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Abstract— The design and optimization of orthogonal fre-
quency division multiplex (OFDM) systems typically take the
following form. The design objective is to maximize the total data
rate which is the sum of individual rates in each frequency tone.
The design constraints are usually linear constraints imposed
across all tones. This paper shows that regardless of whether
the objective and the constraints are convex, the duality gap
for this class of problems is always zero in the limit as the
number of frequency tones goes to infinity. As the dual problem
typically decouples into many smaller per-tone problems, solving
the dual problem is much more efficient. This observation leads
to an efficient method to find the global optimum of non-convex
optimization problems for the OFDM system. Multiuser optimal
power allocation, optimal frequency planning and optimal low-
complexity crosstalk cancellation for vectored DSL are used to
illustrate this point.

I. INTRODUCTION

In an orthogonal frequency-division multiplex (OFDM)
system, the frequency domain is partitioned into a large
number of tones. Data transmission takes place in each tone
independently. The overall system throughput is the sum of
individual rates in each frequency tone. The design constraints
are typically linear but coupled across all the tones. The design
problem involves the optimization of the overall performance
subject to design constraints. For example, the optimal bit
and power allocation problem is often formulated as follows.
Let H(n), P (n) and N(n) denote the channel frequency
response, the transmit power spectral density and the noise
power spectral density at tone n, respectively. The optimization
problem is:

maximize
N∑

n=1

log
(

1 +
P (n)H2(n)

N(n)

)
(1)

subject to
N∑

n=1

P (n) ≤ P

P (n) ≥ 0.

The above problem has a well-known solution called “water-
filling”. Efficient solution exists in this case because the
objective function is concave in the optimizing variable P (n).
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Unfortunately, not all optimization objectives are concave.
The multiuser bit and power allocation is such an example.
In this case, several OFDM transmitters interfere with each
other, and the sum rate maximization problem becomes:

max
K∑

k=1

N∑
n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j �=k H2
jk(n)Pj(n)

)

s.t.
N∑

n=1

Pk(n) ≤ Pk k = 1, · · · ,K (2)

Pk(n) ≥ 0, k = 1, · · · ,K

where Hjk(n) is the channel transfer function from system
j to system k in tone n, Pk(n) is the power allocation for
user k in tone n, each user has a separate power constraint.
Because the objective function is not concave in Pk(n), the
optimization problem is difficult to solve. Previous approaches
(e.g. iterative water-filling [1] and others [2] [3]) use heuristics
to derive suboptimal solutions.

Recently, an efficient and exact “Optimal Spectrum Bal-
ancing” algorithm to solve this problem was proposed in [4].
The basically idea is as follows. Form the Lagrangian of the
optimization problem (2):

max
K∑

k=1

N∑
n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j �=k H2
jk(n)Pj(n)

)

+
K∑

k=1

λk

(
Pk −

N∑
n=1

Pk(n)

)
(3)

s.t. Pk(n) ≥ 0, k = 1, · · · ,K.

Solve the Lagrangian for each set of positive and fixed
(λ1, · · · , λK). Then, the solution to the original problem may
be found by an exhaustive search over the λ-space. λk is
increased or decreased depending on whether

∑N
n=1 Pk(n)

is greater or less than Pk. When the process converges, either
λk = 0 or

∑N
n=1 Pk(n) = Pk for each k. In this case, the

Lagrangian objective is identical to the original objective, thus
solving the original problem.

This Lagrangian approach works well because of the fol-
lowing. First, for a fixed λk, the objective decouples into N
independent problems corresponding to the N frequency tones.
Thus, solving the dual problem requires a much lower com-
putational complexity as compared to the original problem.
Second, λk represents the price of power for user k. A higher
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price leads to a lower power usage. Thus, as a function of λk,
the optimal

∑N
n=1 Pk(n) is monotonic in λk. An exhaustive

search over the λ-space can then be performed using bisection
on each λk. This is essentially an exhaustive search over all
power usages. It leads to the global optimum regardless of
whether the original problem is convex. However, with K
users, K loops of bisections are involved, one for each λk.
Therefore, the computational complexity of optimal spectrum
balancing, although linear in N , is exponential in K. When the
number of users is large, the complexity becomes prohibitive.

