Competition and Cooperation in Multiuser Communication Environments

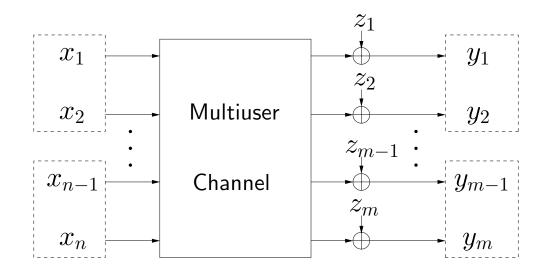
Wei Yu

Electrical Engineering Department Stanford University

April, 2002

Introduction

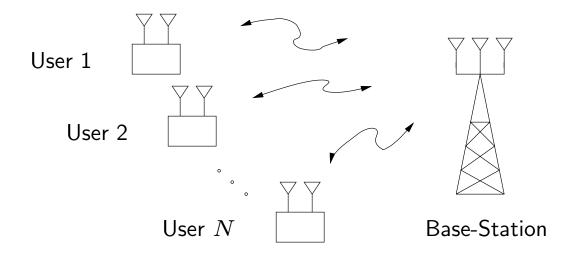
• A multiuser communication environment is a competitive environment.



- What is the role of competition?
- What is the value of cooperation?

Multi-Antenna Wireless Communication

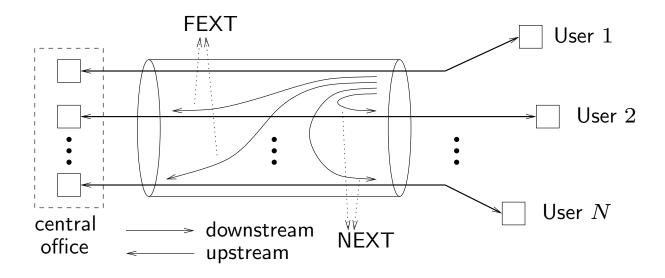
• Examples: broadcast wireless access (802.11), wireless local loop (WLL)



- Cooperation among multiple antennas within the same user
- Competition among the users

Digital Subscriber Lines (DSL), Ethernet

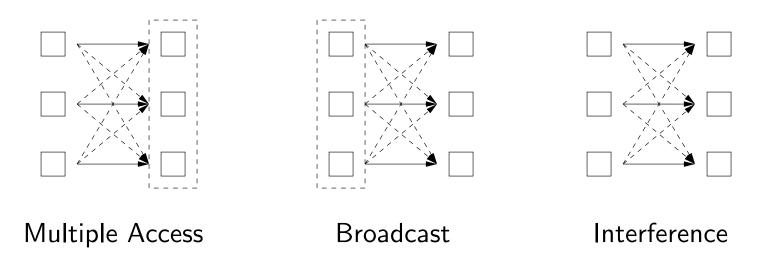
• DSL and Ethernet environments are interference-limited.



- Explore the benefit of cooperation.
- Manage the competition.

Goal

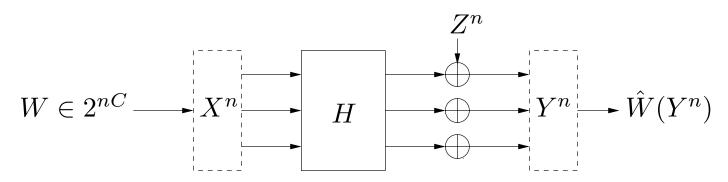
• To characterize channel capacity, optimum spectrum, and coding for



- assuming Gaussian noise.
- To illustrate the value of cooperation in these scenarios.

Gaussian Vector Channel

• Capacity: $C = \max I(\mathbf{X}; \mathbf{Y}).$

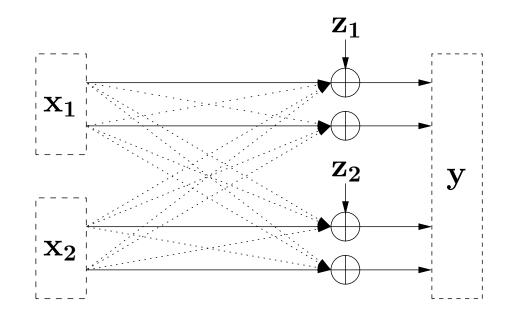


• Optimum Spectrum: Water-filling

maximize
$$\frac{1}{2}\log \frac{|HS_{xx}H^T + S_{zz}|}{|S_{zz}|}$$
subject to
$$\operatorname{tr}(S_{xx}) \leq P,$$
$$S_{xx} \geq 0.$$

Multiple Access Channel

• No transmitter coordination. Only receiver coordination.



