R2) is achievable if there exists a sequence of

(n, 2nR1 , 2nR2) codebooks for which the average probability of error Pn
e → 0 as n → ∞.

The capacity region of a multiple access channel is the union of all achievable rate pairs.

The capacity region for the multiple access channel has the following well-known single-

letter characterization [7] [8]. For a discrete-time memoryless multiple access channel char-

acterized by the channel transition probability p(y|x1, x2), assuming a fixed input distribu-

tion p1(x1)p2(x2), the capacity region is a pentagon:

R1 ≤ I(X1;Y |X2);

R2 ≤ I(X2;Y |X1); (2.1)

R1 +R2 ≤ I(X1,X2;Y ),

where the mutual information expressions are computed with respect to the joint distribu-

tion p(y|x1, x2)p1(x1)p2(x2). When the input distribution is not fixed, but constrained in

certain ways, the capacity region is the convex hull of the union of all capacity pentagons

10
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p(y|x1, x2)
Xn
1 (W1)

Xn
2 (W2)

Y n
Ŵ1(Y

n)

Ŵ2(Y
n)

W1 ∈ 2nR1

W2 ∈ 2nR2

Figure 2.1: Multiple access channel

whose corresponding input distributions satisfy the input constraint after the convex hull

operation [9] [10]. Since the input signals in a multiple access channel are independent,

the input distribution must take a product form p1(x1)p2(x2). This product constraint is

non-convex, so the problem of finding the optimal input distribution for a multiple access

channel is in general non-trivial [11]. (This is in contrast to the single-user case where con-

vex programming techniques are applicable [12] [13].) The aim of this chapter is to solve the

input optimization problem for a particular type of multiple access channel: the Gaussian

vector multiple access channel.

A Gaussian multiple access channel refers to a multiple access channel where the law of

the channel transition probability p(y|x1, x2) is Gaussian. When a Gaussian multiple access

channel is memoryless and when x1 and x2 are scalar, the input optimization problem has a

simple solution. Let the power constraints on x1 and x2 be P1 and P2, respectively. Gaussian

independent distributionsX1 ∼ N (0, P1) andX2 ∼ N (0, P2) are optimal for every boundary

point of the capacity region. In fact, for scalar Gaussian channels, the union and the convex

hull operations are superfluous, and the capacity region is just a simple pentagon, known as

the Cover-Wyner region [4]. However, the input optimization problem becomes non-trivial

when the Gaussian multiple access channel has vector inputs. In this case, different points in

the capacity region may correspond to different input distributions, and a characterization

of the capacity region involves an optimization over vector random variables. The main

contribution of this chapter is an efficient numerical algorithm for this input optimization

problem.

The input optimization problem for the vector Gaussian multiple access channel has

been studied in the literature for several special cases. The capacity region of a Gaussian

multiple access channel with intersymbol interference (ISI) was characterized by Cheng and

Verdú [14]. For the multiple access channel with ISI, the input optimization problem can be
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formulated as a problem of optimal power allocation over frequencies. An analogous problem

for i.i.d. fading channels was studied by Knopp and Humblet [15] and Tse and Hanly [16]

where the optimal power allocation over time was characterized. Both the ISI channel and

the scalar i.i.d. fading channel can be thought of as special cases of the vector multiple access

channel considered here. In both cases, all individual channels in the multiple access channel

can be simultaneously decomposed into independent sub-channels. For the ISI channel, a

cyclic prefix can be appended to the input sequence so that the channel can be diagonalized

in the frequency domain by a discrete Fourier transform. For the i.i.d. fading channel,

the independence among the sub-channels in time is explicitly assumed. In both cases,

the optimal signaling direction is just the direction of the simultaneous diagonalization,

and the input optimization problem is reduced to the power allocation problem among the

sub-channels.

The situation is considerably more complicated if simultaneous diagonalization is not

possible. This more general setting corresponds to a multiple access situation where both

the transmitters and the receiver are equipped with multiple antennas. In the spatial

domain, the channel gain between a transmit antenna and a receive antenna can be arbitrary,

so the channel matrix can have an arbitrary structure. It is in general not possible to

simultaneously decompose an arbitrary set of matrix channels into parallel independent

sub-channels. Unlike the ISI channels where the time-invariance property gives a special

Toeplitz structure to the channel matrix, a multi-antenna channel does not follow spatial-

invariance. Consequently, the equivalence of a cyclic prefix does not exist in the spatial

domain, and the transmitter optimization problem becomes a combination of choosing the

optimal signaling directions for each user and allocating a correct amount of power in each

signaling direction. Such joint optimization is non-trivial, as the optimal solution needs to

find a compromise between maximizing each user’s data rate and minimizing its interference

into other users. In this regard, only asymptotic results have been reported so far [17]. A

similar situation exists for CDMA systems, where the matrix channel is determined by the

spreading sequences. Recent results in this area have been obtained in [18] [19] [20].

The main result of this chapter is that the joint optimization of signaling power and

signaling directions for a multiple access channel can be performed by a generalization

of single-user input optimization. In a single-user vector channel, the optimal signaling

directions are the eigen-modes of the channel matrix, and the optimal power allocation is

the so-called water-filling allocation. For a vector multiple access channel, although each
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Figure 2.2: Gaussian vector multiple access channel

user has a different channel and experiences a different interference structure, it is possible

to apply single-user water-filling iteratively to reach a compromise among the signaling

strategies for different users. As it is shown later, this iterative water-filling procedure

always converges, and it converges to the sum capacity of a vector multiple access channel.

Recently, the author learned that a similar iterative procedure was proposed indepen-

dently by Médard [21] for single-antenna multi-path fading channels. Although the contexts

are different, the idea and the principles are essentially the same.

The rest of this chapter is organized as follows: Section 2.1 formulates the input opti-

mization problem for the Gaussian vector multiple access channel in a convex programming

framework. Section 2.2 focuses on the rate-sum point and derives an iterative water-filling

algorithm. Section 2.3 contains concluding remarks.

2.1 Gaussian Vector Multiple Access Channel

A memoryless two-user Gaussian vector multiple access channel is shown in Figure 2.2:

y = H1x1 +H2x2 + z, (2.2)

where x1, x2 are input vector signals under power constraints P1 and P2 respectively, y is

the output vector signal, z is the additive Gaussian noise vector whose covariance matrix is

denoted as Szz, and H1, H2 are channel matrices. The aim of this section is to formulate

the input optimization problem for this multiple access channel. The development here is

restricted to the two-user case for simplicity. The results can be easily generalized to cases

with more than two users.

Following the development in [9] and [10], define the directly achievable region of a
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Gaussian vector multiple access channel with power constraints q1 and q2 as:

A(q1, q2) =
⋃

p1(x1)p2(x2)

(R1, R2) :
R1 ≤ I(X1;Y|X2);

R2 ≤ I(X2;Y|X1);

R1 +R2 ≤ I(X1,X2;Y).

 (2.3)

where the union is taken over all independent input distributions p1(x1)p2(x2) that satisfy

the power constraints tr(E[X1XT
1 ]) ≤ q1 and tr(E[X2XT

2 ]) ≤ q2.

For a fixed input distribution p1(x1)p2(x2), let S1 and S2 be the covariance matrices of

X1 and X2 under the respective marginals:

S1 = E[X1XT
1 ], (2.4)

S2 = E[X2XT
2 ]. (2.5)

The mutual information expressions in (2.3) can be bounded as follows:

I(X1;Y|X2) = h(Y|X2)− h(Y|X1,X2)

= h(H1X1 + Z)− h(Z)

≤ 1
2
log

|H1S1H
T
1 + Szz|

|Szz| , (2.6)

I(X2;Y|X1) ≤ 1
2
log

|H2S2H
T
2 + Szz|

|Szz| , (2.7)

I(X1,X2;Y) ≤ 1
2
log

|H1S1H
T
1 +H2S2H

T
2 + Szz|

|Szz| , (2.8)

where the inequalities follow from the fact that the maximum-entropy distribution under

a covariance constraint is a Gaussian distribution. It is then easy to see that Gaussian

distributions X1 ∼ N (0, S1) and X2 ∼ N (0, S2) simultaneously maximize all three mutual

information bounds.

Assuming Gaussian inputs, the directly achievable region can now be expressed as:

A(q1, q2) =
⋃

tr(S1) ≤ q1,

tr(S2) ≤ q2,

S1, S2 ≥ 0

B(S1, S2), (2.9)
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where

B(S1, S2) =

(R1, R2) :
R1 ≤ C1(S1);

R2 ≤ C2(S2);

R1 +R2 ≤ C12(S1, S2).

 , (2.10)

and

C1(S1) =
1
2
log

|H1S1H
T
1 + Szz|

|Szz| , (2.11)

C2(S2) =
1
2
log

|H2S2H
T
2 + Szz|

|Szz| , (2.12)

C12(S1, S2) =
1
2
log

|H2S2H
T
2 +H1S1H

T
1 + Szz|

|Szz| . (2.13)

The directly achievable region for a multiple access channel is the rate region achievable

with only stationary inputs. The directly achievable region is the capacity region if the

input terminals do not have the ability to synchronize with each other [22]. For multiple

access channels where input terminals can coordinate their timing, the time-sharing or

convex combinations of directly achievable rate pairs are also achievable. The convex hull

operation can potentially enlarge the region, and the convex hull must be taken over the

constraint sets as well as the rate regions themselves. More precisely, as characterized in

[9] and [10], the capacity region can be expressed as:

C(P1, P2) = closure

(R1, R2) :
((R1, R2), (P1, P2)) ∈
convex

⋃
q1,q2≥0

(A(q1, q2), (q1, q2))

 . (2.14)

However, it turns out that for Gaussian vector multiple access channels, the capacity region

is just the directly achievable region, and the convex hull operation is not necessary.

Lemma 2.1 log |M | is concave in the space of positive semi-definite matrices M .

Proof: See [23, p.466], [24, p.48], or [25]. ✷

Theorem 2.1 For a Gaussian vector multiple access channel y = H1x1 +H2x2 + z under

power constraints P1, P2, the capacity region C(P1, P2) is precisely A(P1, P2) without the

convex hull and union operations. The capacity region is convex and its extreme points may
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be found by maximizing a weighted sum of data rates µ1R1 + µ2R2, where µ1 ≥ 0, µ2 ≥ 0

and µ1 + µ2 = 1. Without loss of generality, assume µ1 ≤ µ2. Then, the optimization

problem is:

maximize µ1 · 1
2 log |H1S1H

T
1 +H2S2H

T
2 + Szz|+

(µ2 − µ1) · 1
2 log |H2S2H

T
2 + Szz| − µ2 · 1

2 log |Szz|
subject to tr(S1) ≤ P1, (2.15)

tr(S2) ≤ P2,

S1, S2 ≥ 0.

Proof: The main claim here is that the convex hull operation on the rate regions and the

constraints is not necessary, and the capacity region C(P1, P2) is just A(P1, P2). This is

a direct consequence of Lemma 2.1. First, let’s consider the convex combination of two

rate-power pairs ((R1, R2), q1, q2) and ((R′
1, R

′
2), q

′
1, q

′
2), where (R1, R2) ∈ A(q1, q2) and

(R′
1, R

′
2) ∈ A(q′1, q′2). Since A(q1, q2) is a union of pentagons, there exist (S1, S2) and

(S′
1, S

′
2) such that (tr(S1), tr(S2)) ≤ (q1, q2), (tr(S′

1), tr(S
′
2)) ≤ (q′1, q′2), (R1, R2) ∈ B(S1, S2)

and (R′
1, R

′
2) ∈ B(S′

1, S
′
2). (“≤” here means less than or equal to in each component.) Now,

consider a convex combination of the rate-power pairs (0 ≤ α ≤ 1):

α((R1, R2), q1, q2) + (1− α)((R′
1, R

′
2), q

′
1, q

′
2). (2.16)

For this convex combination to be in C(P1, P2), it must satisfy the power constraint, i.e.

α(q1, q2)+(1−α)(q′1, q
′
2) ≤ (P1, P2), or α(tr(S1), tr(S2))+(1−α)(tr(S′

1), tr(S
′
2)) ≤ (P1, P2).

Now, define Ŝ1 = αS1 + (1 − α)S′
1, and Ŝ2 = αS2 + (1 − α)S′

2. The claim is that the

achievable rates with Ŝ1 and Ŝ2 is as large as the convex combination of the original points.

First, verify that the power constraints are satisfied.

(tr(Ŝ1), tr(Ŝ2)) ≤ (P1, P2), (2.17)

Next, by Lemma 2.1, C1, C2 and C12 are concave functions. So,

αR1 + (1− α)R′
1 ≤ αC1(S1) + (1− α)C1(S′

1) ≤ C1(Ŝ1)

αR2 + (1− α)R′
2 ≤ αC2(S2) + (1− α)C2(S′

2) ≤ C2(Ŝ2)

α(R1 +R2) + (1− α)(R′
1 +R′

2) ≤ αC12(S1, S2) + (1− α)C12(S′
1, S

′
2) ≤ C12(Ŝ1, Ŝ2).
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Figure 2.3: Capacity region of a Gaussian vector multiple access channel

Therefore, any rate-power pair that can be achieved via convex combination can also be

achieved directly. Thus, the convex hull operation in (2.14) is not necessary. Finally, since

A(q1, q2) ⊆ A(q′1, q′2) whenever (q1, q2) ≤ (q′1, q
′
2), the union operation also simplifies, and

the capacity region C(P1, P2) is just A(P1, P2).

Note that the above argument also implies that A(P1, P2) is a convex region, and

its boundary points can be found by maximizing the weighted sums of the data rates

µ1R1 + µ2R2. Because A(P1, P2) is the union of pentagons, the maximization can be

done in two steps: first maximize within each pentagon, then maximize over all pentagons.

When µ1 ≤ µ2, the maximizing point within each pentagon is the corner point R2 = C2(S2),

R1 = C12(S1, S2)−C2(S2). Then, the maximization over all pentagons is just a maximiza-

tion over all such corner points. This gives (2.15). ✷

Figure 2.3 shows a typical capacity region of a Gaussian vector multiple access channel

as a union of pentagons. Each pentagon corresponds to an achievable rate region for a fixed

pair of transmit covariance matrices.

Aspects of Theorem 2.1 have been observed in several different contexts. The first

part of the theorem is a special case of Theorem 1 in [14], where multiple access channels



Chapter 2. Multiple Access Channel 18

with memory are treated. The approach here does not use general results from channels

with memory [26], and input constraints are dealt with explicitly. Similar results have

also appeared in [16], [17] and [18] where the single-antenna fading channel, vector fading

channel and CDMA channel are treated respectively. The concavity of the log | · | function
was previously observed in [17] and [27] for sum capacity. The connection between concavity

and the ability to remove the convex hull operation is shown explicitly here.

Concavity is a key observation not only in simplifying the capacity expression but also

in providing computationally efficient algorithms to compute the capacity numerically. The

optimization problem in Theorem 2.1 belongs to a class of convex programming problems

for which the global optimum can be found efficiently [24] [25]. In fact, the classical water-

filling and the multi-user water-filling algorithm in [14] can be thought of as special purpose

convex optimization algorithms.

For the sake of completeness, the analogous result for the general K-user multiple access

channel is stated below. The proof is an easy generalization of the two-user case.

Theorem 2.2 For a K-user multiple access channel y =
∑K

i=1 Hixi + z with power con-

straints P1, · · · , PK , the input distributions that maximize
∑K

i=1 µiRi, with 0 ≤ µ1 ≤ · · · ≤
µK and

∑K
i=1 µi = 1, are Gaussian distributions whose covariance matrices S1, · · · , SK can

be found by solving the following optimization problem:

maximize µ1 · 12 log
∣∣∣∣∣

K∑
i=1

HiSiH
T
i + Szz

∣∣∣∣∣− µK · 1
2
log |Szz|+

K∑
j=2

(µj − µj−1) · 12 log
∣∣∣∣∣∣

K∑
i=j

HiSiH
T
i + Szz

∣∣∣∣∣∣
subject to tr(Si) ≤ Pi, i = 1, · · · ,K

Si ≥ 0. i = 1, · · · ,K

(2.18)

2.2 Sum Capacity

The previous section shows that the capacity region for a vector Gaussian multiple access

channel may be found by solving a convex programming problem. Although, in theory,

there exist efficient numerical algorithms for all convex optimization problems; in practice,

the optimization can still be computationally intensive. This is particularly true for the

input optimization problem considered here, because the optimization over Si is performed
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in the space of positive semi-definite matrices, and the number of scalar variables grows

quadratically with the number of input dimensions. In the single-user case, the input

optimization problem has a well-known water-filling solution. The water-filling algorithm

greatly reduces the computational complexity by taking advantage of the problem structure.

The purpose of this section is to show that a similar reduction in computational complexity

may be realized for the multiple access channel rate summaximization problem by extending

single-user water-filling to the multi-user case.

2.2.1 Single-User Water-filling

First, let’s cast the single-user water-filling problem into a convex programming framework.

In the single-user case, the mutual information maximization problem is the following:

maximize
1
2
log

|HSHT + Szz|
|Szz|

subject to tr(S) ≤ P, (2.19)

S ≥ 0.

This maximization problem has an analytical solution. First, since Szz is a symmetric

positive definite matrix, it has an eigenvalue decomposition Szz = Q∆QT , where Q is an

orthogonal matrix QQT = I, and ∆ is a diagonal matrix. Defining Ĥ = ∆− 1
2QTH, the

objective can then be re-written as

maximize
1
2
log |ĤSĤT + I|. (2.20)

Next, let Ĥ = FΣMT be a singular-value decomposition of Ĥ, where F and M are orthog-

onal matrices, and Σ is a diagonal matrix of singular values σ1, σ2, · · · , σr, where r is the

rank of Ĥ. Consider Ŝ = MTSM as the new optimization variable. Since tr(S) = tr(Ŝ),

the problem can now be transformed into,

maximize
1
2
log |ΣŜΣT + I|

subject to tr(Ŝ) ≤ P, (2.21)

Ŝ ≥ 0.
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Using Hadamard’s inequality [4], it can be shown that the optimal Ŝ is a diagonal matrix,

diag(p1, p2, · · · , pr), where the diagonal entries satisfy:

pi + 1/σ2
i = L, if 1/σ2

i < L, (2.22)

pi = 0, if 1/σ2
i ≥ L, (2.23)

where L is a constant chosen so that
∑

i pi = P . This solution is called water-filling because

1/σ2
i can be thought of as the bottom of a bowl, and pi may be thought of as the amount

of water poured into the bowl.

Thus, to achieve the Gaussian vector channel capacity, the transmitter must align its

transmit direction with the right singular-vectors of the effective channel and allocate an

appropriate amount of energy in each direction in a water-filling fashion. Solving the single-

user input optimization problem via water-filling is more efficient than using general purpose

convex programming algorithms because water-filling takes advantage of the problem struc-

ture by decomposing the equivalent channel along its eigen-modes.

2.2.2 Simultaneous Water-filling

The first step in generalizing single-user water-filling to the multi-user setting is the following

necessary and sufficient condition for the optimal input distribution in a multiple access

channel.

Theorem 2.3 Consider a K-user multiple access channel y =
∑K

i=1Hixi + z. The set of

covariance matrices Si is a solution to the rate-sum maximization problem

maximize
1
2
log

∣∣∣∣∣
K∑

i=1

HiSiH
T
i + Szz

∣∣∣∣∣− 1
2
log |Szz|

subject to tr(Si) ≤ Pi, i = 1, . . . ,K

Si ≥ 0, i = 1, . . . ,K

(2.24)

if and only if each Si is the single-user water-filling covariance matrix for the channel Hi

with noise Szz +
∑K

j=1,j �=iHjSjH
T
j .

Proof: The only if part holds for the following reason: Suppose that at the rate-sum opti-

mum, Si does not satisfy the single-user water-filling condition. Then, a single-user water-

filling for Si would increase the sum capacity, as the single-user rate optimization problem
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differs from the rate-sum optimization problem only by a constant. Thus, at the optimum,

all Si’s must satisfy the single-user water-filling condition.

The if part also holds. The proof relies on the Karush-Kuhn-Tucker (KKT) condition

for the optimization problem. Basic results on KKT conditions are included in Appendix

A. First, (2.24) can be reformulated into an equivalent form:

minimize − log |T |

subject to T ≤
K∑

i=1

HiSiH
T
i + Szz

tr(Si) ≤ Pi, i = 1, . . . ,K,

Si ≥ 0, i = 1, . . . ,K.

(2.25)

The coefficient 1/2 and the constant log |Szz| are omitted for simplicity. Associate dual
variables Γ, {λi}, {Ψi} to each of the constraints. Note that the first and the third con-
straints are matrix inequalities, so the dual variables Γ and {Ψi} are positive semi-definite
matrices. The dual variables for the power constraints {λi} are real. The Lagrangian for
the optimization problem is:

L({Si}, T,Γ, {λi}, {Ψi})

= − log |T |+ tr
[
Γ

(
T −

K∑
i=1

HiSiH
T
i − Szz

)]
+

K∑
i=1

λi(tr(Si)− Pi)−
K∑

i=1

tr(ΨiSi)

= − log |T |+ tr(ΓT )− tr(ΓSzz)−
K∑

i=1

λiPi +
K∑

i=1

tr[(λiI −HT
i ΓHi −Ψi)Si] (2.26)

where the fact tr(AB) = tr(BA) is used. The objective of the dual program is

g(Γ, {λi}, {Ψi}) = inf
{Si},T

L({Si}, T,Γ, {λi}, {Ψi}). (2.27)

At the infimum, ∂L/∂Si must be zero. This leads to:

λiI = HT
i ΓHi +Ψi, i = 1, 2, · · · ,K. (2.28)

Note that the above is equivalent to λiI ≥ HT
i ΓHi, since {Ψi} only need to be positive

semi-definite. Further, ∂L/∂T must be zero, i.e.
∂

∂T
(− log |T | + tr(ΓT )) = 0. This implies
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that

T−1 = Γ. (2.29)

Therefore, g(Γ, {λi}, {Ψi}) = log |Γ|+m− tr(ΓSzz)−
∑K

i=1 λiPi, where m is the dimension

of the output vector y. The dual problem of (2.24) is then:

maximize log |Γ|+m− tr(ΓSzz)−
K∑

i=1

λiPi

subject to λiI ≥ HT
i ΓHi, i = 1, . . . ,K

Γ ≥ 0.

