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Abstract—This paper proposes a linear beamforming strategy for
interference alignment in multiple-input multiple-output (MIMO)
cellular networks. In particular, we consider a network consisting
of G mutually interfering cells with K users/cell, having N antennas
at each base station (BS) and M antennas at each user — a
(G,K,M,N) network. We develop an unstructured approach to
designing linear beamformers for interference alignment where
transmit beamformers are designed to satisfy conditions for in-
terference alignment without explicitly identifying the underlying
structures for alignment. Specifically, the transmit beamformers in
the uplink are required to satisfy a certain number of random linear
vector equations in order to constrain the number of dimensions
occupied by interference at each BS. The conceptual simplicity and
the fact that no customization to a given network is needed makes
this method applicable to a broad class of cellular networks. The key
observation made in this paper is that such an approach appears
to be capable of achieving the optimal DoF for MIMO cellular
networks in regimes where linear beamforming dominates asymp-
totic decomposition-based schemes for interference alignment, and
a significant portion of the DoF elsewhere. Remarkably, polynomial
identity test plays a key role in identifying the scope and limitations
of such a technique.

I. INTRODUCTION

Degrees of freedom (DoF) has emerged as a useful metric in

characterizing the capacity of multi-cell multi-antenna networks.

In this work we focus on the symmetric DoF of multiple-

input multiple-output (MIMO) cellular networks. In particular,

we considerG mutually interfering cells with K users/cell having

N antennas at each base station (BS) and M antennas at each

user—denoted in this paper as a (G,K,M,N) network.

Linear beamforming, first analyzed in the context of inter-

ference alignment (IA) for the 2 × 2 X network [1], [2] and

the asymptotic scheme for IA over multiple symbol extensions,

first developed for the K-user interference channel [3], have

emerged as the leading techniques for establishing the optimal

DoF of various networks. In this work, we develop a linear

beamforming strategy for IA in MIMO cellular networks and

study the symmetric DoF achieved using such a scheme. Linear

beamforming techniques play a crucial role in establishing the

optimal DoF of MIMO networks without requiring the multi-

antenna nodes to be decomposed into single-antenna nodes [4],

[5]. Although we focus on symmetric DoF in this paper, this

strategy can be applied even when the DoF requirements are

asymmetric.

Designing linear beamforming strategies that achieve the op-

timal DoF of MIMO cellular networks is challenging because

multiple subspaces can interact and overlap in complicated ways.

So far, identifying the underlying structure of IA for each given

network (e.g. subspace alignment chains for the three-user MIMO

interference channel [4]) has been a prerequisite for developing

counting arguments that lead to DoF-optimal linear beamforming

strategies.

The need to identify structures for IA can be circumvented by

treating the conditions for IA as a system of polynomial equations

and studying the feasibility of such a system through techniques

in algebraic geometry. While certain sufficient conditions estab-

lished through such an approach ensure feasibility [6]–[10], such

an approach does not provide any insight on designing linear

beamformers for IA.

In contrast to structured linear beamformer design for IA and

techniques based on algebraic geometry to establish feasibility,

this paper proposes a structure-agnostic approach to design linear

beamformers for IA while also establishing feasibility. In such

an approach, depending on the DoF demand placed on a given

MIMO cellular network, we design transmit beamformers in the

uplink by solving a requisite number of random linear vector

equations that limit the total number of dimensions occupied by

interference at each BS.

The crucial element in such an approach is the fact that we

construct linear vector equations with random coefficients. This

is a significant departure from structured approaches where linear

equations that identify the alignment conditions emerge from

notions such as subspace alignment chains or packing ratios and

are predefined with deterministic coefficients. The flexibility in

choosing random coefficients allows us to use this technique for

IA in networks of any size, without having to explicitly infer

the underlying structure. Such an approach is also discussed in

[11]–[13], where it is mostly used to design aligned transmit

beamformers when one DoF/user is desired. In this paper, we

significantly expand the scope of such an approach by proposing

the use of a polynomial identity test to resolve certain linear

independence conditions that need to be satisfied when more than

one DoF/user are desired. Although multi-stream transmission has

also been considered in [13], the need for the polynomial identity

test has not been previously stated.