- Capacity? Optimum Spectrum? Coding?

Capacity Region for Multiple Access Channel

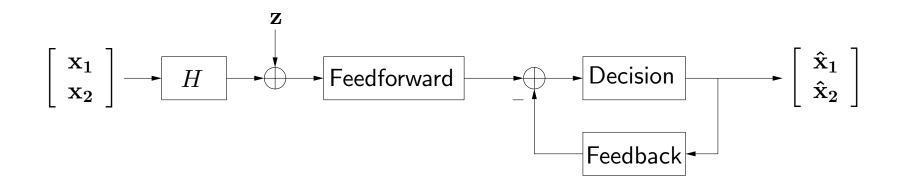
• Capacity region:

 $R_1 \leq I(\mathbf{X}_1; \mathbf{Y} | \mathbf{X}_2);$ $R_2 \leq I(\mathbf{X}_2; \mathbf{Y} | \mathbf{X}_1);$ $R_1 + R_2 \leq I(\mathbf{X}_1, \mathbf{X}_2; \mathbf{Y}).$

- Ahlswede ('71), Liao ('72), Cover-Wyner ('73)

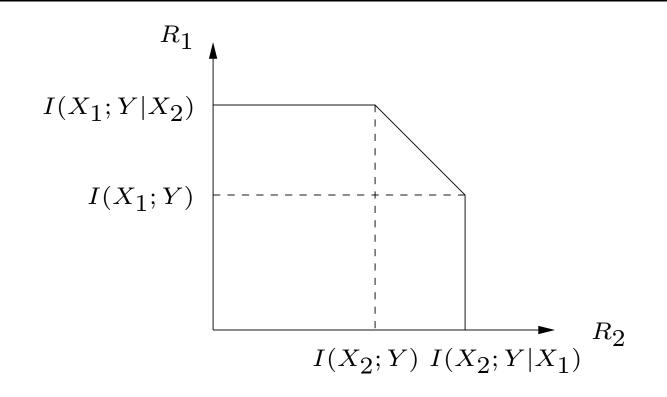
Coding for Multiple Access Channel

• Superposition coding and successive decoding achieves $I(\mathbf{X}_1, \mathbf{X}_2; \mathbf{Y})$:



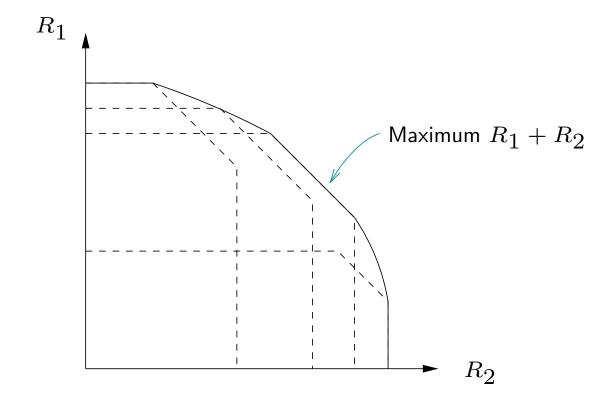
 Implementation: Generalized Decision-Feedback Equalizer (GDFE). Cioffi, Forney ('97), Varanasi, Guess ('97)

Capacity Pentagon



• Fix an input distribution $p(x_1)p(x_2)$, the capacity region is a pentagon.

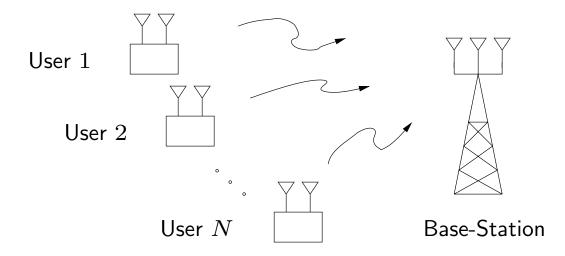
Vector Multiple Access Capacity Region



 $\max(R_1 + R_2) \iff \max I(\mathbf{X_1}, \mathbf{X_2}; \mathbf{Y}) \text{ over all } p(x_1)p(x_2).$

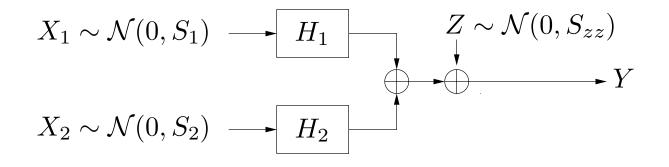
Uplink Power Control in Wireless Systems

• Successive decoding achieves capacity in multiple access channels.