(2.30)

Because the primal program is convex, the dual problem attains a maximum at the solution

of the primal problem.

The primal constraints satisfy Slater’s condition, so the KKT condition is sufficient and

necessary for optimality. The KKT conditions include the stationarity conditions on the

Lagrangian (2.28) and (2.29), as well as the complementary slackness conditions:

tr

[
Γ

(
T −

K∑
i=1

HiSiH
T
i − Szz

)]
= 0, (2.31)

λi(tr(Si)− Pi) = 0, i = 1, · · · ,K (2.32)

tr(ΨiSi) = 0, i = 1, · · · ,K (2.33)

Observe that at the optimum, T =
∑K

i=1 HiSiH
T
i + Szz, and tr(Si) = Pi, i = 1, . . . ,K. So,

only the last complementary slackness condition (2.33) is useful. Because the stationarity

and complementary slackness conditions, together with primal and dual constraints, are

necessary and sufficient for optimality, the optimization problem can be transformed into a

problem of finding primal variables {Si}, T and dual variables Γ, {Ψi}, {λi} that satisfy:

λiI = HT
i

 K∑
j=1

HjSjH
T
j + Szz

−1

Hi +Ψi,

tr(Si) = Pi,

tr(ΨiSi) = 0, i = 1, · · · ,K. (2.34)

Ψi, Si, λi ≥ 0.
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Observe that the above set of KKT conditions is also valid for the single-user water-

filling problem when K is set to 1. In this case, it is easy to verify that the single-user

solution (2.22)-(2.23) satisfies the set of KKT conditions exactly. Now, for the multiple

access channel, for each user i, the multi-user KKT condition and the single-user KKT

condition differ only by an additional noise term
∑K

j=1,j �=iHjSjH
T
j . So, if each Si satisfies

the single-user condition while regarding interference from other users as additional noise,

then collectively, the set of {Si} must also satisfy the multi-user KKT condition. By the

sufficiency of the KKT condition, {Si} must be the optimal covariance matrix for the multi-
user problem. This proves the if part of the theorem. ✷

2.2.3 Iterative Water-filling

At the rate-sum optimum, each user’s covariance matrix is a water-filling covariance against

the combined noise and interference. This suggests that water-filling may be done iteratively

to achieve the multiple access sum capacity.

Algorithm 2.1 Iterative water-filling for a Gaussian vector multiple access channel:

initialize Si = 0, i = 1, . . . K.

repeat

for i=1 to K

Z =
K∑

j=1,j �=i

HjSjH
T
j + Szz;

Si = argmax
S

1
2
log |HiSH

T
i + Z|, subject to tr(S) ≤ Pi;

end

until the desired accuracy is reached.

Theorem 2.4 The iterative water-filling algorithm converges to a limit point from any

initial assignment of Si. The limit point maximizes the sum capacity of a Gaussian vector

multiple access channel.

Proof: At each step, the iterative water-filling algorithm finds the single-user water-filling

covariance matrix for each user while regarding interference from all other users as additional

noise. Since the single-user rate objective differs from the multi-user rate-sum objective by

only a constant, the rate-sum objective is non-decreasing after each water-filling step. The

rate-sum objective is bounded above, so the rate-sum converges to a limit. At the limit
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point, all of S1, · · · , SK are simultaneously single-user water-filling covariance matrices while

treating the interference from other users as additional noise. Then, by Theorem 2.3, the

limit must be rate-sum optimal.

The above proof does not depend on the initial value. So the algorithm converges to

the optimum rate sum from any starting point. ✷

The multiple access channel capacity is achieved with superposition coding and suc-

cessive decoding. A decoding strategy where each user treats the interference from other

users as noise is not capacity achieving. Yet, for the input optimization problem, an itera-

tive procedure where in every step, each user does a single-user water-filling while treating

the interference from other users as noise just happens to be the one that converges to an

optimal set of transmit covariance matrices.

The set of rate-sum optimal covariance matrices is not necessarily unique. Depending

on the initial value, the iterative water-filling algorithm may converge to two different sets

of covariance matrices both giving the optimal sum rate. The following is an example when

this happens. Let H1 = H2 = Szz = I2×2 and P1 = P2 = 2. Then, S1 = S2 = I2×2, and

S′
1 =

[
2 0

0 0

]
S′

2 =

[
0 0

0 2

]
both achieve the same maximum rate-sum.

Figure 2.4 gives a graphical interpretation of the algorithm. The capacity region of a

two-user vector multiple access channel is shown in Figure 2.4(a). The sum rate R1 + R2

reaches the maximum on the line connecting points ‘C’ and ‘D’. Initially, the covariance

matrices for the two users, S(0)
1 and S(0)

2 , are zero matrices.

1. The first iteration is shown in Figure 2.4(b). After a single-user water-filling for S(1)
1 ,

the rate pair (R1, R2) is at point ‘F’. Then, treating S
(1)
1 as noise, a single-user water-

filling for S(1)
2 moves the rate pair to point ‘E’.

2. The second iteration is shown in Figure 2.4(c). First, note that fixing covariance ma-

trices S(1)
1 and S(1)

2 , the capacity region is the pentagon ‘abEFO’. So, by changing the

decoding order of user 1 and 2, the rate pair can be moved to point ‘b’ without affect-

ing the rate sum. Once at point ‘b’, a water-filling for S1 can be performed treating

S
(1)
2 as noise to get S(2)

1 . This would increase I(X1;Y), while keeping I(X2;Y|X1)

fixed, thus moving the rate pair to point ‘c’.

3. The capacity pentagon with (S(2)
1 , S

(1)
2 ) is now represented by ‘acdeO’. The decoding
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Figure 2.4: Illustration of iterative water-filling



Chapter 2. Multiple Access Channel 26

order can be interchanged again to arrive at point ‘d’. Another single-user water-filling

may then be performed treating S(1)
2 as noise. This gives S(2)

1 and its corresponding

rate-pair point ‘f’ in Figure 2.4(d). The process continues until it converges to points

‘C’ and ‘D’.

Note that in every step, each user negotiates for itself the best signaling direction as well as

the optimal power allocation while regarding the interference generated by all other users

as noise. The iterative water-filling algorithm is more efficient than general-purpose convex

programming routines, because in each step the algorithm takes advantage of the problem

structure by doing an eigen-mode decomposition and water-filling. In fact, the convergence

is very fast as the following theorem shows:

Theorem 2.5 After one iteration of the iterative water-filling algorithm, the set of transmit

covariance matrices achieves a sum rate that is at most (K − 1)m/2 nats away from the

sum capacity, where K is the total number of users and m is the dimension of the received

vector.

After the first iteration, the iterative procedure arrives at a corner point of a pentagon. The

above theorem states that the corner point is only 1/2 nats per user per output dimension

from the sum capacity. The proof of this theorem uses the duality gap bound in convex

analysis and is presented in Appendix B.

2.3 Summary

This chapter considers a Gaussian vector multiple access channel where transmitters do not

cooperate but receivers cooperate. The capacity region for the vector multiple access channel

is characterized, and the input optimization problem is formulated as a convex programming

problem. It is shown that the sum-rate maximization problem can be solved efficiently by

an iterative water-filling algorithm, where each step of the algorithm corresponds to a local

maximization of one user’s individual data rate while treating interference as noise. The

iterative process is guaranteed to converge, and it converges to the maximum sum capacity

of the multiple access channel. Thus, in a Gaussian vector multiple access channel, a

competitive optimum is also a global optimum.
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Broadcast Channel

A communication situation where a single transmitter sends independent information to

multiple uncoordinated receivers is referred to as a broadcast channel [6]. Figure 3.1 illus-

trates a two-user broadcast channel, where independent messages W1 and W2 are jointly

encoded by the transmitter X, and the receivers Y1 and Y2 are each responsible for decoding

W1 and W2, respectively. A (n, 2nR1 , 2nR2) codebook for a broadcast channel consists of

an encoding function Xn(W1,W2) where W1 ∈ {1, · · · , 2nR1} and W2 ∈ {1, · · · , 2nR2} and
decoding functions Ŵ1(Y n

1 ) and Ŵ2(Y n
2 ). An error occurs when W1 �= Ŵ1 or W2 �= Ŵ2.

A rate pair (R1, R2) is achievable if there exists a sequence of (n, 2nR1 , 2nR2) codebooks

for which the average probability of error Pn
e → 0 as n → ∞. The capacity region of a

broadcast channel is the union of all achievable rate pairs.

An obvious transmission strategy for the broadcast channel is to send independent

information to different receivers at different time-slots. This strategy is called time-division

multiplex (TDM). However, as Cover pointed out [6] [28], time-division multiplex is not

necessarily optimal, and a strategy that superimposes one user’s information on top of

another can do strictly better. In fact, this superposition scheme has been shown to be

optimal for the class of degraded broadcast channels, where one user’s received signal is

a noisier version of the other [29] [30]. However, for non-degraded broadcast channels,

superposition is in general sub-optimal, and the capacity region is still an unsolved problem.

The largest achievable region for the non-degraded broadcast channel is due to Marton [31]

[32], but no converse has been established. Over the years, the broadcast channel has

become one of the most basic open problems in multi-user information theory [33].

This thesis makes progress on the broadcast channel problem by solving for the sum

27



Chapter 3. Broadcast Channel 28

p(y1, y2|x)Xn(W1,W2)
W1 ∈ 2nR1

W2 ∈ 2nR2

Y n
1

Y n
2

Ŵ1(Y
n
1 )

Ŵ2(Y
n
2 )

Figure 3.1: Broadcast channel

capacity of a particular class of non-degraded Gaussian vector broadcast channels. The

main difficulty in the broadcast channel problem is that a broadcast channel distributes

information across several receivers, and without joint processing of the received signals, it is

not possible to communicate at a rate equal to the mutual information between the input and

the outputs. The contribution of this chapter is to show that for a Gaussian vector broadcast

channel, under a certain non-singularity condition, an equivalent of receiver processing can

be implemented at the transmitter by precoding, and the optimal precoder takes the form of

a generalized decision-feedback equalizer across the user domain. The optimal precoder can

also be thought of as a generalization of Tomlinson-Harashima precoder. This generalization

is related to shaping codes, and a practical precoding scheme based on trellis shaping is

also proposed in this chapter. The solution to the sum-capacity problem for the broadcast

channel illustrates the value of cooperation at the receiver. Without receiver cooperation,

the capacity of a Gaussian vector channel becomes a saddle-point of a mutual information

game, where “nature” effectively puts forth a worst possible noise correlation.

The vector broadcast channel arises in digital subscriber line (DSL) systems where

coordination is possible at one end of the telephone cable bundle, but not the other. In this

context, Ginis and Cioffi [34] [35] [36] investigated a multi-line precoder that takes advantage

of the transmitter coordination to cancel crosstalk interference. An information-theoretical

treatment of the Gaussian vector broadcast channel is given by Caire and Shamai [37] [38],

who characterized the sum capacity of a broadcast channel with two transmit antennas and

two users each equipped with a single antenna. This thesis generalizes these two results to

vector channels with an arbitrary number of transmit antennas and an arbitrary number

of users each equipped with multiple receive antennas, but under a certain non-singularity

condition. Simultaneous and independent work in Gaussian vector broadcast channels has

been carried out in [39] [40]. These efforts rely on a duality between the multiple access

channel and the broadcast channel and provide alternative proofs for the sum capacity.
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The rest of this chapter is organized as follows: In Section 3.1, the Gaussian vector

broadcast channel problem is formulated, and a precoding scheme based on channels with

transmitter side information is described. In Section 3.2, the optimal precoding structure

is shown to be closely related to a generalized decision-feedback equalizer. In Section 3.3,

an outer bound for the sum capacity of the Gaussian broadcast channel is computed, and

the decision-feedback precoder is shown to achieve the outer bound, thus proving the main

capacity result. Section 3.4 summarizes the information theoretical part of chapter by

illustrating the value of cooperation for a Gaussian vector channel. Section 3.5 proposes a

practical precoding scheme based on trellis shaping codes. Section 3.6 provides a conclusion

for the chapter.

3.1 Precoding for Gaussian Broadcast Channels

A Gaussian vector broadcast channel refers to a broadcast channel where the law of the

channel transition probability p(y1, y2|x) is Gaussian, and where x, y1 and y2 are vector

valued. Figure 3.2 illustrates a two-user Gaussian vector broadcast channel:

y1 = H1x+ z1

y2 = H2x+ z2,
(3.1)

where x is the transmit signal, y1 and y2 are receive signals, H1, H2 are channel matrices,

and z1, z2 are Gaussian vector noises. Independent information is to be sent to each

receiver. This thesis characterizes the maximum sum rate R1 +R2. The development here

is restricted to the two-user case for simplicity. The results can be generalized easily to

cases with more than two users.

When a Gaussian broadcast channel has a scalar input and scalar outputs, it can be

regarded as a degraded broadcast channel for which the capacity region is well established

[4]. A broadcast channel is degraded if p(y1,y2|x) = p(y1|x)p(y2|y1). Intuitively, this

means that one user’s signal is a noisier version of the other user’s signal. Consider the

Gaussian scalar broadcast channel:

y1 = x+ z1

y2 = x+ z2,
(3.2)

where x is the scalar transmitted signal subject to a power constraint P , y1 and y2 are the



Chapter 3. Broadcast Channel 30

xn(W1,W2)
W1 ∈ 2nR1

W2 ∈ 2nR2

yn
1

yn
2
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Figure 3.2: Gaussian vector broadcast channel

received signals, and z1 and z2 are the additive white Gaussian noises with variances σ2
1 and

σ2
2, respectively. Without loss of generality, assume σ1 < σ2. Then, z2 can be re-written

as z′2 = z1 + z′, where z′ ∼ N (0, σ2
2 − σ2

1) is independent of z1. Since z
′
2 has the same

distribution as z2, y2 is now equivalent to y1 + z′. Thus, y2 can be regarded as a degraded

version of y1. The capacity region for a degraded broadcast channel is achieved using a

superposition coding and interference subtraction scheme due to Cover [6]. The idea is to

divide the total power into P1 = αP and P2 = (1− α)P (0 ≤ α ≤ 1) and to construct two

independent Gaussian codebooks for the two users with powers P1 and P2, respectively. To

send two independent messages, one codeword is chosen from each codebook, and their sum

is transmitted. Because y2 is a degraded version of y1, the codeword intended for y2 can

also be decoded by y1. Thus, y1 can subtract the effect of the codeword intended for y2

and can effectively get a cleaner channel with noise power σ2
1 instead of σ

2
1 + P2. It is not

difficult to see that the following rate pair is achievable:

R1 =
1
2
log

(
1 +

P1

σ2
1

)
(3.3)

R2 =
1
2
log

(
1 +

P2

σ2
2 + P1

)
. (3.4)

In fact, as it was shown by Bergman [30], this superposition and interference subtraction

scheme is optimal for the degraded Gaussian broadcast channel.

When a Gaussian broadcast channel has a vector input and vector outputs, it is no

longer necessarily degraded, and superposition coding is no longer capacity-achieving. The

capacity region for a non-degraded broadcast channel is still an unsolved problem. The
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W ∈ 2nR p(y|x, s) Ŵ (Y n)Xn(W,Sn)

Sn

Y n

Figure 3.3: Channel with non-causal transmitter side information

largest achievable region in this case is due to Marton [31] [32], and it uses an idea called

random binning1. For a two-user broadcast channel with independent information for each

user, the Marton’s region is as follows:

R1 ≤ I(U1;Y1) (3.5)

R2 ≤ I(U2;Y2) (3.6)

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U1;U2) (3.7)

where (U1,U2) is a pair of auxiliary random variables, and the mutual information is eval-

uated under a joint distribution p(x|u1,u2)p(u1,u2) whose induced marginal distribution

p(x) satisfies the input constraint. Although the optimality of Marton’s region is not known

for the general broadcast channel, it is optimal for the deterministic broadcast channel [33],

and by a proper choice of (U1,U2), it gives the capacity region of the scalar Gaussian

degraded broadcast channel also. The objective of this chapter of the thesis is to show that

a proper choice of (U1,U2) also gives the sum-capacity of a non-degraded Gaussian vector

broadcast channel.

As a first step, let’s examine the degraded broadcast channel more carefully and give an

interpretation of the auxiliary random variables in the degraded case. The connection be-

tween the degraded broadcast channel capacity region and Marton’s region lies in the study

of channels with non-causal transmitter side information. A channel with side information

is illustrated in Figure 3.3. The channel output is a function of the input sequence Xn and

a channel state sequence Sn. The channel state is not known to the receiver but is known

to the transmitter as the side information. Further, the transmitter knows the entire state

sequence Sn prior to transmission in a non-causal way. For such a channel, Gel’fand and

1Random binning is a coding technique that uses an equivalent class of codewords to transmit information.
See Chapter 14 in [4] for a detailed description. The idea of random binning is due to Slepian and Wolf [41].
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W ∈ 2nR Ŵ (Y n)Xn(W,Sn) Y n

Sn Zn

Figure 3.4: Gaussian channel with transmitter side information

Pinsker [42] and Heegard and El Gamal [43] showed that its capacity can be characterized

as follows using an auxiliary random variable U :

C = max
p(u,x|s)

{I(U ;Y )− I(U ;S)}. (3.8)

The achievability proof of this result uses a random-binning argument, and it is closely

connected to Marton’s achievability region for the broadcast channel. Such a connection

was noted by Gel’fand and Pinsker in [42], and was further used by Caire and Shamai [38] for

the two-by-two Gaussian broadcast channel. The following rough argument illustrates the

connection. Fix a pair of auxiliary random variables (U1, U2) and a conditional distribution

p(x|u1, u2). Consider the effective channel p(y1, y2|x)p(x|u1, u2). Construct a random-

coding codebook from U2 to Y2 using an i.i.d. distribution according to p(u2). Evidently, a

rate of R2 = I(U2;Y2) is achievable. Now, since U2 is completely known at the transmitter,

the channel from U1 to Y1 is a channel with non-causal side information available at the

transmitter. Then, Gel’fand and Pinsker’s result ensures that a rate of R1 = I(U1;Y1) −
I(U2;U1) is achievable. This rate pair is precisely a corner point in Marton’s region for the

broadcast channel. The above rough argument ignores the issue that U1 now depends on

U2, but for the Gaussian channel, the argument can be made rigorous.

When specialized to the Gaussian channel, the capacity of a channel with side informa-

tion has an interesting solution. Consider the Gaussian channel shown in Figure 3.4:

y = x+ s+ z, (3.9)

where x and y are the transmitted and the received signals respectively, s is a Gaussian

interfering signal whose entire non-causal realization is known to the transmitter but not

to the receiver, and z is a Gaussian noise independent of s. In a surprising result known

as “writing-on-dirty-paper,” Costa [44] showed that when sn and zn are i.i.d. Gaussian
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sequences, under a fixed power constraint, the capacity of the channel with interference

is the same as if the interference does not exist. In addition, the optimal transmit signal

x is statistically independent of s. In effect, interference can be “pre-subtracted” at the

transmitter without increase in transmit power.

The “dirty-paper” result gives us another way to derive the degraded Gaussian broadcast

channel capacity. Let x = x1 + x2, where x1 and x2 are independent Gaussian signals with

average powers P1 and P2 respectively, where P1 + P2 = P . The message intended for y1

is transmitted through x1, and the message intended for y2 is transmitted through x2. If

two independent codebooks are used for x1 and x2, each receiver sees the other user’s signal

as noise. However, the transmitter knows both messages in advance. So, the channel from

x1 to y1 can be regarded as a Gaussian channel with non-causal side information x2, for

which Costa’s result applies. Thus, a transmission rate from x1 to y1 that is as high as

if x2 is not present can be achieved, i.e. R1 = I(X1;Y1|X2). Further, the optimal x1 is

statistically independent of x2. Thus, the channel from x2 to y2 still sees x1 as independent

noise, and a rate R2 = I(X2;Y2) is achievable. This gives an alternative derivation for

the degraded Gaussian broadcast channel capacity in equations (3.3)-(3.4). Curiously, this

derivation does not use the fact that y2 is a degraded version of y1. In fact, y1 and y2 may

be interchanged and the following rate pair is also achievable:

R1 =
1
2
log

(
1 +

P1

σ2
1 + P2

)
(3.10)

R2 =
1
2
log

(
1 +

P2

σ2
2

)
. (3.11)

It can be shown that, when σ1 < σ2, the above rate region is smaller than the true capacity

region in equations (3.3)-(3.4).

The idea of subtracting interference at the transmitter instead of at the receiver is

attractive because it is also applicable to non-degraded broadcast channels. Consider the

following Gaussian vector broadcast channel:

y1 = H1x+ z1

y2 = H2x+ z2,
(3.12)

where x, y1 and y2 are vector input and outputs, H1 and H2 are channel matrices, and

z1, z2 are Gaussian vector noises with covariance matrices Sz1z1 and Sz2z2 , respectively.
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Figure 3.5: Coding for vector broadcast channel

In general, H1 and H2 are not degraded versions of each other. Further, they do not

necessarily have the same eigenvectors, so it is generally not possible to diagonalize H1 and

H2 simultaneously2. Nevertheless, the “dirty-paper” result can be extended to the vector

case to pre-subtract multi-user interference at the transmitter, again with no increase in

transmit power.

Lemma 3.1 Given a fixed power constraint, a Gaussian vector channel with side informa-

tion y = x+s+z, where z and s are independent Gaussian random vectors, and s is known

non-causally at the transmitter but not at the receiver, has the same capacity as if s does

not exist, i.e.

C = max
p(u,x|s)

{I(U;Y) − I(U;S)} = I(X;Y|S). (3.13)

Further, the capacity-achieving x is statistically independent of s.