The purpose of this paper is first to refine the optimal
spectrum balancing algorithm with an aim of eliminating the
exponential complexity in Lagrangian search, and second to
generalize the algorithm for other optimization problems in
multiuser OFDM system design. Toward this end, we show
that the optimal spectrum balancing algorithm belongs to
a class of dual optimization methods. Contrary to general
non-convex problems, the duality gap for multiuser OFDM
optimization always tends to zero as the number of frequency
tones goes to infinity regardless of whether the optimization
problem is convex. This observation is inspired by the earlier
work of Bertsekas et al [5] and it leads to more efficient
λ-search methods. In the second part of paper, we show
that the general theory is applicable to many other areas
of OFDM system design. Optimal frequency planning and
optimal complexity allocation in vectored digital subscriber
line systems are some of these examples.

II. DUAL OPTIMIZATION METHODS

A. Duality Gap

Consider an optimization problem in which both the con-
straints and the objective function consist of a large number of
individual functions, corresponding to the N frequency tones:

maximize
N∑

n=1

fn(xn) (4)

subject to
N∑

n=1

hn(xn) ≤ P,

where fn(·) is a scalar function which is not necessarily
concave, and hn(·) is a vector-valued function that is not
necessarily convex. P is a vector of constraints. Also, there
may be other (possibly integer) constraints implicit in the
problem. The idea of the dual method is to solve (4) via its
Lagrangian:

L(xn, λ) =
N∑

n=1

fn(xn) + λT ·
(

P −
N∑

n=1

hn(xn)

)
, (5)

where λ is a vector, and “·” denotes vector dot product.
Note that the Lagrangian decouples into a set of N smaller
problems, so optimizing the Lagrangian is much easier than
solving (4). Define the dual objective g(λ) as the solution to
the following:

g(λ) = max
xn

L(xn, λ) (6)

The dual optimization problem is:

minimize g(λ) (7)

subject to λ ≥ 0.

When fn(xn) is concave and hn(xn) is convex, standard
convex optimization results guarantee that the primal problem
(4) and the dual problem (7) have the same solution. When
convexity does not hold, the dual problem provides a solution
which is an upper bound to the solution of (4). The upper
bound is not always tight, and the difference is called the
“duality gap”.

In multiuser OFDM design, convexity often does not hold.
However, it is usually the case that the following “time-
sharing” property is satisfied:

Definition 1: An optimization problem of the form (4)
satisfies the time-sharing property if the following holds: Let
xn and yn be optimal solutions to the problem with P = Px

and P = Py , respectively. Then, for any 0 ≤ ν ≤ 1, there
exists a set of zn such that

∑
n hn(zn) ≤ νPx + (1 − ν)Py ,

and
∑

fn(zn) ≥ ν
∑

fn(xn) + (1 − ν)
∑

fn(yn).

This property is clearly satisfied if time-division multiplexing
may be implemented. (Throughout the paper, the channels are
assumed to be time invariant.) The frequency tones can then
be assigned to xn for ν percentage of the time and yn for
(1 − ν) percentage of the time. In practical OFDM systems
in which channel conditions in adjacent tones are similar and
there are a large number of frequency tones, the time-sharing
property can be satisfied with frequency-sharing. This is true
because time-sharing can be approximately implemented by
interleaving xn and yn in the frequency domain. As N → ∞,
frequency-sharing is equivalent to time-sharing.

Note that the concavity of fn(xn) and the convexity of
hn(xn) and all other constraints imply time-sharing but not
vice versa. Time-sharing is always satisfied regardless of
convexity as long as N is sufficiently large and fn · · · fn+k

are sufficiently similar for small values of k (and likewise for
hn · · ·hn+k.) This is the case in almost all OFDM systems as
the subchannel width in OFDM systems is chosen so that the
channel response in adjacent subchannels are approximately
the same.

The main result of this section is that the time-sharing
property implies that the duality gap is zero.

Theorem 1: If an optimization problem satisfies the time-
sharing property, then it has zero duality gap, i.e. the primal
problem (4) and the dual problem (7) have the same solution.