- If channel state is known at the transmitter...
- What is the optimal power allocation?

Sum Capacity Maximization

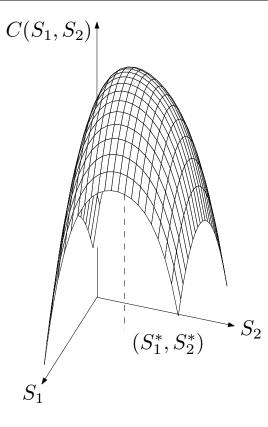


$$\begin{array}{ll} \text{maximize} & \frac{1}{2}\log\frac{|H_1S_1H_1^T + H_2S_2H_2^T + S_{zz}|}{|S_{zz}|} \\ \text{subject to} & \operatorname{tr}(S_i) \leq P_i, & i = 1,2 \\ & S_i \geq 0, & i = 1,2 \end{array}$$

Maximizing a **concave** objective with **convex** constraints.

Competitive Optimum

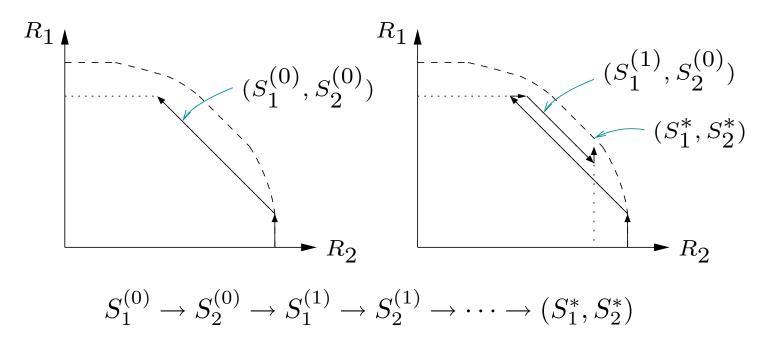
- Optimum S_1^* is a water-filling covariance against S_2^* .
- Optimum S_2^* is a water-filling covariance against S_1^* .
- (S_1^*, S_2^*) can be reached by each user iteratively waterfilling against each other.



Multiple Access Channel Sum Capacity = Competitive Optimum

Iterative Water-filling

Theorem 1. The iterative water-filling process, where each user water-fills against the combined interference and noise, converges to the sum capacity of a Gaussian vector multiple access channel.

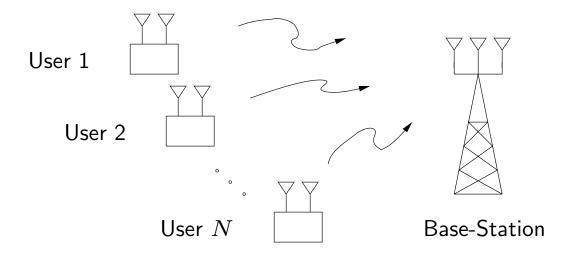


Related Works

- Multiple access channel with ISI: Cheng and Verdu ('93).
- Multiple access fading channel:
 - Single-antenna: Knopp and Humblet ('95), Hanly and Tse, ('98).
 - Multi-antenna (asymptotic): Viswanath, Tse, Anantharam ('00)
 - Multi-path fading channels: Medard ('00)
 - CDMA channels: Viswanath and Anantharam ('99), Yates, Rose ('00)
- Iterative water-filling is a generalization for vector multi-access channels

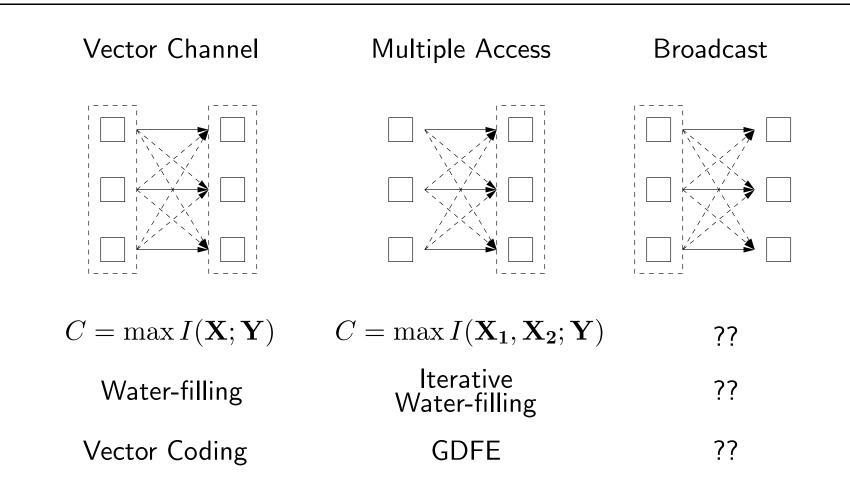
Multi-user Diversity in Wireless Systems