This result has been noted by several authors [46] [47] under different conditions. A direct

proof is included as Appendix C, where it is shown that the capacity-achieving p(u,x|s) is
such that x and s are independent, and u takes the form of u = x+F s, where F is a fixed

matrix determined by the covariance matrices of s and z. Lemma 3.1 suggests a coding

scheme for the broadcast channel as shown in Figure 3.5. The following theorem formalizes

this idea:

2An important exception is when H1 and H2 are ISI channels, in which case both are Toeplitz, and can
be simultaneously decomposed into scalar channels by discrete Fourier transforms [45].
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Theorem 3.1 Consider the Gaussian vector broadcast channel yi = Hix+zi, i = 1, · · · ,K,

under a power constraint P . The following rate region is achievable:(R1, · · · , RK) : Ri ≤ 1
2
log

∣∣∣∑K
k=i HiSkH

T
i + Szizi

∣∣∣∣∣∣∑K
k=i+1HiSkH

T
i + Szizi

∣∣∣
 (3.14)

where Szizi is the covariance matrix for zi, and Si is a set of positive semi-definite matrices

satisfying the constraint:
∑K

i=1 tr(Si) ≤ P .

Proof: For simplicity, only the proof for the case K = 2 is presented. The extension to

the general case is straightforward. Let x = x1 + x2, where x1 and x2 are independent

Gaussian vectors whose covariance matrices S1 and S2 satisfy tr(S1 + S2) ≤ P . Now, fix

U2 = x2 and choose the conditional distribution p(u1|u2,x1) to be such that it maximizes

I(U1;Y1)−I(U1;U2). By Lemma 3.1, the maximizing distribution is such that x1 and U2

are independent. So, assuming that x1 and x2 are independent a priori is without loss of

generality. Further, by (3.13), the maximizing distribution gives I(U1;Y1)− I(U1;U2) =

I(X1;Y1|U2). Using this choice of (U1,U2) in Marton’s region (3.5)-(3.7), the following

rates are obtained: R1 = I(X1;Y1|X2), R2 = I(X2;Y2). The mutual information can be

evaluated as:

R1 =
1
2
log

|H1S1H
T
1 +H1S2H

T
1 + Sz1z1 |

|H1S2HT
1 + Sz1z1|

(3.15)

R2 =
1
2
log

|H2S2H
T
2 + Sz2z2 |

|Sz2z2 |
, (3.16)

which is the desired result. ✷

This theorem is a generalization of an earlier result by Caire and Shamai [38], who

essentially considered the set of rank-one Si in their derivation of the two-by-two broadcast

channel sum capacity. Theorem 3.1 restricts (U1,U2) in Marton’s region to be of a special

form. Although such restriction may be capacity-lossy in general, as the results in the

next section show, for achieving the sum capacity of a Gaussian vector broadcast channel,

this choice of (U1,U2) is without loss of generality. Note that finding an optimal set of

Si in (3.15)-(3.16) may not be computationally easy. Linear combinations of R1 and R2

are non-convex functions of (S1, S2). Further, the order of interference pre-subtraction is
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arbitrary, and it is also possible to split the transmit covariance matrix into more than two

users to achieve the rate-splitting points. Caire and Shamai [38] partially circumvented

the difficulty for the two-by-two broadcast channel by deriving an outer bound for the sum

capacity. They assumed a particular precoding order, and by optimizing over the set of

all rank-one Si, succeeded in proving that Marton’s region coincides with the outer bound

for the two-user two-antenna broadcast channel. Unfortunately, their procedure does not

generalize to the n-user case easily, and it does not reveal the structure of the optimal Si.

In a separate effort, Ginis and Cioffi [36] demonstrated a precoding technique for an N×
N broadcast channel based on a QR decomposition of the channel matrix. The QR method

transforms the matrix channel into a triangular structure, and by doing so, implicitly chooses

a set of Si based on the Q matrix in the QR decomposition. This channel triangularization

was also independently considered by Caire and Shamai [38], who further proved that the

QR method is rate-sum optimal in both low and high SNR regions. However, this choice of

Si is sub-optimal in general.

A major goal of this chapter is to find an optimal set of Si in equations (3.15)-(3.16)

that maximizes the sum capacity of a Gaussian vector broadcast channel. The key insight

is that the optimal precoder has the structure of a decision-feedback equalizer.

3.2 Decision-feedback Precoding

3.2.1 GDFE

Decision-feedback equalization (DFE) is widely used to combat intersymbol interference

(ISI) in linear dispersive channels. In a channel with ISI, each input symbol produces a

sequence of time-delayed channel outputs, so that each received sample contains contribu-

tions from many input symbols. To untangle the interference, a decision-feedback equalizer

employs the following strategy. Each input symbol is decoded based on the entire received

sequence. After an input symbol is decoded, its effect is subtracted from the received se-

quence before the decoding for the next symbol begins. Under the assumption of no error

propagation and also a channel non-singularity condition (that rarely occurs by accident),

a generalization of decision-feedback equalizer (that often consists of several DFE’s) can

achieve the capacity of a Gaussian linear dispersive channel [48].

The study of the decision-feedback equalizer is related to the study of multiple access

channels. If each transmitted symbol in an ISI channel is regarded as a data stream from a
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separate user, the decision-feedback equalizer can be thought of as a successive interference

subtraction scheme for the multiple access channel. This connection can be formalized by

considering a decision-feedback structure that operates on a finite block of inputs. This

block-based structure, introduced in [49] as the Generalized Decision-Feedback Equalizer

(GDFE), was also developed independently in [50] for the multiple access channel. This

thesis will eventually use the GDFE structure for the broadcast channel also. As a first

step, an information theoretical derivation of the generalized decision-feedback equalizer is

given. The derivation is largely based on [49].

Consider a Gaussian vector channel y = Hx+z, where x, y and z are Gaussian vectors.

Let x ∼ N (0, Sxx), and without loss of generality, assume z ∼ N (0, I). Shannon’s noisy
channel coding theorem suggests that to achieve a rate R = I(X;Y) = 1

2 log |HSxxH
T + I|,

a random codebook can be constructed, where each codeword in the codebook is a sequence

of Gaussian vectors generated from an i.i.d. distribution N (0, Sxx). Evidently, sending a

message using such a vector codebook requires joint processing of components of x at the

encoder. Now, write x as xT = [xT
1xT

2 ], and suppose further that x1 and x2 are statistically

independent so that the covariance matrix Sxx is of the form

[
Sx1x1 0

0 Sx2x2

]
. In this case,

one might ask, is it possible to achieve a rate R = I(X;Y) using two separate codebooks

with the encoding and decoding of x1 and x2 done independently? The answer is yes, and

the key to do so is to use a receiver based on a generalized decision-feedback equalizer.

The development of GDFE involves three key ideas. The first idea is to recognize that

in a Gaussian vector channel y = Hx + z, the optimal decoding of x from y is related to

the minimum mean-square error (MMSE) estimation of x given y. Consider the setting

in Figure 3.6, where at the output of the Gaussian vector channel, an MMSE estimator

M is applied to y to generate x̂. First, note that the use of MMSE estimation is capacity

lossless. The maximum achievable rate after MMSE estimation is I(X; X̂). The following

argument shows that I(X; X̂) = I(X;Y). The MMSE estimator for a Gaussian process is

linear, soM represents a matrix multiplication. Further, let the difference between x and x̂

be e. From linear estimation theory, e is Gaussian and is independent of x̂. So, if I(X; X̂)

is re-written as I(X̂;X), it can be interpreted as the capacity of a Gaussian channel from

x̂ to x with e as the additive noise:

I(X; X̂) = I(X̂;X) =
1
2
log

|Sxx|
|See| , (3.17)
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Figure 3.6: MMSE estimation in a Gaussian vector channel

where Sxx and See are covariance matrices of x and e respectively. This mutual information

is related to the capacity of the original channel. The key is the following observation [48]:

I(X;Y) = H(Y)−H(Y|X) =
1
2
log

|Syy|
|Sy|x|

=
1
2
log

|Syy|
|Szz| , (3.18)

I(Y;X) = H(X)−H(X|Y) =
1
2
log

|Sxx|
|Sx|y|

=
1
2
log

|Sxx|
|See| , (3.19)

where H(Y|X) is the uncertainty in y given x, so Sy|x = Szz, and likewise, H(X|Y) is the
uncertainty in x given y, so Sx|y = See. Since I(X;Y) = I(Y;X), this implies that

I(X;Y) = I(Y;X) = I(X; X̂) = I(X̂;X). (3.20)

Now write x̂T = [x̂T
1 x̂T

2 ]. Suppose that x1 and x2 are independently coded with two

separate codebooks. Decoding of x1 and x2, however, cannot be done on x̂1 and x̂2 sepa-

rately. To see this, write e1 = x1−x̂1 and e2 = x2−x̂2. Individual detections on x̂1 and x̂2

achieve I(X1; X̂1) and I(X2; X̂2), respectively. Because e1 and e2 are independent of x1

and x2 respectively and are both Gaussian, the argument in the previous paragraph may be

repeated to conclude that individual detections on x̂1 and x̂2 achieve 1
2 log (|Sx1x1 |/|Se1e1|)

and 1
2 log (|Sx2x2|/|Se2e2 |), respectively. But, e1 and e2 are not necessarily uncorrelated.

So, by Hadamard’s inequality, |See| ≤ |Se1e1| · |Se2e2 |. This implies

1
2
log

|Sx1x1|
|Se1e1|

+
1
2
log

|Sx2x2|
|Se2e2|

≤ 1
2
log

|Sxx|
|See| . (3.21)

Thus, although the decoding of x based on x̂ is capacity-lossless, the independent decoding

of x1 based on x̂1 and decoding of x2 based x̂2 are capacity-lossy.
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The goal of GDFE is to use decision-feedback to facilitate the independent decoding of

x1 and x2. This is accomplished by a diagonalization of the MMSE error e, while preserving

the “information” in x̂. First, let’s write down the MMSE filter M ,

M = SxyS
−1
yy (3.22)

= SxxH
T (HSxxH

T + I)−1 (3.23)

= (HTH + S−1
xx )

−1HT , (3.24)

where (3.22) follows from standard linear estimation theory and (3.24) follows from the

matrix inversion lemma [51], which will be used repeatedly in subsequent developments:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (3.25)

Now, it is clear that M may be split into two parts: a matched filter HT and an estimation

filter (HTH+S−1
xx )−1, as shown in Figure 3.7. This creates a pair of channels. The forward

channel goes from x to w:

w = HTHx+HTz = Rfx+ z′, (3.26)

where Rf = HTH. The backward channel goes from w to x:

x = (HTH + S−1
xx )

−1w + e = Rbw + e, (3.27)

where Rb = (HTH + S−1
xx )−1. The forward channel has the following property: the covari-

ance matrix of the noise z′ is the same as the channel matrix Rf . The second key idea in

GDFE is to recognize that the backward channel has the same property as verified below:

E[eeT ] = E[(x− x̂)(x − x̂)T ]

= E[(x− SxyS
−1
yy y)(x − SxyS

−1
yy y)T ]

= Sxx − SxxH
T (HSxxH

T + I)−1HSxx

= (HTH + S−1
xx )

−1

= Rb, (3.28)

where the matrix inversion lemma (3.25) is again used.
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Figure 3.7: Forward and backward channels

The goal is to diagonalize the MMSE error e. The third key idea in GDFE is to

recognize that diagonalization may be done using a block Cholesky factorization of Rb,

which is simultaneously the backward channel matrix and the covariance matrix of e:

Rb = G−1∆−1G−T , (3.29)

where G =

[
I G22

0 I

]
is a block upper triangular matrix, and ∆ =

[
∆11 0

0 ∆22

]
is a

block diagonal matrix. The Cholesky factorization diagonalizes e in the following sense.

Define e′ = Ge: [
e′1
e′2

]
=

[
I G22

0 I

][
e1

e2

]
. (3.30)

Then, the components e′1 and e′2 are uncorrelated because

Se′e′ = E[e′e′T ] = E[Ge(Ge)T ] = GRbG
T = ∆−1, (3.31)

which is a block-diagonal matrix. Further, the diagonalization preserves the determinant

of the covariance matrix:

|Se′e′ | = |∆−1| = |G−1∆−1G−T | = |See|. (3.32)

The next idea is to recognize that the diagonalization can be done directly by modifying

the backward channel to form a decision-feedback equalizer. Because the channel matrix
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Figure 3.8: Generalized decision feedback equalizer

and the noise covariance matrix are the same, it is possible to split the channel matrix Rb

into the following feedback configuration:

x = Rbw + e (3.33)

x = G−1∆−1G−T w + e (3.34)

Gx = ∆−1G−T w +Ge (3.35)

x = ∆−1G−T w + (I −G)x + e′. (3.36)

Writing out the matrix computation explicitly,[
x1

x2

]
=

[
∆−1

11 0

0 ∆−1
22

][
I 0

−GT
22 I

][
w1

w2

]
+

[
0 −G22

0 0

][
x1

x2

]
+

[
e′1
e′2

]
.

It is now clear that the backward canonical channel is split into two independent sub-

channels whose respective noises are uncorrelated. The sub-channel for x2 is:

x2 = ∆−1
22 (−GT

22w1 +w2) + e′2 � x′
2 + e′2. (3.37)

Once x2 is decoded correctly, G22x2 can be subtracted from the sub-channel for x1 to form:

x1 = ∆−1
11 w1 + e′1 � x′

1 + e′1, (3.38)

where x′ is defined as x′ � ∆−1G−T w + (I −G)x, and x′T = [x′
1

Tx′
2

T ]. This interference

subtraction scheme is called a generalized decision-feedback equalizer. The GDFE structure

is shown in Figure 3.8. The combination of ∆−1G−T and HT is called the feedforward filter;

I −G is called the feedback filter.
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The key result in the development of the GDFE is that the decision-feedback operation

results in equivalent independent channels that have the same capacity as the original vector

channel. To see this, note that the maximum achievable rate with a GDFE is I(X;X′).
This mutual information can be more easily computed if written as I(X′;X), which can be
interpreted as the capacity of the channel x = x′ + e′. Now, e′ = Ge is independent of x̂,

so it is independent of w and thus independent of x′. Also, e′ is Gaussian, so the capacity
of the channel x = x′ + e′ is just:

I(X′;X) =
1
2
log

|Sxx|
|Se′e′ | . (3.39)

This is precisely the capacity of the original channel, because by (3.19) and (3.32):

I(X;Y) =
1
2
log

|Sxx|
|See| =

1
2
log

|Sxx|
|Se′e′ | = I(X;X′). (3.40)

Further, Sxx and Se′e′ are both diagonal, so, |Sxx| = |Sx1x1 | · |Sx2x2 |, and |Se′e′ | = |∆−1| =
|∆−1

11 |·|∆−1
22 | = |Se′1e′1 |·|Se′2e′2 |. Thus, the GDFE structure has decomposed the vector channel

into two sub-channels that can be independently encoded and decoded. The capacities of

the two sub-channels are:

R1 = I(X′
1;X1) =

1
2
log

|Sx1x1|
|Se′1e′1|

(3.41)

R2 = I(X′
2;X2) =

1
2
log

|Sx2x2|
|Se′2e′2|

. (3.42)

And the sum capacity is:

R1 +R2 = I(X′
1;X1) + I(X′

2;X2)

=
1
2
log

|Sx1x1|
|Se′1e′1|

+
1
2
log

|Sx2x2 |
|Se′2e′2 |

=
1
2
log

|Sxx|
|See|

= I(X;Y). (3.43)

Thus, GDFE is capacity lossless.
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3.2.2 Precoding

For a Gaussian vector channel with independent inputs x1 and x2, the generalized decision-

feedback equalizer decomposes the vector channel into two sub-channels for which encoding

and decoding can be performed independently. As long as the decision-feedback operation

is error-free, the sum capacity of the two sub-channels is the same as the capacity of the

original vector channel. Thus, if x1 and x2 are independent, transmitter coordination

is not necessary to achieve the mutual information I(X1,X2;Y). On the other hand,

receiver coordination is required in a decision-feedback equalizer. This is so for two reasons.

First, the feedforward structure operates on the entire vector y. Second, the feedback

operation requires the correct codeword from one sub-channel to be available before the

decoding of the other sub-channel. It turns out that the second problem can be averted

using ideas from coding for channels with transmitter side information. In this section, a

precoding scheme based on “writing-on-dirty-paper” is described. The main result is that

the decision-feedback operation can be moved to the transmitter, and it is equivalent to

interference “pre-subtraction”.

Theorem 3.2 Consider a Gaussian vector channel y =
∑K

i=1Hixi + z, where xi’s are

independent Gaussian vectors and z ∼ N (0, I). The sum capacity I(X1, · · · ,XK;Y) with

Ri = I(Xi;Y|Xi+1, · · · ,XK) is achievable in two ways: either using a decision-feedback

structure with the knowledge of xi+1, · · · ,xK assumed to be available before the decoding of

each xi, or using a precoder structure with the knowledge of xi+1, · · · ,xK assumed to be

available before the encoding of each xi.

Proof: The development in the previous section shows that a generalized decision-feedback

equalizer achieves I(X1,X2;Y). To show the first part of the theorem, it is necessary

to compute the individual rates of the two sub-channels. As before, let x1 and x2 be

independent. Let H = [H1H2]3, zT = [zT
1 zT

2 ], and write the vector channel in the form of

a multiple access channel:

y = Hx+ z = [H1H2]

[
x1

x2

]
+

[
z1

z2

]
. (3.44)

3For the rest of this proof only, define H = [H1H2]. Elsewhere in the chapter, define HT = [HT
1 HT

2 ].
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The block Cholesky factorization (3.29) may be computed explicitly:

(S−1
xx +HTH)−1 =

[
S−1

x1x1
+HT

1 H1 HT
1 H2

HT
2 H1 S−1

x2x2
+HT

2 H2

]−1

= G−1∆−1G−T , (3.45)

where

G =

[
I (S−1

x1x1
+HT

1 H1)−1HT
1 H2

0 I

]
, (3.46)

and

∆−1 =

[
(S−1

x1x1
+HT

1 H1)−1 0

0 (S−1
x2x2

+HT
2 H2 −HT

2 H1(S−1
x1x1

+HT
1 H1)−1HT

1 H2)−1

]
.

(3.47)

Thus, by (3.32),

Se′1e′1 = ∆
−1
11 = (S

−1
x1x1

+HT
1 H1)−1. (3.48)

So, from (3.41),

R1 = I(X′
1;X1) =

1
2
log

|Sx1x1|
|(S−1

x1x1 +HT
1 H1)−1| =

1
2
log |H1Sx1x1H

T
1 + I|, (3.49)

where the matrix identity |I +AB| = |I +BA| is used. Writing it out in another way:

R1 = I(X′
1;X1) = I(X1;Y|X2). (3.50)

Also,

Se′2e′2 = (S−1
x2x2

+HT
2 H2 −HT

2 H1(S−1
x1x1

+HT
1 H1)−1HT

1 H2)−1, (3.51)

= (S−1
x2x2

+HT
2 (I +H1Sx1x1H

T
1 )

−1H2)−1, (3.52)

where the matrix inversion lemma is used.
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Thus, from (3.42),

R2 = I(X′
2;X2) =

1
2
log

|Sx2x2|
|(S−1

x2x2 +HT
2 (I +H1Sx1x1H

T
1 )−1H2)−1| (3.53)

=
1
2
log

|H1Sx1x1H
T
1 +H2Sx2x2H

T
2 + I|

|H1Sx1x1H
T
1 + I| , (3.54)

which can be verified by directly multiplying out the respective terms and by repeated uses

of the identity |I +AB| = |I +BA|. Thus,

R2 = I(X′
2;X2) = I(X2;Y). (3.55)

This verifies that the achievable sum rate in the multiple access channel using GDFE is

R1 +R2 = I(X1,X2;Y) =
1
2
log |H1Sx1x1H

T
1 +H2Sx2x2H

T
2 + I|. (3.56)

Therefore, the generalized decision feedback equalizer not only achieves the sum capacity

of a multiple access channel, it also achieves the individual rates of a corner point in the

multiple access capacity region. Interchanging the order of x1 and x2 achieves the other

corner point. This, together with time-sharing or rate-splitting, allows GDFE to achieve

the entire capacity region of the multiple access channel.

An induction argument generalizes the above result to more than two users. Assume that

a GDFE achieves Ri = I(Xi;Y|Xi+1, · · · ,XK) for a K-user multiple access channel. In a

(K + 1)-user channel, users 1 and 2 can first be considered as a super-user, and the GDFE

result can be applied to the resulting K-user channel with Ri = I(Xi;Y|Xi+1, · · · ,XK+1)

for i = 3, · · · ,K, and R1 + R2 = I(X1,X2;Y|X3, · · · ,XK+1). Then, a separate two-

user GDFE can be applied to users 1 and 2 to obtain Ri = I(Xi;Y|Xi+1, · · · ,XK+1), for

i = 1, 2.