We observe that for a (G,K,M,N) network, in the regime

where the proper-improper boundary [6], [10] lies above the

decomposition based inner bound [14]–[16], i.e.,
(

MN
KM+N

<
M+N
GK+1

)

, the unstructured approach appears to be able to achieve

the optimal spatially normalized DoF (sDoF). Remarkably, the

polynomial identity test plays a key role in identifying the optimal

sDoF in this regime. The DoF obtained numerically from this



unstructured approach matches the optimal sDoF characterized in

a parallel and independent work [17] using a structured approach.

The key advantage of the unstructured approach advocated in this

paper is that it is conceptually much simpler and easily adapted

to a wide class of networks. For a longer version of this paper

that further elaborates on the ideas discussed here, please refer

to [16].

II. SYSTEM MODEL

Consider a (G,K,M,N) network. The index pair (l,m)
is used to denote the mth user in the lth cell. The channel

from user (l,m) to the ith BS is assumed to be generic and

denoted as the N × M matrix H(lm,i). In the uplink, let xlm

denote the M × 1 signal vector transmitted by user (l,m). This
transmit signal vector is formed using a M × d linear transmit

beamforming matrix Vlm and received using a N × d receive

beamforming matrix Ulm, where d represents the number of data

streams transmitted by user (l,m). The received signal after being
processed by the receive beamforming matrix Ulm at the lth BS

can be written as

UH
lmyl =

G
∑

i=1

K
∑

j=1

UH
lmH(ij,l)Vijsij +UH

lmnl. (1)

where sij is the d×1 symbol vector transmitted by user (i, j) and
nl is the N × 1 vector representing circular symmetric additive

white Gaussian noise ∼ N (0, I). The received signal is defined

similarly for the downlink.

We denote the space occupied by interference at the lth BS

as the column span of a matrix Rl formed using the column

vectors from the set {H(ij,l)vijk : i ∈ {1, 2, . . . , G}, j ∈
{1, 2, . . . ,K}, k ∈ {1, 2, . . . , d}, l 6= i}, where we use the

notation vijk to denote the kth beamformer associated with user

(i, j).

III. CONDITIONS FOR INTERFERENCE ALIGNMENT

When d data streams/user are desired in a (G,K,M,N)
network, the conditions for linear IA can be stated as follows

[6]:

UH
ijHlm,iVlm = 0 ∀ (i, j) 6= (l,m) (2)

rank(UH
ijHij,iVij) = d ∀ (i, j). (3)

A necessary condition for feasibility of the polynomial system

of equations in (2) is given by M +N ≥ (GK + 1)d [6], [10].

Systems that satisfy this condition are known as proper systems.

For proper and feasible systems, solving the system of bilinear

equations in (2) typically requires the use of iterative algorithms

such as those developed in [18].

When channels are generic, the conditions in (2) and (3) can

be stated in an alternate manner. In order to accommodate Kd
signal vectors at each BS, the interfering vectors contained in Ri

cannot span anymore than N −Kd dimensions i.e., we require

rank(Ri) ≤ (N −Kd) ∀i. Next, in order to ensure signals from

each user span d dimensions at the intended BS we impose the

constraint that rank(Vij) = d ∀i, j. Since channels are generic,

and since the rank constraint on Ri does not involve the direct

channels, the received signal H(ij,i)Vij will almost surely span

d-dimensions at the intended BS and further, the signals from

the K users will all be separable. Finally, generic channels also

ensure that at each BS, the intersection between useful signal

subspace (span([Hi1,iVi1,Hi2,iVi2, . . . ,HiK,iViK ]) and inter-

ference subspace (span(Ri)) is almost surely zero dimensional

whenever the rank(Ri) ≤ (N −Kd) ∀i. Thus the requirements

for IA can be alternately stated as

rank(Ri) ≤ N −Kd ∀ i, (4)

rank(Vjl) = d ∀ j, l. (5)

Given a set of transmit precoders {Vjl} that satisfy the above

conditions, designing the receive filters is then straightforward.