Proof: The proof is obvious if (4) is convex. Fig. 1 illustrates
the proof when convexity does not hold but time-sharing
does. The first diagram illustrates a function that satisfies
the time-sharing property. The solid line plots the optimal
(
∑

hn(x∗
n),
∑

fn(x∗
n)) as the constraint P varies. The

intersection of the curve with the vertical axis where∑
hn(x∗

n) = P is the optimal value of the primal objective.
Clearly larger P leads to higher objective value, so the
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slope=λ

λ∗

f∗ = g∗

g(λ)

∑
fn(x∗

n)

∑
hn(x∗

n)P

λ∗∑
fn(x∗

n)

∑
hn(x∗

n)P

f∗ �= g∗

g∗

Fig. 1. Time-sharing property implies zero duality gap.

curve is increasing. More importantly, the curve is concave
because of the time-sharing property. Now, consider a fixed
tangent line with slope λ. By the definition of L(λ, xn),
the intersection of the tangent line with the vertical axis is
precisely g(λ). This allows the minimization of the dual
problem to be visualized easily. As λ varies, g(λ) achieves
a minimum at exactly the maximum value of the primal
objective. Thus, the duality gap is zero. (The second diagram
illustrates a case where time-sharing property does not hold.
In this case, the minimum g(λ) is strictly larger than the
maximum

∑
fn(xn).) �

The main consequence of Theorem 1 is that as long as
the time-sharing property is satisfied, even a non-convex opti-
mization problem can be solved by solving its dual. The dual
problem is typically much easier to solve because it usually
lies in a lower dimension. Further, g(λ) is convex regardless
of the concavity of fn(xn). (This is because L(xn, λ) is
linear in λ for each fixed xn, and g(λ) is the maximum of
linear functions and is therefore convex.) Thus, any gradient-
based algorithm is guaranteed to converge. Note that the
optimization of g(λ) requires an efficient evaluation of g(λ).
This usually involves an exhaustive search over the primal
variables. However, as g(λ) is unconstrained and it decouples
into N independent sub-problems, such an exhaustive search
is much more manageable.

B. Dual Methods

The optimal spectrum balancing algorithm solves L(xn, λ)
exhaustively for all possible values of λ. The multiuser spec-
trum optimization problem (2) consists of K constraints, and
successive bisection on each component of λ would yield

the primal optimum. The main point of this paper is that we
can take advantage of the duality relation and solve the dual
objective g(λ) instead. By using an efficient search of λ, the
computational efficiency of the optimal spectrum balancing
can be improved drastically.

The main difficulty in deriving an efficient direction for λ
is that g(λ) is not necessarily differentiable. Thus, it does not
always have a gradient. Nevertheless, it is possible to find
a search direction based on what is called a subgradient. A
vector d is a subgradient of g(λ) at λ if for all λ′

g(λ′) ≥ g(λ) + dT · (λ′ − λ). (8)

Subgradient is a generalization of gradient for (possibly) non-
differentiable functions. Intuitively, d is a subgradient if the
linear function with slope d passing through (λ, g(λ)) lies
entirely below g(λ). For g(λ) defined in (6), the following
choice of d

d = P −
N∑

n=1

hn(xn) (9)

satisfies the subgradient condition (8). The subgradient search
suggests that λ should be increased if

∑N
n=1 hn(xn) > P and

decreased otherwise. This is intuitively obvious as λ represents
a price for power. Price should increase if the constraint is
violated. In fact, λ updates can be done systematically. It is
possible to prove that the following update rule

λl+1 =

[
λl − sl

(
P −

∑
n

hn(xn)

)]+

(10)

is guaranteed to converge to the optimal λ as long as sl is
chosen to be sufficiently small [6]. Here, sl is a scalar. By
Theorem 1, the minimum g(λ) is also equal to the maximum∑

fn(xn). Thus, the solution to the dual problem immediately
yields the optimal solution to the original problem.

The crucial difference between the update equation (10)
and that suggested in [4] is that (10) updates all components
of λ at the same time. Instead of doing bisection on each
component individually, the subgradient method collectively
finds a suitable direction for all components of λ at once.
This eliminates the exponential complexity in λ-search.