Next, it is shown that the same rate-tuple can be achieved using a precoding structure for

channels with side information at the transmitter. Consider the output of the feedforward

filter, the vector v in Figure 3.8. Write vT = [vT
1 vT

2 ], and consider the capacity of the two

sub-channels: one from x1 to v1 and the other from x2 to v2. Note that v2 = x′
2. So, the

sub-channel from x2 to v2 is the same as in a GDFE:

R2 = I(X2;V2) = I(X2;X′
2) = I(X2;Y). (3.57)
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Now, consider the sub-channel from x1 to v1 with x2 available at the transmitter. Because

x2 is Gaussian and is independent of x1, Lemma 3.1 applies. The capacity of this sub-

channel is then R1 = I(X1;V1|X2). The rest of the proof shows that this conditional

mutual information is equal to the corresponding data rate in GDFE: I(X1;X′
1). Toward

this end, it is necessary to explicitly compute v1. Since

v = ∆−1G−THT (Hx+ z), (3.58)

using (3.47) and (3.46), v1 can be expressed as:

v1 = (S−1
x1x1

+HT
1 H1)−1HT

1 (H1x1 +H2x2) + z′1, (3.59)

where z′ = ∆−1G−THTz, z′T = [z′1
Tz′2

T ]. It can be shown that z′1 has a covariance matrix:

E[z′1z
′
1

T ] = (S−1
x1x1

+HT
1 H1)−1HT

1 H1(S−1
x1x1

+HT
1 H1)−1. (3.60)

So, v1 is equivalent to

v1 = (S−1
x1x1

+HT
1 H1)−1HT

1 (H1x1 +H2x2 + z1), (3.61)

On the other hand, x′
1 can be computed explicitly from x′ = v + (I −G)x.

x′
1 = (S

−1
x1x1

+HT
1 H1)−1HT

1 (H1x1 + z1). (3.62)

Since x1, x2 and z1 are jointly independent, it follows from (3.61) and (3.62) that

R1 = I(X1;V1|X2) = I(X1;X′
1) = I(X1;Y|X2). (3.63)

Therefore, a precoder achieves the same capacity as a decision-feedback equalizer. This

proof generalizes to the K-user case by a similar induction argument as before. ✷

Figure 3.9 and Figure 3.10 illustrate the two coding strategies for the Gaussian vec-

tor channel. Figure 3.9 illustrates the decision-feedback configuration. x1 and x2 are

coded independently. After x2 is decoded, its effect, namely (S−1
x1x1

+ HT
1 H1)−1HT

1 H2x2,

is subtracted before x1 is decoded. This decision-feedback configuration achieves the
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Figure 3.9: Decision feedback decoding

vector channel capacity in the sense that I(X1,X2;Y) = I(X1;Y|X2) + I(X2,Y) =

I(X1;X′
1) + I(X2;X′

2). Figure 3.10 illustrates the precoder configuration. In this case, x2

is coded as before. The channel for x1 is a Gaussian channel with transmitter side informa-

tion x2, whose effect can be completely pre-subtracted. This precoder configuration achieves

the vector channel capacity in the sense that I(X1,X2;Y) = I(X1;Y|X2) + I(X2;Y) =

I(X1;V1|X2)+ I(X2;V2). In the decision-feedback configuration, x2 is assumed to be de-

coded correctly before its interference is subtracted. This implies a decoding delay between

the two users. Further, if an erroneous decision on x2 is made, error would propagate. In

the precoding configuration, error propagation never occurs. However, because non-causal

side information is needed, x1 cannot be encoded until x2 is available. This implies an

encoding delay. The two situations are symmetric, and they are both capacity-achieving.

The decision-feedback configuration does not require transmitter coordination. So, it is

naturally suited for a multiple access channel. In the precoder configuration, the feedback

operation is moved to the transmitter. So, one might hope that it corresponds to a broadcast
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Figure 3.10: Decision feedback precoding

channel where receiver coordination is not possible. This is, however, not yet true in the

present setting. The capacity-achieving precoder requires a feedforward filter that acts on

the entire received vector, so receiver coordination is still needed. However, under certain

conditions, the feedforward filter degenerates into a diagonal matrix, which eliminates the

need for receiver coordination entirely. The condition under which this happens is the focus

of the next section.

3.3 Broadcast Channel Sum Capacity

3.3.1 Least Favorable Noise

The key in deriving of the broadcast channel sum capacity is to find a tight capacity outer

bound. Consider the broadcast channel[
y1

y2

]
=

[
H1

H2

]
x+

[
z1

z2

]
, (3.64)
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Figure 3.11: A simple two-user broadcast channel

where y1 and y2 do not cooperate. Fix an input distribution p(x). The sum capacity of the

broadcast channel is clearly bounded by the capacity of the vector channel I(X;Y1,Y2)

where y1 and y2 cooperate. As recognized by Sato [52], this bound can be further tightened.

Because y1 and y2 cannot coordinate in a broadcast channel, the broadcast channel capacity

does not depend on the joint distribution p(z1, z2), but only on the marginals p(z1) and

p(z2). This is so because two broadcast channels with the same marginals but with different

joint distribution can use the same encoder and decoders and maintain the same probability

of error. Therefore, the sum capacity of a broadcast channel must be bounded by the

minimum mutual information:

R1 +R2 ≤ min I(X;Y1,Y2), (3.65)

where the minimization is over all p(z1, z2) that has the same marginal distributions as the

actual noise. The minimizing noise distribution is called the “least-favorable” noise. Sato’s

bound is the basis for the computation of two-by-two broadcast channel capacity by Caire

and Shamai [38].

The following example illustrates Sato’s bound. Consider the two-user two-terminal

broadcast channel shown in Figure 3.11, where the channel from x1 to y1 and the channel

from x2 to y2 have unit gain, and the cross-over channels have a gain α. Assume that

x1 and x2 are independent Gaussian signals, and z1 and z2 are Gaussian noises all with

unit variance. The broadcast channel capacity is clearly bounded by I(X1,X2;Y1, Y2).
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This mutual information is a function of the cross-over channel gain α and the correlation

coefficient ρ between z1 and z2. Consider the case α = 0. In this case, the least favorable

noise correlation is ρ = 0. This is because if z1 and z2 were correlated, decoding of y1

would reveal z1 from which z2 can be partially inferred. Such inference is possible, of

course, only if y1 and y2 can cooperate. In a broadcast channel where y1 and y2 cannot

take advantage of such correlation, the capacity with correlated z1 and z2 is the same as

with uncorrelated z1 and z2. Thus, regardless of the actual correlation between z1 and

z2, the broadcast channel capacity is bounded by the mutual information I(X1,X2;Y1, Y2)

evaluated assuming uncorrelated z1 and z2. Consider another case α = 1. The least

favorable noise here is the perfectly correlated noise with ρ = 1. This is because ρ = 1

implies z1 = z2 and y1 = y2. So, one of y1 and y2 is superfluous. If z1 and z2 were not

perfectly correlated, (y1, y2) collectively would reveal more information than y1 or y2 alone

would. Since ρ = 1 is the least favorable noise correlation, the broadcast channel sum

capacity is bounded by the mutual information I(X1,X2;Y1, Y2) assuming ρ = 1. This

example illustrates that the least favorable noise correlation depends on the structure of

the channel. The rest of this section is devoted to a characterization of the least favorable

noise.

Consider the Gaussian vector channel yi = Hix + zi, i = 1, · · · ,K. Assume for now
that x is a Gaussian vector signal with a fixed covariance matrix Sxx, and z1, · · · , zK are

jointly Gaussian noises each with a marginal distribution zi ∼ N (0, I). Then, the task of
finding the least favorable noise correlation can be formulated as the following optimization

problem. Let HT = [HT
1 · · ·HT

K ]. The minimization problem is:

minimize
1
2
log

|HSxxH
T + Szz|

|Szz| (3.66)

subject to S(i)
zz = I, i = 1, · · · ,K,

Szz ≥ 0,

where Szz is the covariance matrix for z with zT = [zT
1 · · · zT

K], and S
(i)
zz refers to the ith

block-diagonal term of Szz. The optimization is over all off-diagonal terms of Szz subject

to the constraint that Szz is positive semi-definite.

In writing down the optimization problem (3.66), it has been tacitly assumed that the

minimizing Szz is strictly positive definite, so that |Szz| > 0. This is an additional assump-

tion that will be made throughout this chapter. In fact, it is possible for the minimizing
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Szz to be singular. For example, for the two-user broadcast channel considered earlier with

α = 1, the least favorable noise has a covariance matrix

[
1 1

1 1

]
, which is singular. Note

that a sufficient condition for the minimizing Szz to be non-singular is that |HSxxH
T | > 0.

This is because whenever |Szz| = 0, it must also be that |HSxxH
T + Szz| = 0, (as other-

wise the mutual information goes to infinity.) But |HSxxH
T + Szz| cannot be zero unless

|HSxxH
T | is zero. Thus, |HSxxH

T | > 0 is sufficient to ensure that |Szz| > 0. This sufficient

condition holds, for example, when both H and Sxx are full rank. This condition always

applies to downstream digital subscriber line (DSL) multi-line channels, but it does not

necessarily apply to wireless multi-antenna downlink channels unless the number of users is

smaller than the number of base-station antennas.

The following lemma characterizes an optimality condition for the least favorable noise

assuming that such a noise is non-singular. For now, the transmit signal for the broadcast

channel x is assumed to be Gaussian with a fixed covariance matrix. It will be shown later

that this restriction is without loss of generality.

Lemma 3.2 Consider a Gaussian vector broadcast channel yi = Hix + zi, i = 1, · · · ,K,

where x ∼ N (0, Sxx) and zi ∼ N (0, I). Let HT = [HT
1 · · ·HT

K ]. Then, the least favorable

noise distribution that minimizes I(X;Y1, · · · ,YK) is jointly Gaussian. Further, if the

minimizing Szz is non-singular, then, the least favorable noise has a covariance matrix Szz

such that S−1
zz − (HSxxH

T + Szz)−1 is a block-diagonal matrix. Conversely, any Gaussian

noise with a covariance matrix Szz that satisfies the diagonalization condition and has S(i)
zz =

I is a least favorable noise.

Proof: Fix a Gaussian input distribution x ∼ N (0, Sxx), and fix a noise covariance matrix

Szz. Let z ∼ N (0, Szz) be a Gaussian random vector, and let z′ be any other random
vector with the same covariance matrix, but with possibly a different distribution. Then,

I(X;HX + Z) ≤ I(X;HX + Z′). This fact is proved in [53] and [54]. Thus, to minimize
I(X;Y1, · · · ,YK), it is without loss of generality to restrict attention to z1, · · · , zK that are

jointly Gaussian. In this case, the cooperative capacity is just 1
2 log |HSxxH

T + Szz|/|Szz|.
So, the least favorable noise is the solution to the optimization problem (3.66).

The objective function in the optimization problem is convex in the set of semi-definite

matrices Szz. The constraints are convex in Szz, and they satisfy the constrained quan-

tification condition. Thus, the Karush-Kuhn-Tucker (KKT) condition is a necessary and
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sufficient condition for optimality. To derive the KKT condition, form the Lagrangian:

L(Szz,Ψ1, · · · ,ΨK ,Φ) = log |HSxxH
T + Szz| − log |Szz|+

K∑
i=1

tr(Ψi(S(i)
zz − I))− tr(ΦSzz),

(3.67)

where (Ψ1, · · · ,ΨK) are dual variables associated with the block-diagonal constraints, and

Φ is a dual variable associated with the semi-definite constraint. (Ψ1, · · · ,ΨK ,Φ are positive

semi-definite matrices.) The coefficient 1
2 is omitted for simplicity. Setting ∂L/∂Szz to zero:

0 =
∂L

∂Szz
= (HSxxH

T + Szz)−1 − S−1
zz +


Ψ1 0

. . .

0 ΨK

− Φ. (3.68)

The minimizing Szz is assumed to be positive definite. So, by the complementary slackness

condition (see Appendix A), Φ = 0. Thus, at the optimum, the following block-diagonal

condition must be satisfied:

S−1
zz − (HSxxH

T + Szz)−1 =


Ψ1 0

. . .

0 ΨK

 . (3.69)

Conversely, this block-diagonal condition combined with the constraints in the original prob-

lem form the KKT condition, which is sufficient for optimality. Thus, if a noise covariance

matrix satisfies (3.69), it must be a least favorable noise. ✷

Note that the diagonalization condition may be written in a different form. If assuming,

in addition, that HSxxH
T is non-singular and Ψ1, · · · ,ΨK are invertible, (3.69) may be

re-written using the matrix inversion lemma as follows:

Szz + Szz(HSxxH
T )−1Szz =


Ψ−1

1 0
. . .

0 Ψ−1
K

 . (3.70)

Curiously, this equation resembles a Ricatti equation. Although neither (3.69) nor (3.70)



Chapter 3. Broadcast Channel 53

appears to have a closed-form solution, the structure of the least favorable noise is useful

in deriving the broadcast channel capacity result.

3.3.2 GDFE with Least Favorable Noise

The main result of this chapter is that the cooperative capacity of the Gaussian vector chan-

nel with a least favorable noise is achievable for the Gaussian broadcast channel. Toward

this end, it is shown that a generalized decision feedback precoder designed for the least

favorable noise does not require receiver coordination in the sense that not only can the

feedback operation be moved to the transmitter by precoding, but the feedforward matrix

can also be made to have a block-diagonal structure that totally eliminates the need for

receiver coordination.

Consider a generalized decision-feedback equalizer designed for the Gaussian vector

channel y = Hx + z. For now, assume that x is Gaussian, and in addition, assume that

H is a square matrix. If the noise covariance matrix Szz is not block-diagonal, an imple-

mentation of the GDFE requires noise whitening as a first step. Suppose that the noise

covariance matrix has an eigenvalue decomposition:

Szz = QTΛQ, (3.71)

where Q is an orthogonal matrix and Λ is a diagonal matrix, then 1√
Λ
Q is the appropriate

noise whitening filter. If in addition, the transmitter covariance matrix Sxx is also not

block-diagonal, then a Gaussian source u and a transmit filter B can be created such that

Suu = I and x = Bu. Let

Sxx = V ΣV T (3.72)

be an eigenvalue decomposition of the transmit covariance matrix Sxx. The appropriate

transmit filter must be of the form:

B = V
√
ΣM (3.73)

where M is an arbitrary orthogonal matrix, so that Sxx = BSuuB
T = V ΣV T . A different

generalized decision-feedback equalizer can be designed for each choice of M .
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u ∼ N (0, I) x ∼ N (0, VΣV T ) w

z ∼ N (0, QTΛQ)

y
H 1√

Λ
Q H̃T

H̃ = 1√
Λ
QHV

√
ΣM

(H̃H̃T + I)−1
û

V
√
ΣM︸ ︷︷ ︸

Figure 3.12: GDFE with transmit filter

Lemma 3.3 Consider the Gaussian vector channel y = Hx+z, where H is a square matrix

and x ∼ N (0, Sxx). Fix a Gaussian source u ∼ N (0, I). There exists a transmit filter B

such that x = Bu has a covariance matrix Sxx and the induced generalized decision-feedback

equalizer has a block-diagonal feedforward filter if and only if the noise covariance matrix

Szz is such that S−1
zz − (Szz +HSxxH

T )−1 is block-diagonal.

Proof: The GDFE configuration is as shown in Figure 3.12. Let Sxx = V ΣV T and Szz =

QTΛQ. As stated before, the transmit filter must be of the form B = V
√
ΣM , where M

is an orthogonal matrix. The noise whitening filter is 1√
Λ
Q. The combined transmit filter

and the noise whitening filter give the following effective channel:

H̃ =
1√
Λ
QHV

√
ΣM. (3.74)

The GDFE depends on the following Cholesky factorization:

G−1∆−1G−T = (H̃T H̃ + I)−1 (3.75)

=
(
MT

√
ΣV THTQTΛ−1QHV

√
ΣM + I

)−1
(3.76)

= MT
(√
ΣV THTQTΛ−1QHV

√
Σ+ I

)−1
M. (3.77)

Now, choose a square matrix R such that

RTR =
(√
ΣV THTQTΛ−1QHV

√
Σ+ I

)−1
. (3.78)

(For example, R can be chosen to be a triangular matrix using a Cholesky factorization.)

Now, because the right-hand side of the above is positive definite, all square matrices C that
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satisfy CTC =
(√
ΣV THTQTΛ−1QHV

√
Σ+ I

)−1
must be of the form C = UR where U

is an orthogonal matrix [23]. Therefore, the Cholesky factorization (3.77) can be written

as:

G−1∆−1G−T =MTRTUTURM, (3.79)

where URM is a block-lower-triangular matrix. For a fixedM , it is possible to choose a U to

make URM block-triangular. Such a U can be found via a block QR-factorization of RM .

Similarly, for each fixed U , it is possible to choose a M that makes URM block-triangular.

Such a M can be found by a block QR-factorization of (UR)T .

The feedforward filter of a GDFE, denoted as F , can now be computed as follows:

F = ∆−1G−T H̃T 1√
Λ
Q (3.80)

= ∆− 1
2URMMT

√
ΣV THTQTΛ−1Q (3.81)

= ∆− 1
2UR

√
ΣV THTQTΛ−1Q. (3.82)

Next, it is shown that the condition under which there exists a suitable U to make the

feedforward filter F a block-diagonal matrix is the same as the diagonalization condition on

the noise covariance matrix. First, assume that S−1
zz − (Szz+HSxxH

T )−1 is block-diagonal.

Then,
Ψ1 0

. . .

0 ΨK

 = S−1
zz − (Szz +HSxxH

T )−1 (3.83)

= QTΛ−1Q− (QTΛQ+HV ΣV THT )−1

= QTΛ− 1
2

(
I −

(
I + Λ− 1

2QHV ΣV THTQTΛ− 1
2

)−1
)
Λ− 1

2Q

= QTΛ−1QHV
√
Σ
(
I +

√
ΣV THTQTΛ−1QHV

√
Σ
)−1

√
ΣV THTQTΛ−1Q

where the matrix inversion lemma is used in the last step. Now, substituting (3.78) into
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the above:

QTΛ−1QHV
√
ΣRTR

√
ΣV THTQTΛ−1Q =


Ψ1 0

. . .

0 ΨK

 . (3.84)

Because H is assumed to be a square matrix, R
√
ΣV THTQT is also square. So, it must be

of the form U ′D, where U ′ is orthogonal and D = diag{√Ψ1, · · · ,
√
ΨK}:

R
√
ΣV THTQTΛ−1Q = U ′


√
Ψ1 0

. . .

0
√
ΨK

 . (3.85)

But, this is exactly the diagonalization condition for F . By choosing U = U ′T in (3.82), F
becomes:

F = ∆− 1
2U ′TR

√
ΣV THTQTΛ−1Q (3.86)

= ∆− 1
2


√
Ψ1 0

. . .

0
√
ΨK

 . (3.87)

which is block-diagonal. Finally, an appropriate transmit filter B can be found by finding

anM that makes URM block lower-triangular. This is possible by performing the following

QR-factorization: RTUT = MT , where T is upper-triangular and M is orthogonal. Then,

URM = T T is lower-triangular.

Conversely, if there exists a transmit filter that makes F block-diagonal, then a suit-

able U can be found in (3.82). Further, by setting U ′ = UT in (3.85), the appropriate√
Ψ1, · · · ,

√
ΨK can be found to satisfy the noise covariance diagonalization. ✷

Combining Lemma 3.2 and Lemma 3.3, it is now clear that the Gaussian vector channel

with the least favorable noise admits a GDFE structure whose feedforward filter is block-

diagonal if the least favorable noise is non-singular. This means that at the feedforward

stage, only individual processing of yi is needed. This, together with the fact that decision-

feedback can be moved to the transmitter as a precoder, completely eliminates the need for
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receiver cooperation. Thus, in a broadcast channel, a rate equal to the cooperative capacity

with the least favorable noise correlation, minSzz
1
2 log |HSxxH

T + Szz|/|Szz| is achievable.
This rate is achieved under a fixed input covariance Sxx. So, one might expect the capacity

of the broadcast channel to be the above rate maximized over all Sxx subject to a power

constraint. This is proved next.

3.3.3 Sum Capacity

The development so far contains the simplifying assumption that the input distribution is

Gaussian. To see that the restriction is without loss of generality, a result concerning the

saddle-point is useful. Consider the mutual information expression I(X;HX+Z), where X

and Z are independent. Let Kx and Kz be constraint sets for X and Z. If some (p(x), p(z))

is such that for all p(x′) ∈ Kx and p(z′) ∈ Kz,

I(X′;HX′ + Z) ≤ I(X;HX+ Z) ≤ I(X;HX+ Z′) (3.88)

then (p(x), p(z)) is called a saddle-point. The main result concerning the saddle-point is

the following:

Lemma 3.4 ([54]) The mutual information expression I(X;HX + Z), where p(x) ∈ Kx

and p(z) ∈ Kz are convex constraints, has at least one saddle-point. Further, there exists a

saddle-point whose distributions are Gaussian.

The proof of this result can be found in [54]. It goes as follows: First, it is shown

that the search for the saddle-point can be restricted to Gaussian distributions without

loss of generality. With Gaussian distributions, the mutual information can be written as
1
2 log |HSxxH

T + Szz|/|Szz|. Because log | · | is a concave function over the set of positive
definite matrices, 1

2 log |HSxxH
T + Szz|/|Szz| is convex in Szz and concave in Sxx. The

constraints are convex. So, from a minimax theorem in game theory [55], there exists a

saddle-point (Sxx, Szz) such that

1
2
log

|HS′
xxH

T + Szz|
|Szz| ≤ 1

2
log

|HSxxH
T + Szz|

|Szz| ≤ 1
2
log

|HSxxH
T + S′

zz|
|S′

zz|
, (3.89)

for all (S′
xx, S

′
zz) in the constraint sets.
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A saddle-point (when exists) is the solution to the following max-min problem:

max
p(x)

min
p(z)

I(X;HX+ Z). (3.90)

This can be easily seen as follows. Suppose (X,Z) is a saddle-point. Then, minp(z′′) I(X′;HX′+
Z′′) ≤ I(X′;HX′+Z) ≤ I(X;HX+Z). So maxp(x′)minp(z′) I(X′;HX′+Z′) ≤ I(X;HX+

Z). On the other hand, fixing p(x) gives minp(z) I(X;HX + Z′) = I(X;HX + Z). So,

maxp(x′)minp(z′) I(X′;HX′ + Z′) = I(X;HX + Z). By the same argument, the saddle-

point is also the solution to the min-max problem:

min
p(z)

max
p(x)

I(X;HX+ Z). (3.91)

For any arbitrary function f(x, y), it is always true that minxmaxy f(x, y) ≥ maxyminx f(x, y).

However, if a saddle-point exists, then max-min equals min-max:

max
Sxx

min
Szz

1
2
log

|HSxxH
T + Szz|

|Szz| = min
Szz

max
Sxx

1
2
log

|HSxxH
T + Szz|

|Szz| . (3.92)

The main result of this chapter is that max-min corresponds to achievability, min-max

corresponds to the converse, and the saddle-point corresponds to the sum capacity of a

Gaussian vector broadcast channel.