IV. LINEAR BEAMFORMING DESIGN: THE UNSTRUCTURED

APPROACH

In the uplink of a (G,K,M,N) network, when each user

transmits d data streams, each BS observes GKd streams of

transmission of which (G−1)Kd streams constitute interference.

Setting aside Kd dimensions at each BS for the received signals

from the in-cell users, to satisfy (4) the (G − 1)Kd interfering

data streams must occupy no more than N −Kd dimensions at

each BS. Assuming (G− 1)Kd > N −Kd (no IA is necessary

otherwise), we require the (G − 1)Kd transmit beamformers

of the interfering signals to satisfy GKd − N distinct linear

equations, i.e, at the ith BS, we require

G
∑

l=1,l 6=i

K
∑

m=1

d
∑

n=1

αp
lmn,iH(lm,i)vlmn = 0, (6)

where αp
lmn,i refers to the coefficient associated with the in-

terfering transmit beamformer vlmn in the pth linear equation

corresponding to the ith BS. Let L = GKd − N . Thus,

we have GL linear vector equations, each involving a set of

(G − 1)Kd transmit beamforming vectors. Concatenating the

transmit beamforming vectors vlmn into a single vector v =
[v111,v112, . . . ,v11d, . . . ,vGKd] and by appropriately defining

the matrix M, the GL linear vector equations can be expressed

as the matrix equationMv = 0. Note thatM is aGLN×GKMd
matrix.

When IA is known to be feasible, it guarantees the existence

of a set of coefficients {αp
lmn,i} such that the system of equations

Mv = 0 has a non-trivial solution. Determining the right set of

coefficients is non-trivial and highlights a particular difficulty in

finding aligned beamformers using the set of equations charac-

terized by Mv = 0. However, in some cases, even a random

choice of coefficients permits non-trivial solutions to this system

of equations. The ability to choose a random set of coefficients is

quite significant as instead of solving a set of bilinear polynomial

equations for IA, we now only need to solve a set of linear

equations. In this paper, we focus on those networks that permit

the choice of random coefficients.

While aligned beamformers satisfy the system of equations

Mv = 0 for a set of coefficients, not all solutions to Mv =
0 with a fixed set of coefficients form aligned beamformers. A

vector v̂ satisfying Mv̂ = 0, can be considered to constitute a

set of aligned beamformers provided (a) the set of beamformers

corresponding to a user are linearly independent, i.e., Vij is full

rank ∀i, j; (b) the signal received from a user at the intended BS
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Fig. 1. Inner and outer bounds on the DoF of the G-cell, K-user/cell network. The optimal DoF consists of infinitely many piecewise-linear components for γ < γl
and γ > γr , while the decomposition based approach determines the optimal DoF when γl ≤ γ ≤ γr .

is full rank i.e., Hij,iVij is full rank; (c) signal and interference

are separable at each BS; and (d) the received signal vectors at

each BS span Kd dimensions i.e., signals from two users in a

cell do not overlap. Since we assume generic channel coefficients

and since direct channels are not used in forming the matrix M,

(c) and (d) are satisfied almost surely, while (b) and (d) are true

provided (a) is true and the channel coefficients are generic. While

the idea of satisfying conditions for IA through random linear

equations is also discussed in [11], the presentation in [11] is

limited to achieving one DoF/user, thereby avoiding the necessity

to check for linear independence of the transmit beamformers.