However, note that the evaluation of g(λ) is still exponential
in K. This is probably inevitable if an exact solution to
the non-convex optimization problem is desired. For practical
problems, however, sub-optimal methods in evaluating g(λ)
often exist.

III. APPLICATIONS

A. Multiuser Spectrum Management

We now return to the multiuser optimal spectrum manage-
ment problem. In digital subscriber line applications, electro-
magnetic coupling induces crosstalk between adjacent lines.
The goal of optimal spectrum management is to find a set of
power allocations (P1(n), · · · , PK(n)) so that a target rate-
tuple is satisfied. There is generally a trade-off between the
achievable data rates of different users. Such a trade-off can be
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Fig. 2. Rate region for the two-user ADSL lines

represented in a rate region defined as the set of all achievable
rates (R1, · · · , RK). When the channel transfer function is a
slow varying function of n, the spectrum optimization problem
satisfies the time-sharing property.

In this section, we formulate a novel optimization problem
that characterizes the boundary of the rate region. The objec-
tive is the maximization of a base rate R subject to a fixed ratio
between Rk and R for each k = 1, · · · ,K. More specifically,
we may insist that R1 : R2 : · · · : RK = β1 : β2 : · · · : βK ,
where

Rk =
N∑

n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j �=k H2
jk(n)Pj(n)

)
. (11)

Then, the maximization problem becomes

max R (12)

s.t. Rk ≥ βkR
N∑

n=1

Pk(n) ≤ Pk, k = 1, · · · ,K

Pk(n) ≥ 0, k = 1, · · · ,K

Here, the variables βk directly represent the ratios of service
rates among the different users.

The dual function for (12) can be written as follows:

g(ω1, · · · , ωK , λ1, · · · , λK) = max
Pk,R

(13)

R +
K∑

k=1

ωk(Rk − βkR) +
K∑

k=1

λk

(
Pk −

N∑
n=1

Pk(n)

)

Collecting terms, we see that the maximization involves a term
(1 −∑ωkβk)R. Since R is a free variable to be optimized,
the maximization leads to R = ∞ if (1 −∑ωkβk) > 0 and
R = 0 if (1 −∑ωkβk) < 0. Thus, non-trivial solution exists
only if (1 −∑ωkβk) = 0.

CO

10K feet

10K feet

7K feet

RT

Fig. 3. Topology of the two-user ADSL lines

It is now straightforward to apply the technique developed
in the previous section to derive a subgradient search for the
minimization of g(ω1, · · · , ωK , λ1, · · · , λK). The idea is the
following. First, solve the maximization problem (13) for a
fixed set of (ω1, · · · , ωK , λ1, · · · , λK) with (1 −∑ωkβk) =
0. This is done using exhaustive search in each tone separately
and it yields a set of power allocation Pk(n) and achievable
rates Rk. The maximum R can be found as R = mink Rk/βk.
The subgradient method can now be used to update ωk and
λk:

ω′l+1
k =

[
ωl

k − sl
k (Rk − βkR)

]+
(14)

λl+1
k =

[
λl

k − tlk

(
P −

N∑
n=1

Pk(n)

)]+

(15)

Note that the new ωk may no longer satisfy
∑

ωkβk = 1.
Renormalization is needed to project ωk back to the proper
subspace

ωl+1
k =

ω′l+1
k∑

k ω′l+1
k βk

. (16)

As long as sl
k and tlk is sufficiently small, the subgradient

algorithm is guaranteed to converge. This sub-gradient algo-
rithm improves the computational complexity of the optimal
spectrum balancing algorithm described in [4]. No bisection
is needed. The number of times that g(ωk, λk) is evaluated is
polynomial in K.

Note that the evaluation of g(ωk, λk), if done exhaustively,
still has a complexity exponential in K. However, for the
spectrum optimization problem, experimental results suggest
that lower complexity search algorithms often work well. Fig.
2 shows the rate region for a two-user ADSL system with a
configuration shown in Fig. 3. Both the full implementation of
optimal spectrum balancing and a reduced complexity gradient
search are shown. Their performances are very similar, and
both outperform iterative water-filling [1] significantly.