Theorem 3.3 Consider a Gaussian vector broadcast channel yi = Hix+ zi, i = 1, · · · ,K.

Let HT = [HT
1 · · ·HT

K ]. The sum capacity under a power constraint is a saddle-point of the

mutual information 1
2 log |HSxxH

T + Szz|/|Szz|, if the saddle-point is such that Szz > 0.

Here, the saddle point is computed with the following constraints: Szz has block-diagonal

entries that are the covariance matrices of z1, · · · , zK, and Sxx satisfies tr(Sxx) ≤ P .

Proof: First, the converse: Sato’s outer bound states that the broadcast channel sum ca-

pacity is bounded by the capacity of any discrete memoryless channel whose noise marginal

distributions are equal to p(zi). The tightest outer bound is then the capacity of the channel

with the least favorable noise correlation. The capacity of a discrete memoryless channel is

maxp(x) I(X;Y1, · · · ,YK), so:

C ≤ min
p(z)

max
p(x)

I(X;HX+ Z), (3.93)
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where the maximization is over the power constraint E[XTX] ≤ P , and the minimization is

over all noise distributions whose marginals are the same as the actual noise. The solution

to this minimax problem is the saddle-point for I(X;HX + Z). Since the constraint sets

are convex, by Lemma 3.4, a saddle-point exists. Further, the saddle-point can be chosen

to be Gaussian, so the outer bound can be written as

C ≤ min
Szz

max
Sxx

1
2
log

|HSxxH
T + Szz|

|Szz| , (3.94)

where Sxx belongs to the set of positive semi-definite matrices satisfying the power constraint

tr(Sxx) ≤ P , and Szz belongs to the set of noise covariance matrices with S
(i)
zz = E[zizi

T ],

i = 1, · · · ,K, as block-diagonal terms.
Next, the achievability: the existence of a saddle-point implies that min-max equals

max-min. So, it is only necessary to show that

C ≥ max
Sxx

min
Szz

1
2
log

|HSxxH
T + Szz|

|Szz| . (3.95)

Since the saddle-point can be chosen to be Gaussian, the development leading to the theo-

rem, which restricts consideration to Gaussian inputs, is without loss of generality. Further,

Lemma 3.3 requires the channel matrix to be square. If there are more receive antennas

than transmit antennas, zeros can be padded to H to make H a square matrix without

affecting capacity. If there are more transmit antennas than receive antennas, because Sxx

is a water-filling covariance matrix with respect to H, the rank of Sxx is bounded by the

number of receive antennas. Then, the null space of Sxx may be deleted, and H can be

made equivalent to a square matrix. In either case, the condition in Lemma 3.3 that H is

square can be satisfied.

Now, at the saddle-point, Szz is a least favorable noise for Sxx. So, by Lemma 3.2 and

the assumption Szz > 0, it must satisfy the condition that S−1
zz − (Szz + HSxxH

T )−1 is

block-diagonal. By Lemma 3.3, this implies that there is an appropriate transmit filter

B such that a GDFE designed for this B and Szz has a block-diagonal feedforward filter.

Consider now the precoding configuration of the GDFE. The feedforward section is block-

diagonal. The feedback section is moved to the transmitter. So, the decoding operations of

y1, · · · ,yK are completely independent of each other. Further, because the feedback filter

is block-diagonal, the GDFE receiver is oblivious of the correlation between zi’s. Thus,
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although the actual noise distribution may not have the same joint distribution as the least

favorable noise, because the marginal distributions are the same, a GDFE precoder designed

for the least favorable noise performs as well as with the actual noise. Since by Theorem

3.2, this GDFE precoder achieves I(X;HX + Z), so minSzz I(X;HX + Z) is achievable.

Further, it is possible to maximize the above over Sxx. Therefore, the outer bound (3.95)

is achievable. ✷

Note that the GDFE transmit filter B designed for the least favorable noise also identifies

the set of sum capacity-achieving Si in Theorem 3.1. Let B = [B1 · · ·BK ]. Set S1 = B1B
T
1 ,

· · · , SK = BKB
T
K . Then, it is easy to verify that the sum capacity is achieved with

Ri = 1
2 log |

∑K
k=i HiSkH

T
i + I|/|∑K

k=i+1HiSkH
T
i + I|.

Theorem 3.3 suggests the following game-theoretical interpretation of the Gaussian vec-

tor broadcast channel. There are two players in the game. A signal player chooses a Sxx

to maximize I(X;HX+ Z) subject to the constraint tr(Sxx) ≤ P . A noise player chooses

a fictitious noise correlation in Szz to minimize I(X;HX+ Z) subject to the constraint

S
(i)
zz = I. A Nash equilibrium in the game is a set of strategies such that each player’s strat-

egy is the best response to the other player’s strategy. The Nash equilibrium in this mutual

information game exists, and the Nash equilibrium is the sum capacity of the Gaussian

vector broadcast channel.

The saddle-point property of the Gaussian broadcast channel sum capacity implies that

the capacity achieving (Sxx, Szz) is such that Sxx is the water-filling covariance matrix for

Szz, and Szz is the least favorable noise covariance matrix for Sxx. In fact, the converse is

also true. If a set of (Sxx, Szz) can be found such that Sxx is the water-filling covariance

for Szz, and Szz is the least favorable noise for Sxx, then (Sxx, Szz) constitutes a saddle-

point. This is because the mutual information is a concave-convex function, and the two

KKT conditions, corresponding to the two optimization problems are, collectively, sufficient

and necessary at the saddle-point [56] [57]. Thus, the computation of the saddle-point is

equivalent to simultaneously solving the water-filling problem and the least favorable noise

problem.

One might suspect that the following algorithm can be used to find a saddle-point

numerically. The idea is to iteratively compute the best input covariance matrix Sxx for

a given noise covariance, then compute the least favorable noise covariance matrix Szz for

the given input covariance. If the iterative process converges, both KKT conditions are
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satisfied, and the limit must be a saddle-point of 1
2 log |HSxxH

T + Szz|/|Szz|. However,
such an iterative min-max procedure is not guaranteed to converge for a general game even

when the pay-off function is concave-convex. But, the iterative procedure appears to work

well in practice for this particular problem. The convex-concave nature of the problem also

suggests that general-purpose numerical convex programming algorithms can be used to

solve for the saddle-point with polynomial complexity [56] [58] [59].

3.4 Value of Cooperation

A principal aim of this thesis to illustrate the value of cooperation in a Gaussian vector

channel y = Hx+ z, where the transmit signal x and the receive signal y are both vector

valued. Let Szz be the noise covariance matrix. When cooperation is possible both among

the transmit terminals and among the receive terminals, the channel capacity under a power

constraint is the solution to the following optimization problem:

maximize
1
2
log

|HSxxH
T + Szz|

|Szz| (3.96)

subject to tr(Sxx) ≤ P,

Sxx ≥ 0.

When cooperation is possible at the receiver, but not at the transmitter, the sum capacity

is still a maximization of I(X;Y), but with an additional constraint:

maximize
1
2
log

|HSxxH
T + Szz|

|Szz| (3.97)

subject to tr(Sxx) ≤ P,

Sxx(i, j) = 0, ∀(i, j) uncoordinated
Sxx ≥ 0.

Here Sxx(i, j) denotes the (i, j)-entry of Sxx. Thus, in terms of capacity, the value of

cooperation at the transmitter lies in the ability for the transmitters to send correlated

signals.

In a broadcast channel where cooperation is possible at the transmitter but not at the

receiver, the capacity is now the solution to a minimax problem (assuming that the solution
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is such that Szz > 0):

max
Sxx

min
S′

zz

1
2
log

|HSxxH
T + S′

zz|
|S′

zz|
(3.98)

subject to tr(Sxx) ≤ P,

S′
zz(i, j) = Szz(i, j), ∀(i, j) coordinated

Sxx, Szz ≥ 0.

Because of the lack of coordination, the receivers cannot distinguish between different noise

correlations. So, the capacity is as if “nature” has chosen a least favorable noise correlation.

Thus, the value of cooperation at the receiver lies in its ability to recognize and to take

advantage of the true correlation among the noise signals.

When full cooperation is possible at both the transmitter and at the receiver, a Gaussian

vector channel can be decomposed into non-interfering scalar sub-channels that can be

independently encoded and decoded. With coordination at one side only, the vector channel

can only be decomposed into a series of scalar sub-channels each interfering into subsequent

sub-channels. Thus, from a coding point of view, the value of cooperation lies in the

ability to eliminate the need to either pre-subtract or post-subtract interference. When

full coordination is not possible, the generalized decision-feedback equalizer emerges as a

unifying structure that is able to achieve both the multiple access channel capacity and the

broadcast channel sum-capacity.

3.5 Practical Precoding

An information theoretical treatment of the broadcast channel has been given so far. The

broadcast channel is shown to be closely related to the channel with transmitter side infor-

mation, and the optimal precoding structure is shown to be that of a generalized decision

feedback equalizer. The implementation of the precoder depends critically on finding pow-

erful codes that can approach the “dirty-paper” capacity region. The rest of this chapter is

devoted to practical precoding schemes. Finding good “dirty-paper” codes is still an open

research area (see e.g. [60]). This section focuses on codes that work well in the high SNR

region.

The development of the Gaussian vector broadcast channel sum capacity involves a

vector version of “writing-on-dirty-paper”. However, from a coding perspective, finding
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Figure 3.13: Tomlinson-Harashima precoder

good scalar “dirty-paper” codes is sufficient as the following argument shows. This argument

is due to Lapidoth [61]. Consider a Gaussian vector channel with side information Y =

X+ S+ Z. The vector channel may be decomposed into parallel scalar channels along the

eigenvectors of the noise covariance matrix Szz. The resulting set of Gaussian scalar channels

have independent noises, but may have correlated interference. However, since interference

is completely known at the transmitter, scalar “writing-on-dirty-paper” codes can be applied

individually to each of the scalar channels regardless of interference correlation. Collectively,

the set of scalar channels achieves a vector channel capacity as if interference does not

exist. For this reason, this section considers only scalar “dirty-paper” codes. The key to

finding good scalar codes is to recognize that “dirty-paper” coding is related to Tomlinson-

Harashima precoding.

3.5.1 Tomlinson-Harashima Precoding

The purpose of a precoder is to pre-subtract known interference at the transmitter. A purely

arithmetic subtraction requires additional transmit power. The Tomlinson-Harashima pre-

coder [62] [63], originally developed for the intersymbol interference channel, is a clever

scheme to pre-subtract interference with minimal extra power. Figure 3.13 illustrates a

Tomlinson-Harashima precoder, where sk is the known interference signal at time instant

k. In order to convey an intended symbol uk, a precoder sends xk = uk − sk to compensate

for the interference. However, sk may be large, so xk may exceed the power constraint. The

idea is to constrain the intended symbol uk to lie within [−M/2,M/2). Instead of sending

xk, the encoder sends xk modulo-M . Likewise, the decoder also performs a modulo-M
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operation. In effect, all transmit symbols that differ by an integer multiple of M are re-

garded as equivalent by the decoder. The modulo-M operation reduces the transmit power

to approximately M2/12 regardless of the interference strength, while maintaining distin-

guishability of xk. The process of encoding a symbol can now be interpreted as a process of

modifying sk to one of the equivalent representatives of the intended symbol. The modulo-

M geometry ensures that there is one representative within distance M from each possible

sk. Tomlinson-Harashima precoder is in fact a one-dimensional implementation of “writing-

on-dirty-paper”.

The connection between “writing-on-dirty-paper” and Tomlinson-Harashima precoding

was first observed by Erez, Shamai and Zamir [64]. There are two main differences between

a Tomlinson-Harashima precoder and an optimal “dirty-paper” precoder. First, Tomlinson

precoder performs a pre-subtraction xk = uk − sk, while the optimal “dirty-paper” code

does xk = uk − αsk, where α = P/(P + N) (P is the transmit power constraint and N is

the noise variance.) Thus, Tomlinson-Harashima precoder cannot achieve the “dirty-paper”

capacity unless P
N → ∞. Finding practical codes in the low SNR region is still very much

an open research area. This section concentrates on codes for the high SNR region. The

second difference between a Tomlinson-Harashima precoder and an optimal “dirty-paper”

precoder is that pre-subtraction in Tomlinson precoding is done on a symbol-by-symbol

basis and it takes only the current sk into account, while “dirty-paper” precoding requires

the entire sk sequence. As pointed out in [64], in the limit of large interference, the capacity

loss when using only causal side information is exactly the shaping loss (up to 1.53dB). This

is related to the fact that the input to a Tomlinson precoder must be constrained between

−M/2 and M/2. This results an input distribution that is uniform inside a cubic shape,

and it incurs a shaping loss when compared to the spherical shape of an optimal Gaussian

code. To recover the shaping loss, non-causal side information must be used to perform

the modulo operation on high-dimensional spheres. This is possible using a precoder based

on an optimal vector quantizer. In the next section, a practical precoder based on trellis

codes is presented. It is a generalization of Tomlinson-Harashima precoder and is capable

of achieving “dirty-paper” channel capacity at high SNR.

3.5.2 Trellis Precoding

A conceptual model for a vector quantization-based precoder is shown in Figure 3.14. It

works as follows. First, a codeword sequence Un is generated by an error-correcting code.
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Figure 3.14: Precoding via vector quantization

The additive interference sequence Sn is pre-subtracted from the codeword, and the differ-

ence sequence is then quantized by a vector quantizer. The quantization noise is sent as

the input to the channel. The channel adds interference and noise. At the decoder, the

received sequence is first quantized by the same quantizer. The quantization noise is sent to

the decoder of the error-correcting code to recover the message. Figure 3.15 illustrates the

relation between Un, Xn and Sn. The spheres denote the Voronoi regions associated with

the quantizer outputs. The codeword sequence Un is designed to be confined within the

Voronoi region. Each codeword is given multiple equivalent representatives corresponding

to multiple quantizer outputs. The equivalent representatives are illustrated by the arrows

in Figure 3.15. Since the interference sequence Sn is known non-causally, the precoder can

construct an input sequence Xn to steer Sn to the closest representative of Un. It is easy

to see that as long as the codeword is confined to the Voronoi region, perfect reconstruction

is possible in the absence of noise. This vector quantization approach can be viewed as a

generalization of Tomlinson-Harashima precoding. The one-dimensional modulo-M opera-

tion is replaced by a vector quantizer which performs a modulo operation with respect to a

Voronoi region. After the modulo operation, the precoder outputs are uniformly distributed

in the Voronoi region. The Voronoi region of an ideal vector quantizer is a high dimensional

sphere, thus achieving a shaping gain.

The idea of using Voronoi region for shaping was proposed by Forney in [65], where a trel-

lis code is used as a vector quantizer to achieve a shaping gain on an additive white Gaussian

noise (AWGN) channel. For an AWGN channel, the capacity achieving distribution over

a large block length is a uniform distribution over a high dimensional sphere. However,

the traditional rectangular constellation-based trellis codes cover a high dimensional cube

uniformly. A cubic shape suffers from a shaping loss up to 1.53dB when compared to a

spherical shape. To recover the shaping loss, Forney proposed to expand the constellation
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size slightly first, then modulo the expanded sequence with respect to the Voronoi region of

a trellis shaping code. It can now be seen that shaping for AWGN channel is very similar

to shaping for channel with side-information. In fact, Eyuboglu and Forney [66] further

extended trellis shaping by combining shaping with one-dimensional Tomlinson precoding

and trellis coding for the ISI channel. This combined structure can be easily modified for

channels with non-causal side information.

A trellis shaping code for channels with side information is now described. A trellis

code can be viewed as a collection of paths through the constellation. These paths have a

good minimum distance property, and they can be represented by a finite state machine,

thus allowing efficient decoding. Such a collection of trellis paths can also be used as

reconstruction values in a vector quantizer. The operation of the precoder is shown in

Figure 3.16. Two codes are working independently. Cc is a trellis channel code with

Gc as its kc/nc convolutional coset encoder. Cs is a ks/ns convolutional shaping code,

whose Voronoi region is used as the basis of modulo operation. The input bits are divided

into two groups. The first q bits are inputs to the trellis channel code, where kc bits are

encoded by the convolutional code Gc, and the rest are uncoded bits selecting constellation

points within each coset. The output of the trellis code is a constellation of size 2q−kc+nc.

This constellation is repeated 2ns times in two dimensions resulting in 2ns non-overlapping

regions. At any given time instance, one of these regions is selected by the second group

of rs inputs and the shaping convolutional code Cs. Therefore, the entire codeword can be
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Figure 3.16: Trellis implementation of Voronoi precoder

thought of as a combination of 2q trellis paths within each region, and a sequence of regions.

Two sequences of regions are deemed equivalent if their difference is a valid codeword in Cs.

The initial sequence is determined by rs input bits and an inverse syndrome decoder H−T
s

for Cs. In a convolutional code, sequences that differ by a valid codeword all have the same

syndrome. Thus, using rs input bits as the syndrome uniquely determines an equivalent class

of ns-bit sequences t(D). Every sequence in this equivalent class can be represented by t(D)

plus some valid codeword inGs. So, the shaping encoder only needs to select the appropriate

codeword to be added. The appropriate codeword is selected by the Viterbi algorithm for Cs.

The criterion for such selection can in principle be anything as far as decoding is concerned.

To minimize transmit power for channels with side information, the criterion here is the

minimization of the square difference between the output sequence and the side information

sequence. Thus, the Viterbi algorithm for Cs compares the side information sequence with

the constellation sequence determined jointly by the trellis encoder Cc and the syndrome

sequence for Cs, and outputs a codeword for Cs which modifies the sequence of region selects

so that the resulting codeword is as close to the side information as possible. The encoder

sends out the difference between the two to the channel, and the side information is then

added back. On the decoder side, bits are recovered with a usual trellis decoder for Cc and

a syndrome mapper for Cs. The decoder is identical to the one in [66].
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There are two principal differences between a trellis precoder for a channel with side-

information and a trellis shaping precoder for an ISI channel as described in [66]. First,

a shaping code selects a region sequence so that the output codeword has the minimum

energy, while a precoder selects a region sequence so that it takes the minimum energy to

steer the side information sequence to a correct codeword. The second difference is more

subtle. In a shaping code for an ISI channel, a small amount of constellation expansion

suffices, thus a rate 1/2 shaping code is sufficient. For precoding for a channel with side

information, it is desirable to have a code rate such as 3/4 or 5/6 to force constellation

expansion. The reason for expansion is to ensure that the side information sequence lies

entirely within the expanded constellation. In practice where the magnitude of the side

information sequence is not known in advance, it is necessary to add a modulo-M operation

outside of the expanded constellation. Note that the actual transmitted constellation is not

the expanded constellation, but its difference with the side information sequence. Therefore,

the expanded constellation does not pose a practical concern.

The shaping gain for a Voronoi precoder depends on the shape of the Voronoi region

of the shaping code. The trellis shaping codes for AWGN channels reported in [65] can be

used directly for the broadcast channel with exactly the same shaping gain. In particular,

a simple 4-state trellis shaping code already achieves almost 1dB shaping gain.

3.6 Summary

To summarize, this chapter deals with a class of non-degraded Gaussian vector broadcast

channels. The sum capacity is characterized as a saddle-point of a Gaussian mutual in-

formation game where a signal player chooses a signal covariance matrix to maximize the

mutual information, and a noise player chooses a fictitious noise correlation to minimize

the mutual information. This result holds under the condition that the noise covariance

matrix at the saddle-point is non-singular. The broadcast channel sum capacity is achieved

using a precoder with the structure of a generalized decision-feedback equalizer. A trellis

precoder for the broadcast channel is proposed. The precoder is a generalization of the

Tomlinson-Harashima precoder, and it is capable of achieving the broadcast channel sum

capacity at high SNR.
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Interference Channel

In a Gaussian channel with multiple transmitters and multiple receivers, when neither trans-

mitters nor receivers cooperate, the vector channel becomes an interference channel. The

capacity region of the interference channel is a long-standing open problem in information

theory. Even for the simplest two-user additive white Gaussian interference channel, only

partial results are available. The largest achievable region for the interference channel is

due to Han and Kobayashi [67], and it is based on superposition coding and interference

subtraction. In fact, when the interference level is very high, interference subtraction is

optimal and it achieves the same data rate as if interference is completely removed [68] [69].

For this to happen, however, interference coupling must be stronger than the direct channel,

which typically does not happen in realistic applications. When the interference level is low,

interference subtraction is difficult to do, and the capacity region is unknown. In this light,

this thesis restricts attention to transmission techniques where no interference subtraction

takes place. This restriction is realistic in many practical systems. With this assumption,

the transmission strategy for each user is simply its power allocation, and multi-user inter-

ference is treated as noise. The principal aim of this chapter is to develop power allocation

algorithms that are able to optimize the joint performance of multiple users in the presence

of mutual interference.

This chapter uses the digital subscriber line (DSL) system as the motivating example.

Digital subscriber line is a local access technology that brings high-speed data connection to

home via ordinary telephone twisted-pairs. The DSL transmission environment is tradition-

ally thought of as a single-user environment because each user is connected to the central

office via a pair of dedicated wires. However, a central office typically serves hundreds of

69
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thousands of homes, and twisted-pairs from different homes are bundled together on the

way to the central office. In the bundled environment, because of the physical proximity,

the twisted-pairs emit electromagnetic interference into each other. Such interference is

called crosstalk, and it can be the dominant noise source in a line. For this reason, the DSL

environment is more accurately modeled as a multi-user environment.

In most current DSL systems, the transmit power spectral densities (PSD) for all

modems are fixed regardless of the loop environment. This is a single-user design approach.