Since M is a GLN ×GKMd matrix, whenever LN < KMd
the system of equations Mv = 0 permits a non-trivial solu-

tion for any random choice of coefficients. This condition, i.e.,

LN < KMd, is a necessary condition for the applicability of

unstructured beamformer design. As shown in Fig. 1, it encom-

passes a significant set of (although not all) feasible networks.

When LN < KMd, a solution to the equation Mv = 0 can be

expressed as v̂ = det(MMH)(I −MH(MMH)−1M)r, where
r is a GKMd× 1 vector with randomly chosen entries. For v̂

to qualify as a solution for IA, we need to ensure that the set of

transmit beamformers v̂ij1, v̂ij2 . . . v̂ijd obtained from v̂ are lin-

early independent for any i ∈ {1, 2, . . . , G}, j ∈ {1, 2, . . . ,K}.
Letting V̂ij be the M×d matrix formed using v̂ij1, v̂ij2 . . . v̂ijd,

checking for linear independence is equivalent to checking if the

determinant of the matrix [V̂ij Wij ], where Wij is a (M−d)×d
matrix of random entries, is non-zero or not.

Since the determinant of [V̂ij Wij ] is a polynomial in the

variables Wij , r, {αp
lmn,i}, and {H(lm,i)}, checking for linear

independence of the transmit beamformers is equivalent to check-

ing if this polynomial is the zero-polynomial or not. This problem

is known as polynomial identity testing (PIT) and is well studied

in complexity theory. While a general deterministic algorithm

to solve this problem is not known, a randomized algorithm

based on the Schwartz-Zippel lemma [19], [20] is available and

it involves evaluating this polynomial at a random instance of

Wij , r, {αp
lmn,i}, and {Hlm,i}. If the value of the polynomial

at this point is non-zero, then this polynomial is determined to be

not identical to the zero-polynomial. Further, it can be concluded

that this polynomial evaluates to a non-zero value for almost all

values of Wij , r, {αp
lmn,i}, and {Hlm,i}. If on the other hand,

the polynomial evaluates to the zero, the polynomial is declared

to be identical to the zero-polynomial and this statement is true

with a very high probability as a consequence of the Schwartz-

Zippel lemma.

Thus, whenever LN < KMd, we propose a two-step approach
to designing aligned beamformers. We first pick a set of random

coefficients, form the linear equations to be satisfied by the

transmit beamformers and compute a set of transmit beamformers

by solving the system of linear equations. We then perform

the numerical test outlined above to ensure that the transmit

beamformers are indeed linearly independent. If the transmit

beamformers pass the numerical test then they can be considered

to be a set of aligned transmit beamformers. Further, if such a

procedure works for a (G,K,M,N) network with d DoF/user

for a particular generic channel realization, then it works almost

surely for all generic channel realizations of this network. This

observation allows us to construct a numerical experiment to

verify the limits of using such an approach.

V. SCOPE AND LIMITATIONS

A. Numerical Experiment

We consider a network with G cells and K users/cell. For

this network, we consider all possible pairs of M and N such

that M ≤ Mmax and N ≤ Nmax, where Mmax and Nmax

are some fixed positive integers. For a fixed M and N , we then

consider the feasibility of constructing aligned beamformers using

the method described above in order to achieve d DoF/user where

d is such that (a) LN < KMd; (b) L > 0 and M < GKd
(else random beamforming in either uplink or downlink achieves
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Fig. 2. Results of the numerical experiment for the two-cell, four-user/cell network. Note the clear piecewise-linear boundary that emerges between the successful
and unsuccessful trials of the proposed method. The observed boundary matches with the result in [17].

the requisite DoF); (c) d ≤ M and Kd ≤ N (to ensure

sufficient antennas for signal vectors); (d) gcd(M,N, d) = 1
(due to spatial scale invariance1); and (e) (G,K,M,N, d) form

a proper system. For such a set of M , N , and d, we generate

an instance of generic channel matrices and apply the two

step procedure outlined earlier. This procedure is said to be

successful if the polynomial test returns a non-zero value and

unsuccessful otherwise. If successful, we conclude that such a

procedure can be reliably used to design transmit beamformers

for almost all channel instances of the (G,K,M,N, d) network

under consideration. When unsuccessful, we conclude that with

a very high probability such a procedure does not yield a set of

aligned transmit beamformers for almost all channel instances.