B. Optimal Frequency Planning

The optimal spectrum balancing algorithm is applicable to
many other areas of OFDM system design. For example, in
a wireless multiuser OFDM system, different users are often
allocated to different sets of tones. The optimal power and
bit allocation problem is essentially the spectrum management
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problem (12) with an additional constraint that only one user
occupies each tone [7] [8] [9]:

Pk(n)Pj(n) = 0 ∀k �= j

Previous solutions to this problem [7] [9] [8] rely on a
relaxation of the non-convex constraint. As Theorem 1 in
Section II shows, this problem can instead be efficiently solved
in the dual domain. The same subgradient updates as in the
previous section apply here. The constraint Pk(n)Pj(n) = 0
for all k and j is incorporated in the evaluation of the
dual function. Theorem 1 guarantees that the dual solution
is identical to the primal solution.

In fact, the complexity of this problem is strictly sub-
exponential. The evaluation of the dual g(ωk, λk) involves
an exhaustive search in K possible power allocations. Its
complexity is therefore linear in K.

C. Partial Crosstalk Cancellation in Vector DSL

Future digital subscriber line applications are expected to
implement crosstalk cancellation and precoding to further
improve the data rates in twisted-pair transmission. Multiple
transmitters and multiple receivers at the central office can be
regarded as a single entity. Crosstalk cancellation can be done
in a similar way as echo cancellation.

A typical DSL bundle consists of 50 to 100 twisted pairs.
Cancelling all crosstalk involves 50× 50 to 100× 100 matrix
processing, which is beyond the computational complexity
constraints of current digital signal processors. On the other
hand, in a 50-pair DSL bundle each twisted-pair has only a
limited number of nearest neighbours. Thus, we expect that
the cancellation of only a few pairs would achieve most of the
benefits. Furthermore, crosstalk is frequency dependent. The
crosstalk level is low in low frequency bands, so cancellation
in these frequency bands has limited utility. On the other hand,
in very high frequency bands, the data rates are already small.
Thus, as pointed out in [10], data rate improvement due to
crosstalk cancellation is most noticeable in the mid-frequency
range.

Given a complexity constraint, how to choose the best
combination of lines and tones in which to implement crosstalk
cancellation is an interesting problem. This problem was first
formulated in [10] and greedy algorithms were suggested.
However, the solution in [10] assumes a fixed transmit spec-
trum level. In this section, we formulate a more realistic
problem that jointly performs line/tone selection and spectrum
optimization.

The basic setup is the same as the optimization problem (12)
except the evaluation of Rk now takes the following form:

Rk =
N∑

n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j �=k G2
jk(n)Pj(n)

)
. (17)

where Gkj(n) = Hkj(n) except where crosstalk cancellation
takes place, in which case Gkj(n) = 0. The total number of
places where Gkj(n) = 0 represents the number of crosstalk
cancellation units that can be implemented. This number

is typically constrained by an implementation limit. More
formally,

N∑
n=1

∑
k �=j

1{Hkj(n) �=Gkj(n)} ≤ C (18)

where 1{} is an indicator function and C is a constant
representing the complexity constraint over all tones and all
users.

Clearly (17) may be solved using the dual formulation. The
complexity constraint is the same as the power constraints. As
long as exhaustive search within each tone can be done with
manageable complexity, the optimization over the N tones
only adds a polynomial factor.

IV. CONCLUSION

The main point of this paper is that many optimization
problems in OFDM design can be decoupled in a tone-by-
tone basis via the dual method. It is shown that the time-
sharing property is always satisfied when the number of tones
is large, and when the time-sharing property is satisfied, the
duality gap becomes zero regardless of whether the original
problem is convex. This observation leads to efficient dual
optimization techniques such as the subgradient method. As
long as the evaluation of the dual objective for each tone
may be done with manageable complexity, the entire problem
may be solved efficiently. This principle is applicable to a
wide range of OFDM design problems. Multiuser spectrum
optimization, frequency planning and line/tone selection in
reduced complexity crosstalk cancellation are some of these
examples.
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