The goal of this chapter is to show that in many cases, a multi-user system design that

dynamically optimizes each modem’s power spectral density based on the loop environment

can significantly improve the system performance. Further, a simple distributed power al-

location scheme that is implementable in existing modems can be used to realize much of

the gain. This dynamic spectrum management approach is becoming increasingly impor-

tant especially as high-speed DSL systems evolve toward higher frequency bands, where the

crosstalk problem is more pronounced, and as optical network units (ONU) are increasingly

deployed closer to customer premises, where they can potentially emit strong crosstalk into

neighboring lines.

The power control problem in DSL systems differs from the more widely-studied power

control problem in wireless systems (e.g. [70] [71] [72] [73]) in two key aspects. First,

although the DSL transmission environment varies from line to line, it does not vary over

time. Fading and mobility are not issues. Consequently, the assumption of perfect channel

knowledge is realistic and is made here. On the other hand, unlike narrowband wireless

applications where flat-fading can often be assumed, the DSL lines are severely frequency

selective. Thus, the optimal power allocation scheme needs to consider not only the total

amount of power allocated to each user, but also the allocation of power over frequencies.

Nevertheless, power control schemes designed for wireless systems [70] [72] [74] can still

provide considerable insight. In particular, DSL systems suffer from a near-far problem

similar to that in CDMA systems. The near-far problem arises when two transmitters

located at different distances attempt to communicate with the same central office. When

one transmitter is much closer to the central office than the other, the interference generated

by the closer transmitter can overwhelm the signal from the other transmitter. The power

control algorithm proposed in this chapter is capable of overcoming this problem.

The proposed power control algorithm is based on the formulation of the multi-user

environment as a non-cooperative game. This game-theory point of view has appeared
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in several recent works on the power control problem for wireless networks [75] [76] [77]

[78]. However, these existing works focus on the CDMA system, and the power control

algorithms studied there consider only flat-fading channels. In a DSL environment, the

frequency-selective nature of the channel is crucial, and it must be dealt with explicitly.

The main result of this chapter is that under a wide range of conditions, the frequency-

selective interference channel game has a unique Nash equilibrium. This result leads to

a power control algorithm based on the concept of competitive optimality, and it further

suggests that power control can be implemented distributively and asynchronously with

minimal centralized control. Distributed power control schemes have important advantages

over centralized schemes, especially as the local access market moves toward “unbundling”

where competing service providers can potentially share the same binder.

The rest of this chapter is organized as follows. Section 4.1 models the DSL environment

as an interference channel. Section 4.2 defines and characterizes the competitive equilibrium

in the interference network and devises an iterative method to achieve the equilibrium.

Section 4.3 proposes a distributed power allocation method based on the idea of competitive

equilibrium. System performance is characterized in Section 4.4, and concluding remarks

are made in Section 4.5.

4.1 DSL Environment

Telephone twisted-pairs are severely frequency selective channels. To combat intersymbol

interference (ISI), the DSL technology uses Discrete Multitone (DMT) modulation to divide

the frequency band into a large number of ISI-free sub-channels, each of which is used to

carry a separate data stream. DMT modulation is standardized for asymmetric digital

subscriber lines (ADSL) in [79] and for very high-speed digital subscriber lines (VDSL) in

[80]. The use of DMT modulation allows arbitrary power assignment in each frequency,

thus making spectral shaping easy to realize.

Figure 4.1 illustrates a typical DSL bundle. There are two types of crosstalk interference.

Near-end crosstalk (NEXT) refers to crosstalk created by transmitters located on the same

side as the receiver. Far-end crosstalk (FEXT) refers to crosstalk created by transmitters

located on the opposite end of the line. NEXT is usually much stronger than FEXT. To

avoid NEXT, DSL transmission uses either frequency-division duplexing (FDD), where all

lines transmit in the same direction in every frequency, or time-division duplexing (TDD),
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Figure 4.1: DSL crosstalk environment

where all lines transmit in the same direction in every time slot. North American and

European standards use FDD, while TDD is used in Japan. This thesis mainly considers

frequency-division duplexing systems such as the one standardized in [80], where the entire

frequency spectrum is divided into four to six upstream and downstream bands.

The DSL environment can be modeled as an interference channel. The interference

channel model is appropriate when neither transmitters nor receivers cooperate. In future

DSL systems where remote fiber-fed-terminal modems can coordinate in encoding or de-

coding messages, a multiple access or broadcast channel model will become applicable. In

this part of the thesis, such coordination is not assumed.

Figure 4.2 shows an interference channel model. There are K transmitters and K

receivers. The transfer function of the channel from transmitter i to receiver j is denoted as

Hij(f), where 0 ≤ f ≤ Fs, Fs = 1
2Ts
, and Ts is the sampling rate. The noise power spectral

density for the receiver i is denoted as σi(f). Denote the transmit power spectral density

for the transmitter i as Pi(f). Pi(f) must satisfy a power constraint:∫ Fs

0
Pi(f)df ≤ Pi. (4.1)

Fixing Pi(f) and treating interference as noise, the following data rate is achievable:

Ri =
∫ Fs

0
log2

1 + Pi(f)|Hii(f)|2
Γ
(
σi(f) +

∑
j �=i Pj(f)|Hji(f)|2

)
 df, (4.2)
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Figure 4.2: Gaussian interference channel model

where Γ is the SNR-gap1. The objective of the system design is to “jointly” maximize the set

of rates R1, · · ·RK subject to power constraints P1, · · ·PK. Notice that for each transmitter,

increasing its power spectral density increases its data rate, but this also increases its

interference into other users. Thus, a system design must consider the tradeoff among the

data rates of all users, and a single figure of merit is inadequate to represent the system

performance. For example, it is not enough to consider just the maximization of the sum

rate. The sum-rate optimal power allocation is often the one that gives high data rates to

users closer to the central office, and low data rates to users farther away, which may not be

fair. As realistic DSL deployments could require an arbitrary level of service for each user,

it is necessary to characterize fully the performance tradeoff among all users. A convenient

way to characterize the tradeoff is to use the concept of a rate region:

R = {(R1, · · · , RK) : ∃(P1(f), · · ·PK(f)) satisfying (4.1) and (4.2)} . (4.3)

The rate region characterizes all possible data rate combinations among all users subject to

the power constraints.

Despite its attractiveness, the above rate region is not so easy to compute. This is

because the capacity expression is a non-convex function of power allocations. So, although

1The SNR-gap denotes the gap between a practical coding and modulation scheme and the channel
capacity. The SNR-gap depends on the target probability of error and the coding and modulation scheme
used. At theoretical capacity, Γ = 0dB.
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in theory, the rate region can be found by an exhaustive search through all possible power

allocations or by a series of optimization steps involving weighted sums of data rates, the

computational complexity of doing so is prohibitively high. This thesis circumvents the dif-

ficulty by taking a different approach. Instead of solving the optimization problem globally,

the interference channel is viewed instead as a non-cooperative game among the competing

users, and the focus is shifted to the notion of competitive optimality. The main point of

this chapter is to show that although a competitively optimal point may not be the global

optimum, it nevertheless gives substantial improvement in performance over current DSL

systems.

As mentioned earlier, current DSL systems are designed with each modem transmitting

at a fixed power spectral density. The fixed power-spectral-density mask limits the worst-

case interference level, and the modems are designed to withstand the worst-case noise. Such

a design is conservative in the sense that the actual interference is often much smaller than

the worst-case noise in realistic deployment scenarios. Moreover, the same power-spectral-

density mask is applied to all modems regardless of their geographic locations. This is

problematic because of the near-far problem mentioned before. Figure 4.3 illustrates a

configuration in which two DSL lines in the same binder emanate from the central office

(CO) to the customer premises (CP). When both transmitters at the CP-side transmit with

the same power spectral density, due to the difference in line attenuation, the FEXT caused

by the short line can severely affect the transmission on the long line. To remedy this

spectral incompatibility problem, the short line must reduce its upstream transmit power

spectral density. This reduction in upstream power spectral density is known as upstream
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power back-off (UPBO), and it has been under intensive study in VDSL standardization

bodies [81] [82] [83]. Note that in this specific configuration, the downstream direction does

not suffer the same problem. Although all transmitters at the CO-side also transmit at the

same power spectral density, the FEXT they create into each other is identical at any fixed

distance from CO [82]. This downstream FEXT level is always much weaker than the data

signals, so it does not pose a serious problem to downstream transmission.

Several upstream power back-off algorithms have been proposed for VDSL. An extensive

review of these methods can be found in [83]. All current power back-off methods attempt

to reduce the interference emission of shorter lines by forcing them to emulate the behavior

of a longer line. For example, in the constant power back-off method, the PSD is reduced by

a constant factor across the upstream transmission bands, so that at a particular reference

frequency the received PSD level from shorter lines is the same as the received PSD level

from a longer reference line. A generalization of this method is the reference length method,

where variable amount of back-off is implemented across frequency so that the received PSD

for a shorter line is the same as some longer reference line at all frequencies. Imposing the

same-PSD criterion for shorter lines across the entire frequency band may sometimes be

too restrictive. In the multiple reference length method, a different reference length is set

for different frequency bands. The three methods mentioned so far equalize the PSD level

of a shorter line to the PSD level of some longer reference line. While this may be easy

to implement, better performance can be obtained if the interference levels themselves are

equalized instead. Examples of such approaches are the equalized-FEXT method, which

forces the FEXT emission by shorter line to be equal to the FEXT from a longer reference

line, and the reference noise method, which forces the FEXT emission to be equal to a more

general reference noise.

All previously discussed power back-off methods require the power or noise spectrum of

the short lines to comply with a reference line or a reference noise. Although the optimal

choice of reference may not be easy to make, once the references are standardized, these

approaches are simple to implement, because they only require each line to adjust its power

spectrum according to a pre-determined reference and thus do not require knowledge of

the network configuration. If, however, the line characteristics of the network are known,

more sophisticated adaptive power control methods can be implemented, and much better

performance is possible. For example, the optimal power allocation can be pre-computed by

some centralized agent, and an appropriate power spectral density can be assigned to each
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user. However, as mentioned before, finding the optimal power spectrum is computationally

complex. This is because the optimization problem involves a large number of variables, and

due to the non-convex nature of the problem, many local minima exist. Early attempts in

solving this problem have resorted to imposing additional power-spectral-density constraints

[84] [85], and more recent work has focused on advance techniques such as simulated an-

nealing [86]. Moreover, these existing approaches require the use of a centralized agent, and

they can only be implemented if a single service provider controls the entire bundle. In an

unbundled environment where loops within the same bundle may be operated by competing

service providers, loop information is typically not shared among the service providers, and

it is impractical for a centralized control agent to enforce spectral compatibility.

For the reasons stated above, the approach outlined in this thesis focuses on distributed

power control algorithms that do not require centralized control. Each line is assumed to

have the knowledge of its own channel transfer function and noise profile, and each DSL

modem is allowed to optimize its performance locally. This locally optimized power control

scheme leads to a game-theoretic characterization of the interference channel. The locally

optimized power allocation is a Nash equilibrium in the game, and it has the intuitive appeal

of being the operating point where all users have an incentive to move toward. The Nash

equilibrium is computationally easy to characterize, and the power control algorithm offers

the following advantages when compared to previous methods:

• The power control algorithm can be implemented distributively without the need of

a centralized agent.

• Unlike previous methods that set a PSD level for each transmitter based solely on its
interference emission level, the new power allocation method strikes a balance between

maximizing each user’s own data rate and minimizing its interference emission. In

particular, it deals with the frequency-selective nature of the channel explicitly.

• The line transfer functions and cross-couplings are implicitly taken into account, and
the new method offers the lines an opportunity to negotiate the best use of power and

frequency with each other.

• The usual PSD constraint, which is in place for the purpose of controlling interference,
is no longer needed. Only total power constraints apply.

• Unlike previous methods, which fix a data rate for each line regardless of actual
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service requirement, the new method naturally supports multiple service requirements

in different lines.

• The proposed method does not involve arbitrary decisions on reference noise or refer-
ence length.

• Although not globally optimum, the proposed method performs much better than
existing methods.

4.2 Competitive Optimality

The traditional information-theoretic view of an interference channel allows the transmit-

ters, while sending independent data streams, to be cooperative in their respective coding

strategies, so that multi-user detection may take place in the receivers. If such coopera-

tion cannot be assumed, the interference channel can alternatively be modeled as a non-

cooperative game. Under this viewpoint, each user competes for data rates with the sole

objective of maximizing its own performance regardless of all other users. Since each mo-

dem has a fixed power budget, the data rate maximization is done by adjusting the power

allocation over frequencies. If such power adjustment is done continuously by all users at

the same time, it is natural to ask: Will the users eventually reach an equilibrium? Such

an equilibrium is called a Nash equilibrium, and it is defined as a set of strategies in which

each player’s strategy is an optimal response to the other player’s strategy [87]. The goal

of this section is to characterize the Nash equilibrium in the Gaussian interference channel

game and to determine conditions for its existence and uniqueness in realistic channels.

Consider a two-user interference channel:

y1 = x1 +A2x2 + n1 (4.4)

y2 = x2 +A1x1 + n2, (4.5)

where xi and yi are user i’s input and output signals, A1 and A2 are the interference

channels with their transfer functions denoted as α1(f) and α2(f) respectively, and n1 and

n2 are additive noise with power spectral densities denoted as N1(f) and N2(f) respectively.

The two senders are considered as two players in a game. The structure of the game, i.e.,

the interference coupling functions and the noise power spectra, are assumed to be common
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knowledge to both players. The strategies for the two players2 are the transmit power

spectra P1(f) and P2(f), subject to power constraints
∫ Fs

0 P1(f)df ≤ P1, and
∫ Fs

0 P2(f)df ≤
P2. The payoffs for the players are the respective data rates. Under the assumption that

no interference subtraction is performed regardless of interference strength, the following

rates are achievable:

R1 =
∫ Fs

0
log2

(
1 +

P1(f)
N1(f) + α2(f)P2(f)

)
df, (4.6)

R2 =
∫ Fs

0
log2

(
1 +

P2(f)
N2(f) + α1(f)P1(f)

)
df. (4.7)

Comparing the above expression with equation (4.2), it is easy to identify:

N1(f) =
Γσ1(f)

|H11(f)|2 (4.8)

α2(f) =
Γ|H21(f)|2
|H11(f)|2 , (4.9)

and similarly for N2(f) and α1(f). Thus, this simplified model incurs no loss of generality.

The interference channel game considered here is not a zero-sum game, i.e. one player’s loss

is not equal to the other player’s gain.

The main objective here is to characterize all pure-strategy Nash equilibria in an inter-

ference channel game. At a Nash equilibrium, each user’s strategy is the optimal response

to the other player’s strategy. So, fixing P2(f), the optimal P1(f) must be the solution to

the following optimization problem:

maximize
∫ Fs

0
log2

(
1 +

P1(f)
N1(f) + α2(f)P2(f)

)
df, (4.10)

subject to
∫ Fs

0
P1(f)df ≤ P1,

P1(f) ≥ 0, ∀f.

The solution to this problem is the well-known water-filling power allocation. More precisely,

2Only deterministic or pure strategies are considered here.
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Figure 4.4: Simultaneous water-filling

let Ñ(f) = N1(f) + α2(f)P2(f). Then, the water-filling power allocation is:

P1(f) =

{
0, if Ñ(f) ≥ L1

L1 − Ñ(f), if Ñ(f) ≤ L1

(4.11)

where L1 is a constant chosen so that the power constraint is met. Likewise, fixing P1(f),

the optimal P2(f) should also be a water-filling power allocation against the combined

interference from P1(f) and the noise. Thus, a Nash equilibrium is reached if and only if

the water-filling condition is simultaneously satisfied for both users. The characterization of

Nash equilibria is therefore equivalent to a characterization of “simultaneous water-filling”

points. The idea of simultaneous water-filling is illustrated in Figure 4.4. The following

theorem offers several sufficient conditions for the existence and uniqueness of the Nash

equilibrium in the two-user case.

Theorem 4.1 Suppose that α1(f)α2(f) < 1, ∀f , then the two-user Gaussian interference
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game has at least one pure strategy Nash equilibrium. Further, let ε0 = sup{α1(f)} sup{α2(f)},
ε1 = sup{α1(f)α2(f)}, ε2 = sup{α1(f)} 1

Fs

∫ Fs

0 α2(f)df , and ε3 = sup{α2(f)} 1
Fs

∫ Fs

0 α1(f)df .

If any of the following conditions, ε0 < 1, ε1 + ε2 <
1
2 , or ε1 + ε3 <

1
2 , is satisfied, then the

Nash equilibrium is unique and is stable.

The proof of Theorem 4.1 is lengthy and it is included in Appendix E. The basic idea

is to approach a Nash equilibrium by successively letting each user optimize his power

spectrum while regarding the interference from other users as noise. The main purpose

of Theorem 4.1 is to characterize conditions under which such an iterative water-filling

procedure converges. The following corollary is a direct consequence of the theorem.

Corollary 4.1 If the condition for the existence and uniqueness of a Nash Equilibrium in

Theorem 4.1 is satisfied, then the iterative water-filling algorithm for the two-user Gaussian

interference game, where in every step, each user updates its power spectral density regarding

all interference as noise, converges from any starting point, and it converges to the unique

Nash equilibrium.

The condition of Theorem 4.1 is not a mere technicality. The following simple example

illustrates a case where Nash equilibrium is not unique. Consider a two-user case where

there are only two frequencies of concern. Let α1(f1) = α1(f2) = α2(f1) = α2(f2) = 2. Let

power constraints and background noise all be 1. The set of power allocations P1(f1) =

P2(f2) = 1 and P1(f2) = P2(f1) = 0 is a Nash equilibrium. The set of power allocations

P1(f1) = P2(f2) = 0 and P1(f2) = P2(f1) = 1 is a different Nash equilibrium.

4.3 Distributed Power Control

Because of the frequency-selective nature of the DSL channel, power control algorithms for

DSL applications need to allocate power optimally not only among different users, but also

in the frequency domain. This brings in many extra variables and makes the design of

optimal power control for DSL challenging. However, if only competitively optimal power

allocations are considered, the total power alone is sufficient for power control purposes.

Assuming that the condition for Theorem 4.1 is satisfied, then a unique Nash equilibrium

exists for each set of power constraints. Thus, it is possible to reach all possible competitive

equilibria by adjusting only the total power constraints despite of the frequency selective
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Figure 4.5: Distributed power control by iterative water-filling

nature of the channel. Although competitively optimal solutions are in general not globally

optimal, it will be shown that they give significant improvements over current methods.

The following is a description of the proposed power control algorithm. A set of target

rates is set for the users. The adaptive algorithm runs in two stages. The inner loop takes a

set of power constraints for each user and derives the competitively optimal power allocation

and its associated data rates using the iterative water-filling procedure. The outer loop finds

the optimal total power constraint for each user. Each user’s total power is adjusted based

on the outcome of the iterative water-filling. If a user’s data rate is below its target rate,

its power is increased, (unless this exceeds the power constraint.) If a user’s data rate is

much above its target rate, its power is decreased. If the data rate is only slightly above

the target rate, its power remains unchanged. The outer loop converges when the set of

target rates is achieved. The algorithm is summarized in the following, and a simplified

illustration is shown in Figure 4.5:

Algorithm 4.1 Iterative water-filling for a Gaussian interference channel: Consider a K-

user interference channel where each user has a power constraint P. Let Ti be the target

rate for user i.

Initialize Pi = P, Pi(f) = 0, i = 1, . . . K.

repeat

repeat

for i = 1 to K,



Chapter 4. Interference Channel 82

N(f) =
K∑

j=1,j �=i

|Hji(f)|2Pj(f) + σi(f);

Set Pi(f) to be the water-filling spectrum with noise N(f) and total power Pi.

Set Ri to be the resulting data rate.

end

until the desired accuracy is reached.

for i = 1 to K,

If Ri > Ti + ε, set Pi = Pi − δ.

If Ri < Ti, set Pi = Pi + δ.

If Pi > P, set Pi = P.

end

until Ri > Ti for all i.

Although Theorem 4.1 only gives a sufficient condition for the convergence of itera-

tive water-filling in the two-user case, it is observed in practice that iterative water-filling

converges for DSL channels with more than two users also. The outer iteration is an ad-

hoc method to find the appropriate power constraint for each user. Since data rates are

monotonic functions of total power, the linear adjustment used in the above algorithm con-

verges as long as the set of target rates is reasonable. The algorithm is found to work well

with parameters δ = 3dB and ε equal to roughly 10% of the target rate.

The outer loop of the power control algorithm essentially attempts to find the minimum

amount of power that is needed to support the target data rate. In fact, the inner and outer

loops can be combined. The usual water-filling maximizes the achievable data rate under a

fixed power constraint. This is referred to as a “rate-adaptive” water-filling. On the other

hand, a “power-adaptive” water-filling minimizes the total transmission power subject to a

fixed rate constraint. The proposed algorithm can be alternatively thought of as each user

doing “power-adaptive” water-filling against each other. Most ADSL modems deployed

today already have the capability to do various types of water-filling. In fact, because the

Nash equilibrium points are stable, the iterative procedure can be done asynchronously.

Thus, the proposed power control algorithm is easy to implement in practice.

To implement the proposed power control algorithm distributively, each user must know

its target data rate a priori. It is important for the target rates to be within the achievable

rate region, as otherwise, some or all of the users would operate with negative margin.
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Unfortunately, the set of achievable target rates cannot be determined distributively. Some

centralized agent with the full knowledge of channel and interference transfer functions has

to decide, by running through all possible total power constraints, which sets of target rates

can be deployed in a DSL bundle. However, this happens in the loop planning stage and

needs to be done only once. For situations where crosstalk coupling is not well known,

conservative estimates of the rate region can instead be used.

Compared to conventional methods, the key advantage of this new power control algo-

rithm is the following: the iterative water-filling algorithm offers an opportunity for different

lines in a binder to negotiate the best use of frequency with each other. Thus, each line has

an incentive to move away from frequency bands where interference is strong and to con-

centrate on frequency bands that it can most efficiently utilize. This method of controlling

the interference removes the arbitrary power-spectral-density constraint, and it is able to

bring a large overall improvement in system performance.

4.4 Performance

The performance of the distributed power control algorithm is examined in this section.