Using the results from such an experiment, we discuss the scope

and limitations of the unstructured approach in the next section.

B. Applicability of the Unstructured Approach

In Fig. 1 we sketch some well known bounds on the normalized

DoF/user (sDoF/user/N ) as a function of γ. This figure applies to
any MIMO cellular network, with the exception of the two-cell,

two-user/cell and the two-cell, three-user/cell networks, where the

decomposition based inner bound lies strictly below the proper-

improper boundary. Note that the necessary condition for the

unstructured approach, the proper-improper boundary and the

decomposition based inner bound all intersect at the same two

points γl and γr, given by
K(G−1)±

√
K2(G−1)2−4K

2K . The optimal

sDoF of a general cellular network is recently investigated in [17].

1Spatial scale invariance [21] states that if d DoF/user are feasible for a
(G,K,M,N) network, then sd DoF/user are feasible in a (G,K, sM, sN)
network where s ∈ Z+ denotes the scale factor. While no proof of such a
statement is available, no contradictions to this statement exist to the best of our
knowledge.

The optimal sDoF as characterized in [17] has a piecewise-linear

behavior in regions I (γ < γl) and III (γ > γr) (see Fig. 1).

Based on the results in [5] for the MIMO interference channel,

the decomposition-based inner bound is likely to characterize the

optimal DoF whenever γl ≤ γ ≤ γr. A simple DoF bound

obtained by letting all the BSs or users cooperate (denoted as

MAC/BC DoF bound) is also plotted along with the maximum

achievable sDoF using random transmit beamforming in the

uplink/downlink.

Focusing on regions I and III, we note that the unstructured

approach is applicable to all points in these two regions. To

gain insight on the scope of this technique for cellular networks,

we perform the numerical experiment outlined earlier for the 2-

cell 4-user/cell network. For this network, the proper-improper

boundary and the decomposition-based inner bound touch each

other at γ = 1/2, i.e., γl = γr = 1/2. The results of the numerical

experiment are plotted in Fig. 2 and it is easy to see that a

clear piecewise linear boundary emerges between the successful

and unsuccessful trials. Interestingly, the boundary is completely

determined by the PIT.

Remarkably, the boundary of the achievable sDoF determined

by our unstructured approach matches with the optimal sDoF

claimed in [17]. This leads us to conjecture that for any

(G,K,M,N) network whenever the decomposition-based inner

bound lies below the proper-improper boundary, the optimal sDoF

can be achieved by constructing linear beamformers using the

proposed method.

Shifting focus to region II2, note that this region lies entirely

below the decomposition-based inner bound and does not impact

2When G > 4, region II consists of two separate parts. See [16] for further
details.
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the characterization of the optimal sDoF. This region is bounded

below by the maximum DoF that can be trivially achieved

using random transmit beamforming in the uplink. By running

the numerical experiment on the 3-cell, 2-user/cell network for

(M,N, d) such that (M/N, d/N) lies in region II, we note from

Fig. 3 that the necessary condition LN < KMd also ensures

the success of the polynomial identity test. It is thus seen that

even in the regime where γl ≤ γ ≤ γr, a significant portion

of the achievable sDoF can be achieved using the unstructured

approach.

VI. CONCLUSION

This paper proposes a new strategy for designing linear beam-

formers for IA in MIMO cellular networks. The proposed method

is agnostic to the underlying structure of alignment. It relies on

random linear vector equations and a polynomial identity test

to satisfy the conditions for IA. Numerical experiments appear

to suggest that this approach can achieve the optimal sDoF of

MIMO cellular networks in the regime where the decomposition-

based inner bound lies below the proper-improper boundary.
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