The upstream power back-off problem for VDSL is used as a first example. Figure 4.6

shows the channel and crosstalk transfer functions for two modems located at 3000 feet

and 1000 feet away from the central office. Hij refers to the transfer function from user i

to user j. The crosstalk transfer function is computed using the FEXT crosstalk models

[80] where cross-coupling increases with frequency as f2. The 26 gauge or 0.4mm lines are

modeled here. Observe that at high frequencies, the crosstalk transfer function is actually

larger than the direct channel. However, it is always true that:

α1(f)α2(f) =
Γ|H12(f)|2
|H22(f)|2 · Γ|H21(f)|2

|H11(f)|2 < 1, (4.12)

where Γ is about 16dB for an uncoded QAM transmission with 6dB margin. Further, in

the frequency range of interest (up to 12 MHz), all three sufficient conditions in Theorem

4.1 are satisfied. So, if the binder consists of two users only, the existence and uniqueness

of Nash equilibrium would have been guaranteed.

A maximum transmit power of 11.5dBm is applied to each modem [80]. The usual

power-spectral-density constraint is not applied, except below 1.1MHz where ADSL and
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.

other services need to be protected. A number of non-VDSL disturbers are also included.

This includes 10 ADSL, 4 HDSL and 10 ISDN disturbers, comprising the so-called noise

A model [88]. The loop topology is shown in Figure 4.7. It consists of 8 VDSL lines,

4 of which are at a distance of 3000 feet from the central office, and the other 4 are at

a distance of L from the central office, with L varying from 500 feet to 2500 feet. The

North American frequency plan (so-called Plan 998) [89] is used to separate upstream and

downstream signals. The 998 plan uses the 3.75 − 5.2MHz band, 8.5 − 12.0MHz band and
an optional 30 − 138kHz band for upstream transmission. Frequency bands corresponding

to the amateur radio frequencies [80] are notched off.

The iterative water-filling algorithm is applied to the 8-user scenario. Although Theo-

rem 4.1 applies only to a 2-user case, the author has observed that iterative water-filling

always converges in DSL channels regardless of the number of lines. Figure 4.8 shows

the convergence behavior for a bundle with four 1000ft lines each with a power budget of

−15.5dBm and four 3000ft lines each with a power budget of 11.5dBm. The top four lines

in Figure 4.8 correspond to the four 1000ft lines. The lower four lines correspond to the

four 3000ft lines. The iterative algorithm successively performs water-filling for each line

while holding the power allocations of the other 7 lines fixed. As the figure shows, after the

first water-filling, a 1000ft line achieves a data rate of 32Mbps as there is no interference

at this point yet. The subsequent lines achieve smaller data rates due to the interference

coming from lines that were previously water-filled. At the 9th water-fill, the first line is

re-visited. It also drops its data rate in response to the interference from other lines. The

algorithm converges after just two water-fillings for each user.
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Figure 4.8: Convergence of iterative water-filling algorithm

Different rate-tuples are achievable with different power constraints. The set of all

possible rate-tuples is the rate region. Figure 4.9 shows the upstream rate regions for the

8 VDSL lines. The data rates within each set of 4 users of the same length are the same,

so the rate region can be plotted in a two-dimensional graph. Each curve in the figure

corresponds to a different loop topology. The outer-most curve corresponds to the topology

with 4 lines at 500ft and 4 lines at 3000ft. The next curve corresponds to the topology with

4 lines at 1000ft and 4 lines at 3000ft, and so on. The rate region illustrates the data rate

tradeoff among the users. For example, with 4 lines at 500ft and the other 4 lines at 3000ft,

it is possible to achieve 18Mbps in 500ft lines and 7.8Mbps in 3000ft lines, or 26Mbps on

500ft lines and 7Mbps on 3000ft lines, etc. This ability to provide many classes of different

service levels is inherent in the proposed power control method.

The proposed power control algorithm compares favorably with existing power back-off

methods. As an example, consider the reference noise method, where the reference noise

is chosen to be equal to the FEXT caused by a 3000ft line. This choice of the reference

noise forces all lines to emit the same amount of interference as a 3000ft line, regardless
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Figure 4.9: Competitively optimal upstream rate regions in VDSL

line length reference noise competitive optimum
(ft) (Mbps) (Mbps)
500 12.5 26.5
1000 10.1 21.0
1500 8.9 16.5
2000 8.0 12.5
2500 7.3 9.0

Table 4.1: Reference noise power back-off vs. competitively optimal
power control. The data rates for four 3000ft lines are fixed
at 6.7Mbps. The data rates for the other four lines are
shown.
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of their actual lengths. (This is also called the equalized-FEXT method.) Using this

reference noise, the four 3000ft lines always achieve a data rate of 6.7Mbps each. Table 4.1

tabulates the performance of the other four lines. As the results show, the competitively

optimal power allocation, although not globally optimal, nevertheless offers a significant

improvement in performance over current static spectrum management methods. This

improvement is possible because the iterative water-filling algorithm implicitly takes into

account the interaction among the users.

As a second example, Figure 4.10 shows an ADSL scenario where downstream power

control is necessary. This deployment configuration consists of a central office (CO) based

ADSL line residing in the same binder as a remote terminal (RT) based ADSL line. This

type of scenario is becoming increasingly common as service providers install optical network

units (ONU) to be located close to customer homes in order to enlarge the service area.

However, as downstream transmitters are now located in geographically different places,

downstream power control needs to be implemented. This is true in the example illustrated,

as the RT-based ADSL emits strong downstream interference into the CO-based ADSL. In

fact, without power control, the CO-based ADSL does not function at all. Figure 4.11

illustrates the rate region for the two ADSL lines when the power control algorithm based

on iterative water-filling is used. Again, a graceful tradeoff between the two lines is possible.

In fact, a data rate of 1.4Mbps can be supported in both lines.
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Figure 4.11: Competitively optimal downstream rate region of two
ADSL lines

4.5 Summary

This chapter considers the power control problem in a frequency-selective multi-user inter-

ference channel. The interference channel is viewed as a non-cooperative game, and the

Nash equilibrium of the game is characterized under a set of sufficient conditions. The

Nash equilibrium corresponds to a set of competitively optimal power allocations, and it

leads to a distributed power control algorithm based on iterative water-filling. The iter-

ative water-filling algorithm implicitly takes into account the loop transfer functions and

cross-couplings, and it allows the lines to negotiate the best use of power and frequency

with each other. The new power control algorithm does not require centralized control,

and it is implementable in today’s existing modems. When applied to the VDSL upstream

power back-off problem and the ADSL downstream spectral compatibility problem, the new

method is shown to provide a significant performance improvement comparing to existing

methods.
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Conclusion

This thesis illustrates the role of competition and the value of cooperation in a multi-

user communication environment by treating three multi-user channels. First, it is shown

that in a Gaussian vector multiple access channel, where transmitters do not cooperate but

receivers cooperate, the spectrum optimization problem can be solved by an iterative water-

filling procedure. The rate-sum optimal transmission strategy is one where each transmitter

maximizes its own data rate while treating interference from other users as noise. Thus,

a competitive optimum in a multiple access channel is also a global optimum. Second,

in a non-degraded Gaussian vector broadcast channel, where transmitters cooperate but

receivers do not cooperate, under a certain non-singularity condition, the sum capacity is

shown to be the solution to a minimax problem. The sum capacity is achieved using a

precoding strategy for channels with side information, and the optimum structure of the

precoder is shown to correspond to a decision-feedback equalizer. Further, the sum capacity

can be interpreted as a saddle-point of a mutual information game, where a signal player

chooses a transmit covariance matrix to maximize the mutual information, and a fictitious

noise player chooses a noise covariance matrix to minimize the mutual information. Thus,

the sum capacity of a Gaussian vector broadcast channel is a competitive equilibrium.

Third, it is shown that in a Gaussian interference channel, where neither transmitters nor

receivers cooperate, under a certain set of conditions, a competitive equilibrium exists and is

unique. Further, although a competitive equilibrium is not a global optimum, it nevertheless

corresponds to a desirable operating point. This leads to a distributed dynamic power

control algorithm for digital subscriber lines. In all three cases, a game-theory perspective

has provided useful insights into the optimal transmission problems in multi-user channels.
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Appendix A

Convex Optimization

A convex optimization problem is of the form:

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,K,
(A.1)

where x ∈ R
n is the optimization variable, and f0, · · · , fK are convex functions. Associate

a dual variable λi with each constraint fi(x) ≤ 0. The dual variable belongs to the dual

space of the constraint space, and each dual variable defines a linear functional (or an

inner product) from the constraint space to the real line. For example, when the constraint

space is real, the dual variable is also real, and the inner product is just the usual product.

When the constraint space is the set of positive semi-definite matrices, the dual space (more

precisely, the dual cone) is the set of positive semi-definite matrices, and the inner product in

this case is the trace of the matrix product. The dual variables always take on non-negative

values.

The Lagrangian of an optimization problem is a linear combination of the objective and

the inner product defined by the dual variables:

L(x, λ) = f0(x) +
K∑

i=1

〈λi, fi(x)〉, (A.2)

where 〈·, ·〉 denotes an inner product. The dual objective is defined to be

g(λ) = inf
x
L(x, λ). (A.3)
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It is easy to see that g(λ) is a lower bound on the optimal f0(x):

f0(x) ≥ f0(x) +
K∑

i=1

〈λi, fi(x)〉 (A.4)

≥ inf
z

(
f0(z) +

K∑
i=1

〈λi, fi(z)〉
)

(A.5)

≥ g(λ). (A.6)

So,

max
λ

g(λ) ≤ min
x

f0(x), (A.7)

where the minimization is over the original constraint set and is called the “primal” problem,

and the maximization is over all non-negative λi’s and is called the “dual” problem. The

difference between the minimum of the primal objective f0(x) and the maximum of the dual

objective g(λ) is called the duality-gap. A central result in convex analysis [24] is that when

f0, · · · fK are convex, under some technical conditions (called constraint qualifications) [56],

the duality gap reduces to zero at the optimum, i.e. (A.7) is achieved with equality for some

(x∗, λ∗). One version of constraint qualification is Slater’s condition, which is satisfied when
there exists x such that fi(x) < 0, i = 1, · · · ,K [24] [56].

Consider a convex optimization problem that satisfies constraint qualifications. Let x∗

and λ∗ be the primal and dual variables at the optimum. Since f0(x∗) = g(λ∗), the chain
of inequalities (A.4)-(A.6) is satisfied with equality. Now, 〈λi, fi(x)〉 ≤ 0, because λi ≥ 0

and fi(x) ≤ 0. So, to have equality in (A.4), it must be that 〈λ∗i , fi(x∗)〉 = 0. This is

the so-called complementary slackness condition. Moreover, the inequality in (A.5) is also

satisfied with equality. So, when the functions f0, · · · fK ’s are differentiable, at the infimum,

∇L(x∗, λ∗) = 0. These two facts, together with the primal and dual constraints, form the

Karush-Kuhn-Tucker (KKT) conditions, which are necessary and sufficient for optimality:

fi(x∗) ≤ 0 (A.8)

λ∗i ≥ 0 (A.9)

∇f0(x∗) +
∑
i=1

∇〈λ∗i , fi(x∗)〉 = 0 (A.10)

〈λ∗i , fi(x∗)〉 = 0. (A.11)
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Duality Gap in Water-filling

The proof of Theorem 2.5 is presented here.

Lemma B.1 Let X and Y be positive semi-definite matrices. The followings are true:

1. if X ≥ Y , then tr(X) ≥ tr(Y );

2. tr(XY ) ≥ 0;

3. if X ≥ Y , then max eig(X) ≥ max eig(Y ).

Proof: The trace of a matrix is the sum of eigenvalues. Eigenvalues of a positive semi-

definite matrix are non-negative, so its trace is non-negative. If X ≥ Y , then X − Y ≥ 0.

So, tr(X − Y ) ≥ 0, and tr(X) ≥ tr(Y ). Further, positive semi-definite matrices may be

represented by their square roots: X = AAT and Y = BBT . So, tr(XY ) = tr(AATBBT ) =

tr((BTA)(ATB)) ≥ 0. Lastly, if X ≥ Y , then vTXv ≥ vTY v for all unit vectors v. So,

max eig(X) = max vTXv ≥ max vTY v = max eig(Y ), where the middle two maximizations

are over all unit vectors v. ✷

Proof of Theorem 2.5: The idea is to use the fact that the dual objective is always

a bound on the primal objective (c.f. equation (A.7)). Thus, the difference between the

primal and dual objectives, the so-called “duality gap” is a upper bound on how far away

the true optimum is from the present primal objective.

Start with Si = 0. The first iteration of the algorithm consists of K water-fillings: S1 is

the single-user water-filling covariance with respect to noise Z alone, S2 is the water-filling
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of noise plus interference from S1, and so on. SK is the water-filling of noise plus interference

from all other users. For this set of primal feasible Si, the difference between the primal

problem (2.25) and the dual problem (2.30), which is denoted as γ, is:

γ = tr

( K∑
i=1

HiSiH
T
i + Z

)−1

Z

+ K∑
i=1

λiPi −m. (B.1)

The bound holds for all dual feasible λi’s. The bound is tightest when λi is chosen to be:

λi = max eig

HT
i

 K∑
j=1

HjSjH
T
j + Z

−1

Hi

 , i = 1, · · · ,K. (B.2)

which is the smallest non-negative value that satisfies the dual constraints in (2.30).

Now, since S1 is a single-user water-filling, its duality gap must be zero. Thus,

tr[(H1S1H
T
1 + Z)−1Z] + λ′1P1 −m = 0, (B.3)

where

λ′1 = max eig[H
T
1 (H1S1H

T
1 + Z)−1H1]. (B.4)

More generally, Si is a single-user water-filling regarding
∑i−1

j=1HjSjH
T
j + Z as noise. So,

tr

 i∑
j=1

HjSjH
T
j + Z

−1  i−1∑
j=1

HjSjH
T
j + Z

+ λ′iPi −m = 0, (B.5)

λ′i = max eig

HT
i

 i∑
j=1

HjSjH
T
j + Z

−1

Hi

 . (B.6)

Lemma B.1 is now used to prove the following three facts. First

tr

 K∑
j=1

HjSjH
T
j + I

−1

≤ tr(H1S1H
T
1 + I)−1 (B.7)
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This is a straightforward consequence of Lemma B.1(1). Secondly,

λi ≤ λ′i. (B.8)

This follows from their definitions (B.2) and (B.6). Since

HT
i

 K∑
j=1

HjSjH
T
j + Z

−1

Hi ≤ HT
i

 i∑
j=1

HjSjH
T
j + Z

−1

Hi, (B.9)

λi ≤ λ′i by Lemma B.1(3). Thirdly,

λ′iPi ≤ m. (B.10)

This follows from (B.5). The two matrices in the trace expression in (B.5) are both positive

semi-definite, so Lemma B.1(2) implies that λ′iPi ≤ m.

Now, putting everything together,

γ = tr

( K∑
i=1

HiSiH
T
i + Z

)−1

Z

+ K∑
i=1

λiPi −m (B.11)

≤ tr

( K∑
i=1

HiSiH
T
i + Z

)−1

Z

+ K∑
i=1

λ′iPi −m (B.12)

= tr

( K∑
i=1

HiSiH
T
i + Z

)−1

Z

+ λ′1P1 −m+
K∑

i=2

λ′iPi (B.13)

≤
K∑

i=2

λ′iPi (B.14)

≤ (K − 1)m, (B.15)

where the first inequality follows from (B.8), the second inequality follows from (B.7) and

(B.3), and the last inequality follows from (B.10). Recall that a factor of 1
2 was omitted in

the original statement of the primal and dual problems: (2.25) and (2.30). Therefore the

true duality gap is at most (K − 1)m/2 nats. ✷



Appendix C

Writing on Colored Paper

When an additive white Gaussian channel is corrupted by a Gaussian interfering signal

whose entire sample sequence is known non-causally to the transmitter, but not to the

receiver, Costa [44] showed that, surprisingly, the capacity of the channel is the same as if

the interference were not present. Costa’s result is derived under the assumption that both

noise and interference are i.i.d. Gaussian processes. This result is known as “writing on

dirty paper” because the transmitter can be thought of as encoding on top of known “dirt”

on a piece of paper. This section extends Costa’s result to dirt and noise sequences that

are colored Gaussian vector random variables, hence the name “writing on colored paper”.

Consider a Gaussian vector channel with side information as shown in Figure 3.4:

Y = X+ S+ Z, (C.1)

where S and Z are independent Gaussian vectors with covariance matrices Sss and Szz

respectively. The sequence Sn is known non-causally to the transmitter but not to the

receiver, the sequence Zn is known neither to the transmitter nor to the receiver. A power

constraint P is imposed on the input vector X, i.e. E[XTX] ≤ P . A codeword Xn(W,Sn) is

an encoding function that maps a codeword indexW ∈ {1, · · · , 2nR} and a side information
sequence Sn to a block of n transmissions. A decoding function Ŵ (Yn) maps the channel

output to a codeword index. The probability of error is defined to be the average probability

that W �= Ŵ (Yn).

Gel’fand and Pinsker [42] showed that the capacity of a channel with non-causal side
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information can be characterized using an auxiliary random variable U:

C = max
p(u,x|s)

{I(U;Y) − I(U;S)}. (C.2)

The main result of this section is to identify the optimal choice of the auxiliary random

variable for a Gaussian channel to beU = X+FS, whereX and S are independent Gaussian

random vectors. This is analogous to the i.i.d. case where U = X+αS, and α = P/(P +N)

[44]. Curiously, the optimal F takes the form of an optimal non-causal Wiener filter. In

the i.i.d. case, α = P/(P +N) can be interpreted as the optimal filter to estimate X from

X +Z. In the vector case, the optimal F takes the form F = Sxx(Sxx + Szz)−1, and it can

be interpreted as the optimal filter to estimate X from X+ Z. Further, neither optimal F

nor capacity depends on the distribution of S. In fact, the capacity of the channel is the

same as if S does not exist. This result is stated as Lemma 3.1. A proof is presented as

follows:

Proof of Lemma 3.1: Let U = X+FS, whereX and S are independent Gaussian vectors

with covariance matrices Sxx and Sss, respectively. Compute:

I(U;Y) = H(U) +H(Y)−H(U;Y)

=
1
2
log

|Sxx + FSssF
T | · |Sxx + Sss + Szz|∣∣∣∣∣ Sxx + FSssF
T Sxx + FSss

Sxx + SssF
T Sxx + Sss + Szz

∣∣∣∣∣
, (C.3)

where H(U), H(Y) and H(U;Y) are computed using the relation U = X+ FS, where X

and S are independent. Also, to compute I(X;S), S can be viewed as the input and U as

the output of a Gaussian channel with X as noise. So,

I(U;S) =
1
2
log

|Sxx + FSssF
T |

|Sxx| (C.4)

Define the function:

R(F ) = I(U;Y) − I(U;S)

=
1
2
log

|Sxx| · |Sxx + Sss + Szz|∣∣∣∣∣ Sxx + FSssF
T Sxx + FSss

Sxx + SssF
T Sxx + Sss + Szz

∣∣∣∣∣
. (C.5)
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The task is to maximize R(F ) over F . By expanding the denominator using Schur’s com-

plement formula for matrix determinant

∣∣∣∣∣ A B

C D

∣∣∣∣∣ = |D| · |A−BD−1C|:

R(F ) =
1
2
log

|Sxx|
|Sxx + FSssF T − (Sxx + FSss)(Sxx + Sss + Szz)−1(Sxx + SssF T )| . (C.6)

So, to maximize R(F ) over F , it is only necessary to minimize the denominator in the above

equation. The denominator is a quadratic function of F , so it can be minimized with the

standard “complete-the-square” technique. Setting the denominator as (Fa−b)(Fa−b)T+c,
where a, b and c are n× n matrices, and comparing the coefficients:

aaT = Sss − Sss(Sxx + Sss + Szz)−1Sss, (C.7)

baT = Sxx(Sxx + Sss + Szz)−1Sss, (C.8)

bbT + c = Sxx − Sxx(Sxx + Sss + Szz)−1Sxx. (C.9)

Then, the minimizing F is,

F = ba−1

= baT (aaT )−1

= Sxx(Sxx + Sss + Szz)−1Sss(Sss − Sss(Sxx + Sss + Szz)−1Sss)−1

= Sxx(Sxx + Szz)−1. (C.10)

The minimum value of the denominator is c. To find c, solve for bbT :

bbT = FaaTF T

= Sxx(Sxx + Szz)−1(Sss − Sss(Sxx + Sss + Szz)−1Sss)(Sxx + Szz)−1Sxx

= Sxx(Sxx + Szz)−1(S−1
ss + (Sxx + Szz)−1)−1(Sxx + Szz)−1Sxx

= Sxx(S−1
ss (Sxx + Szz) + I)−1(Sxx + Szz)−1Sxx

= Sxx(Sxx + Szz + Sss)−1Sss(Sxx + Szz)−1Sxx, (C.11)

where the identity (A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 is used. The
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minimum value of the denominator in (C.6) can then be found:

c = Sxx − Sxx(Sxx + Sss + Szz)−1Sxx − bbT

= Sxx − Sxx(Sxx + Szz + Sss)−1(I + Sss(Sxx + Szz)−1)Sxx

= Sxx − Sxx(Sxx + Szz)−1Sxx. (C.12)

Thus,

max
F

R(F ) =
1
2
log

|Sxx|
|Sxx − Sxx(Sxx + Szz)−1Sxx| . (C.13)

It remains to evaluate the above. Using the determinant formula for Schur’s complement

again,

∣∣∣∣∣ A B

C D

∣∣∣∣∣ = |D| · |A−BD−1C| = |A| · |D − CA−1B|:

|Sxx + Szz| · |Sxx − Sxx(Sxx + Szz)−1Sxx| = |Sxx| · |Szz|. (C.14)

Thus,

max
F

R(F ) =
1
2
log

|Sxx + Szz|
|Szz| . (C.15)

This is the mutual information formula for the vector Gaussian channel without the inter-

fering S. Thus maxF I(U;Y)− I(U;S) = I(X;Y|S). The original assumption that (U,S)

takes the form U = X + FS, where X and S are independent Gaussian is without loss

of generality. The optimal F = Sxx(Sxx + Szz)−1. The capacity achieving Suu is equal to

Sxx + Sxx(Sxx + Szz)−1Sss(Sxx + Szz)−1Sxx. ✷



Appendix D

Broadcast Channel Example

A numerical example for the Gaussian vector broadcast channel is presented. Consider the

following broadcast channel: y1

y2

y2

 =
 1.0 −0.3 0.2

−0.4 2.0 0.5

−0.1 0.2 3.0


 x1

x2

x2

+
 z1

z2

z2

 , (D.1)

where y1, y2, and y3 are uncoordinated receivers, and z1, z2, and z3 are i.i.d. Gaussian noises

with variance 1. The total power constraint is set to 5. The iterative algorithm described at

the end of the section 3.3 is used to solve for the saddle point (Sxx, Szz). The water-filling

step is standard. The least favorable noise problem is solved using an interior-point method.

The algorithm converged in 3-4 steps. The numerical solution is:

Sxx =

 1.0762 −0.2327 −0.0074
−0.2327 1.8635 0.0387

−0.0074 0.0387 2.0603

 , Szz =

 1.0000 −0.1286 0.0493

−0.1286 1.0000 0.0311

0.0493 0.0311 1.0000

 .
(D.2)

To verify that the above solution satisfies the KKT conditions:

S−1
zz − (

Szz +HSxxH
T
)−1

= Ψ =

 0.4859 0 0

0 0.8701 0

0 0 0.9422

 (D.3)
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and

HT
(
HSxxH

T + Szz

)−1
H =

 0.4597 0 0

0 0.4597 0

0 0 0.4597

 . (D.4)

The vector channel capacity with the least favorable noise correlation is:

C =
1
2
log

|HSxxH
T + Szz|

|Szz| = 2.8952. (D.5)

The objective is to design a generalized decision-feedback precoder that achieves the vector

channel capacity without receiver coordination. This is accomplished by finding an appro-

priate transmit filter B = V Σ
1
2M which would induce a diagonal feedforward filter in a

GDFE. Following the proof of Lemma 3.3, compute the eigen-decomposition Sxx = V ΣV T

and Szz = QTΛQ. Then, compute R as a square root of the following as in (3.78):

RTR =
(√
ΣV THTQTΛ−1QHV

√
Σ+ I

)−1
. (D.6)

In particular, R can be found by a Cholesky factorization. In this example, because Sxx is

the water-filling covariance, the matrix V diagonalizes the channel, so that RTR is already

diagonal. So, finding an R is trivial. Numerically,

R =

 0.2191 0 0

0 0.3451 0

0 0 0.7312

 . (D.7)

The next step is to find an orthogonal matrix U , such that UR
√
ΣV THTQTΛ−1Q is diag-

onal. The proof of Lemma 3.3 shows that U can be found as follows:

U = Ψ− 1
2QTΛ−1QHV

√
ΣRT =

 0.0115 −0.2220 0.9750

0.3147 0.9263 0.2072

0.9491 −0.3045 −0.0805

 . (D.8)

The final step is to find an orthogonal matrix M such that URM is lower-triangular. This

is done by computing the QR-factorization of RTUT =MT , where T is upper-triangular,
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and M is orthogonal. Then, URM = T T is lower-triangular. In this example,

RTUT =MT =

 −0.0035 −0.2010 −0.9796
0.1069 −0.9740 0.1995

−0.9943 −0.1040 0.0249


 −0.7170 −0.1167 0.0466

0 −0.3410 0.0666

0 0 −0.2262

 .
(D.9)

This gives the appropriate M for the desired transmit filter B = V Σ
1
2M .

Now, design a generalized decision-feedback equalizer for the effective channel

H̃ =
1√
Λ
QHV

√
ΣM =

 −0.7439 2.2489 0.0128

0.1698 0.8505 4.3105

0.6027 1.4311 −0.8596

 , (D.10)

an input covariance Suu = I, and a noise covariance Szz = I. Compute G−1∆−1G−T =

(H̃T H̃ + I)−1:

G =

 1 −0.3423 0.1051

0 1 0.2947

0 0 1

 , ∆ =

 1.9454 0 0

0 8.6009 0

0 0 19.5512

 . (D.11)

As expected, the choice of transmit filter makes the feedforward filter a diagonal matrix:

F = ∆−1G−T H̃T 1√
Λ
Q =

 −0.4998 0 0

0 −0.3181 0

0 0 −0.2195

 . (D.12)

First, let’s compute the capacities of individual sub-channels in the GDFE feedback config-

uration. The effective channel is u′ = FHBu+ (I −G)u+ Fz : u′1
u′2
u′3

 =
 0.4860 0 0

−0.0398 0.8837 0

−0.0105 0.0151 0.9489


 u1

u2

u3

+
 −0.4998z3

−0.3181z2
−0.2195z1

 . (D.13)
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Thus, the capacities of the three sub-channels are:

R1 =
1
2
log

(
1 +

0.48602

0.49982

)
= 0.3327 (D.14)

R2 =
1
2
log

(
1 +

0.88372

0.31812 + 0.03982

)
= 1.0759 (D.15)

R3 =
1
2
log

(
1 +

0.94892

0.01052 + 0.01512 + 0.1332

)
= 1.4865. (D.16)

The sum capacity is R1+R2+R3 = 2.8952, which agrees with the vector channel capacity.

Now, compute the capacity of individual sub-channels in the precoding configuration.

The effective channel is y = HBu+ z: y1

y2

y3

 =
 −0.9723 0.6847 −0.2101

0.1251 −2.7785 −0.9265
−0.0480 −0.0687 −4.3222


 u1

u2

u3

+
 z3

z2

z1

 . (D.17)

Decoding u3 from y3, the capacity is:

R3 =
1
2
log

(
1 +

4.32222

1 + 0.04802 + 0.06872

)
= 1.4865. (D.18)

The signal from u3 may be pre-subtracted from u2, leading to:

R2 =
1
2
log

(
1 +

2.77852

1 + 0.12512

)
= 1.0759. (D.19)

The signals from u2 and u3 may be pre-subtracted from u1, leading to:

R1 =
1
2
log(1 + 0.97232) = 0.3327. (D.20)

Therefore, without receiver coordination, a sum capacity of R1 + R2 + R3 = 2.8952 is

also achievable. In fact, it is now possible to identify the appropriate transmit covariance

matrices for each user as in Theorem 3.1. Let B1, B2 and B3 be the column vectors of the

transmit filter B = [B1B2B3]. Then information bits u1, u2 and u3 are modulated with

covariance matrices S1 = B1B
T
1 , S2 = B2B

T
2 and S3 = B3B

T
3 . Let H1, H2 and H3 be the

row vectors of the channel HT = [HT
1 H

T
2 H

T
3 ]. Then, by Theorem 3.1, the following rates
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are achievable:

R1 =
1
2
log

(
H1S1H

T
1 + 1

)
= 0.3327 (D.21)

R2 =
1
2
log

(
H2S2H

T
2 +H2S1H

T
2 + 1

H2S1HT
2 + 1

)
= 1.0759 (D.22)

R3 =
1
2
log

(
H3S3H

T
3 +H3S2H

T
3 +H3S1H

T
3 + 1

H3S2HT
3 +H3S1HT

3 + 1

)
= 1.4865. (D.23)

This again verifies that R1 + R2 + R3 = 2.8952 is achievable with no coordination at the

receiver side.



Appendix E

Convergence of Iterative

Water-filling

The proof for the convergence of iterative water-filling for a two-user Gaussian interference

channel is presented here.

Proof of Theorem 4.1: The Nash equilibrium points correspond to power allocations

where each user’s power spectrum is a water-filling against the combined interference and

noise. Call the water-filling level at the Nash equilibrium (L1, L2). The first idea in proving

the existence of a Nash equilibrium under a power constraint (P1,P2) is to establish the

existence of a Nash equilibrium under a fixed water level. Assume α1(f)α2(f) < 1 ∀f ,
and fix (L1, L2). The Nash equilibrium power allocation (P1(f), P2(f)) can be found by

simultaneously solving the water-filling condition at each frequency f : When P1(f) (or

P2(f)) is zero, the combined interference and noise must be greater than or equal to L1 (or

L2). When P1(f) and P2(f) are positive, the following must be true:

P1(f) + α2(f)P2(f) +N1(f) = L1, (E.1)

P2(f) + α1(f)P1(f) +N2(f) = L2. (E.2)

Now, if either L1 < N1(f), or L2 < N2(f), then trivially P1(f) = 0 or P2(f) = 0 satisfies

the water-filling condition. So, without loss of generality, assume that L1 > N1(f) and

L2 > N2(f). If α1(f) >
L2−N2(f)
L1−N1(f) , setting P1(f) = 0 and P2(f) = L2 −N2(f) satisfies the

condition. Also, if α2(f) >
L1−N1(f)
L2−N2(f) , setting P2(f) = 0 and P1(f) = L1 − N1(f) satisfies
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the condition. The above two conditions on α1 and α2 cannot be both true at the same

time, because α1(f)α2(f) < 1. If neither is true, then equations (E.1) and (E.2) have a

positive solution:

P1(f) =
(L2 −N2(f))− α1(L1 −N1(f))

1− α1α2

P2(f) =
(L1 −N1(f))− α2(L2 −N2(f))

1− α1α2
(E.3)

Thus, under all cases, the simultaneous water-filling solution exists.

Next, it is established that for a given power constraint (P1,P2), there exists (L1, L2)

whose Nash equilibrium has exactly this power. For each (L1, L2), denote the total power

level at the corresponding Nash equilibrium as (PL1 ,PL2). Observe that when α1(f)α2(f) <

1, if L1 < L′
1 and L2 = L′

2, then PL1 ≤ PL′
1
and PL2 ≥ PL′

2
. This can be verified by working

through the simultaneous water-filling condition. Now, start with L1 = L2 = 0. Increase

L1 until PL1 = P1, then increase L2 until PL2 = P2. Then, by the previous observation, it

must be that PL1 ≤ P1. So, L1 can be increased again, until PL1 = P1, then L2 increased,

and so on. The increasing sequences of L1 and L2 cannot go to infinity with finite power

constraints, so they must converge. The limit point is a Nash equilibrium corresponding to

(P1,P2). This establishes the existence of a Nash equilibrium under a power constraint.

To prove uniqueness, let (PN
1 (f), P

N
2 (f)) be the power distribution at a Nash equilib-

rium, whose existence is already established. Start with any power distribution P
(0)
1 (f)

that satisfies the power constraint. Water-fill for P (0)
2 (f), assuming P (0)

1 (f) as interference.

Then, water-fill for P (1)
1 (f), assuming P (0)

2 (f) as interference. Continue iteratively to ob-

tain P
(1)
2 (f) → P

(2)
1 (f) → P

(2)
2 (f) → · · · . It is shown next that this iterative water-filling

process converges in L1-norm, ||P (k)
1 (f) − PN

1 (f)||1 = 1
Fs

∫ Fs

0 |P (k)
1 (f) − PN

1 (f)|df . Define
(·)+ = max(0, ·), and (·)− = −min(0, ·). Then,

max
{∫ Fs

0

(
P

(k+1)
1 (f)− PN

1 (f)
)+

df,

∫ Fs

0

(
P

(k+1)
1 (f)− PN

1 (f)
)−

df

}
≤ supα2(f)max

{∫ Fs

0

(
P

(k)
2 (f)− PN

2 (f)
)+

df,

∫ Fs

0

(
P

(k)
2 (f)− PN

2 (f)
)−

df

}
≤ supα2(f) supα1(f)max

{∫ Fs

0

(
P

(k)
1 (f)− PN

1 (f)
)+

df,

∫ Fs

0

(
P

(k)
1 (f)− PN

1 (f)
)−

df

}
.

Thus, if supα1(f) supα2(f) = ε0 < 1, P (k)
1 (f)→ PN

1 (f) in L1-norm as k → ∞.
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The above condition may be too restrictive in certain cases. To derive the second and

third sufficient conditions, let ∆(k)P1(f) = P
(k)
1 (f)−PN

1 (f). Comparing to the interference

emitted by PN
1 (f), the power distribution P

(k)
1 (f) causes a difference in the interference level

that is equal to α1(f)∆(k)P1(f). This difference in interference would cause a difference

in P2(f) by at most α1(f)∆(k)P1(f) − 1
Fs

∫ Fs

0 α1(f)∆(k)P1(f)df . (The mean is subtracted

here, because the water-filling process is insensitive to the absolute interference level change

and is only affected by the relative interference level change.) This difference in P2(f)

would in turn cause an interference level difference in P1(f) by: α2(f)α1(f)∆(k)P1(f) −
α2(f) 1

Fs

∫ Fs

0 α1(f)∆(k)P1(f)df . Now, this difference in interference would cause a difference

in P1(f) by at most an amount:

∆(k+1)P1(f) ≤ α2(f)α1(f)∆(k)P1(f)− α2(f)
1
Fs

∫ Fs

0
α1(f)∆(k)P1(f)df −

1
Fs

∫ Fs

0
α2(f)α1(f)∆(k)P1(f)df − 1

Fs

∫ Fs

0
α2(f)df

1
Fs

∫ Fs

0
α1(f)∆(k)P1(f)df

The L1-norm of ∆(k+1)P1(f) above can be bounded by the triangular inequality as shown

below:

1
Fs

∫ Fs

0
|∆(k+1)P1(f)|df ≤ 1

Fs

∫ Fs

0
|α2(f)α1(f)∆(k)P1(f)|df +

1
Fs

∫ Fs

0
α2(f)df

1
Fs

∫ Fs

0
|α1(f)∆(k)P1(f)|df +

1
Fs

∫ Fs

0
|α2(f)α1(f)∆(k)P1(f)|df +

1
Fs

∫ Fs

0
α2(f)df

1
Fs

∫ Fs

0
|α1(f)∆(k)P1(f)|df

≤ sup{α2(f)α1(f)} 1
Fs

∫ Fs

0
|∆(k)P1(f)|df +

sup{α1(f)} 1
Fs

∫ Fs

0
α2(f)df

1
Fs

∫ Fs

0
|∆(k)P1(f)|df +

sup{α2(f)α1(f)} 1
Fs

∫ Fs

0
|∆(k)P1(f)|df +

sup{α1(f)} 1
Fs

∫ Fs

0
α2(f)df

1
Fs

∫ Fs

0
|∆(k)P1(f)|df.
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Thus, if

sup{α2(f)α1(f)}+ sup{α1(f)} 1
Fs

∫ Fs

0
α2(f)df = ε1 + ε3 <

1
2
, (E.4)

the iterative water-filling algorithm is a contraction, and P
(k)
1 (f) → PN

1 (f) in L1-norm as

k → ∞. The same analysis can be applied to P2(f), which yields the third condition.

The convergence of the iterative water-filling process implies that the Nash equilibrium

is unique. This is because the iterative water-filling process converges to the same Nash

equilibrium from any starting point. But each Nash equilibrium is its own fixed point.

So, there could not have been more than one Nash equilibria. The stability of the Nash

equilibrium also follows from the convergence of the iterative procedure. ✷



Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. J., vol.

27, pp. 379–423, 1948.

[2] C. E. Shannon, “Two-way communication channels,” in Proc. 4th Berkeley Symp.

Math. Stat. Prob. 1961, pp. 611–644, University of California Press.

[3] T. Starr, J. M. Cioffi, and P. J. Silverman, Understanding Digital Subscriber Line

Technology, Pretice-Hall, 1999.

[4] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley, New York,

1991.

[5] S. Kasturia, J. Aslanis, and J. M. Cioffi, “Vector coding for partial-response channels,”

IEEE Trans. Inform. Theory, vol. 36, no. 4, pp. 741–62, July 1990.

[6] T. M. Cover, “Broadcast channels,” IEEE Trans. Inform. Theory, vol. 18, no. 1, pp.

2–14, Jan. 1972.

[7] R. Ahlswede, “Multi-way communication channels,” in IEEE Inter. Symp. Inform.

theory (ISIT), 1971, pp. 103–105.

[8] H. Liao, Multiple access channels, Ph.D. thesis, University of Hawaii, Honolulu, 1972.

[9] R. G. Gallager, “Energy limited channels: Coding, multiaccess and spread spectrum,”

in Conf. Inform. Sci. Syst. (CISS), Mar. 1988, p. 372.
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[26] S. Verdú, “Multiple-access channels with memory with and without frame synchro-

nism,” IEEE Trans. Inform. Theory, vol. 35, no. 3, pp. 605–19, May 1989.

[27] L. Vandenberghe, S. Boyd, and S.-P. Wu, “Determinant maximization with linear

matrix inequality constraints,” SIAM journal on matrix analysis and applications, vol.

19, pp. 499–533, 1998.

[28] P. Bergman and T. M. Cover, “Cooperative broadcasting,” IEEE Trans. Inform.

Theory, vol. 20, pp. 317–324, May 1974.

[29] R. G. Gallager, “Coding for degraded broadcast channels,” Problems of Information

Transmission, vol. X, pp. 3–14, Sep. 1974.

[30] P. Bergman, “A simple converse for broadcast channels with additive white Gaussian

noise,” IEEE Trans. Inform. Theory, vol. 20, pp. 279–280, March 1974.

[31] K. Marton, “A coding theorem for the discrete memoryless broadcast channel,” IEEE

Trans. Inform. Theory, vol. 25, pp. 306–311, May 1979.

[32] A. El Gamal and E. C. van der Meulen, “A proof of Marton’s coding theorem for the

discrete memoryless broadcast channel,” IEEE Trans. Inform. Theory, vol. 27, pp.

120–122, Jan. 1981.

[33] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inform. Theory, vol.

44, no. 6, pp. 2524–2530, Oct. 1998.

[34] G. Ginis and J. M. Cioffi, “A multi-user precoding scheme achieving crosstalk cancel-

lation with application to DSL systems,” in Proc. 34th Asilomar Conf. Signal System

Computers, Oct. 2000, pp. 1627–1631.



BIBLIOGRAPHY 112

[35] G. Ginis and J. M. Cioffi, “Vectored-DMT: A FEXT canceling modulation scheme for

coordinating users,” in IEEE Inter. Conf. Comm. (ICC), June 2001.

[36] G. Ginis and J. M. Cioffi, “Vectored transmission for digital subscriber line systems,”

IEEE J. Selected Areas Comm., June 2002.

[37] G. Caire and S. Shamai, “On achievable rates in a multi-antenna broadcast downlink,”

in Allerton Conf. Comm. Cont. Comp., 2000.

[38] G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna Gaussain

broadcast channel,” submitted to IEEE Trans. Inform. Theory, July 2001.

[39] S. Vishwanath, N. Jindal, and A. Goldsmith, “On the capacity of multiple input

multiple output broadcast channels,” in IEEE Inter. Conf. Comm. (ICC), 2002.

[40] P. Viswanath and D. Tse, “Sum capacity of the multiple antenna broadcast channel,”

in IEEE Inter. Symp. Inform. Theory (ISIT), 2002.

[41] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE

Trans. Inform. Theory, vol. 19, no. 4, pp. 471–480, July 1973.

[42] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random parameters,” Prob.

Control Inform. Theory, vol. 9, no. 1, pp. 19–31, 1980.

[43] C. Heegard and A. El Gamal, “On the capacity of computer memories with defects,”

IEEE Trans. Inform. Theory, vol. 29, pp. 731–739, Sep. 1983.

[44] M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, no. 3, pp.

439–441, May 1983.

[45] A.J. Goldsmith and M. Effros, “The capacity region of broadcast channels with inter-

symbol interference and colored Gaussian noise,” IEEE Trans. Inform. Theory, vol.

47, no. 1, pp. 211–219, Jan. 2001.

[46] A. Cohen and A. Lapidoth, “The Gaussian watermarking game: Part I,” submitted to

IEEE Trans. Inform. Theory, 2001.

[47] W. Yu, A. Sutivong, D. Julian, T. M. Cover, and M. Chiang, “Writing on colored

paper,” in IEEE Inter. Symp. Inform. Theory (ISIT), June 2001.



BIBLIOGRAPHY 113

[48] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, and G. D. Forney, “MMSE decision

feedback equalizers and coding: Part I and II,” IEEE Trans. Comm., vol. 43, no. 10,

pp. 2582–2604, Oct. 1995.

[49] J. M. Cioffi and G. D. Forney, “Generalized decision-feedback equalization for packet

transmission with ISI and Gaussian noise,” in Communications, Computation, Control

and Signal Processing: a tribute to Thomas Kailath, A. Paulraj, V. Roychowdhury,

and C. D. Shaper, Eds. 1997, Kluwer Academic Publishers.

[50] M. K. Varanasi and T. Guess, “Optimum decision feedback multiuser equalization

with successive decoding achieves the total capacity of the guassian multiple-access

channel,” in Proc. Asilomar Conf. Signal System Computers, 1997, pp. 1405–1409.

[51] T. Kailath, A. Sayed, and B. Hassibi, State-space Estimation, Prentice Hall, 1999.

[52] H. Sato, “An outer bound on the capacity region of broadcast channels,” IEEE Trans.

Inform. Theory, vol. 24, no. 3, pp. 374–377, May 1978.

[53] S. Ihara, “On the capacity of channels with additive non-Gaussian noise,” Information

and Control, vol. 37, pp. 34–39, 1978.

[54] S. N. Diggavi and T. M. Cover, “Worst additive noise under covariance constraints,”

IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 3072–81, Nov. 2001.

[55] K. Fan, “Minimax theorems,” Proc. Nat. Acad. Sci., vol. 39, pp. 42–47, 1953.

[56] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[57] R. T. Rockafellar, “Saddle-points and convex analysis,” in Differential Games and

Related Topics, H. W. Kuhn and G. P. Szegö, Eds. 1971, North-Holland Publ. Co.
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