• Solves the power control problem for multi-antenna fading channels:



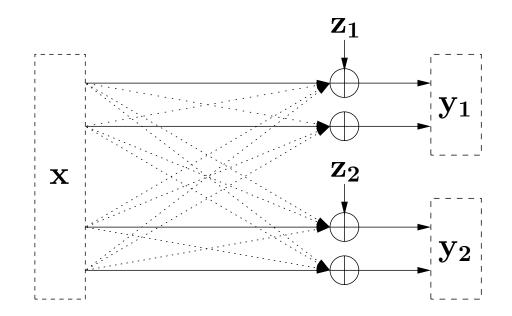
- Single receive antenna: one user should transmit at the same time.
- Multiple receive antennas: multiple users transmit at the same time.

Results So Far



Broadcast Channel

• Coordination at transmitter. No receiver coordination.

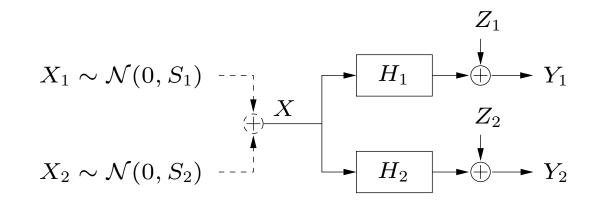


- Capacity? Optimum Spectrum? Coding?

Broadcast Channel Capacity

- Introduced by Cover ('72)
 - Superposition coding: Cover ('72).
 - Degraded broadcast channel: Bergman ('74), Gallager ('74)
 - Coding using binning: Marton ('79), El Gamal, van der Meulen ('81)
 - Sum and product channels: El Gamal ('80)
 - Gaussian vector channel, 2×2 case: Caire, Shamai ('00)
- General capacity region is a well-known open problem.
 - We focus on a non-degraded Gaussian vector broadcast channel.
 - Simultaneous and independent work was done by Vishwanath, Jindal, Goldsmith, and Viswanath, Tse.

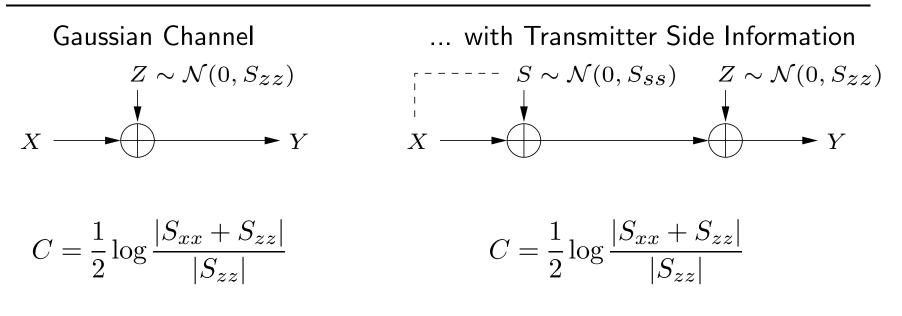
Gaussian Vector Broadcast Channel



• Superposition coding gives:

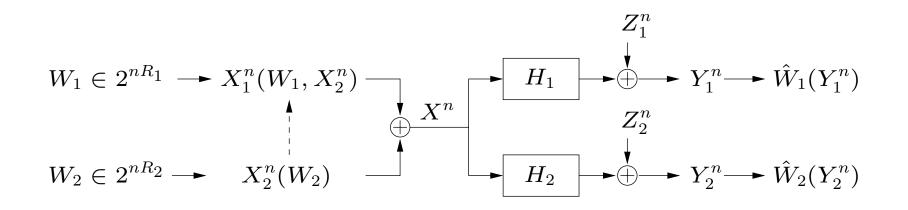
$$R_{1} = I(\mathbf{X}_{1}; \mathbf{Y}_{1}) = \frac{1}{2} \log \frac{|H_{1}S_{1}H_{1}^{T} + H_{1}S_{2}H_{1}^{T} + S_{z_{1}z_{1}}|}{|H_{1}S_{2}H_{1}^{T} + S_{z_{1}z_{1}}|}$$
$$R_{2} = I(\mathbf{X}_{2}; \mathbf{Y}_{2}) = \frac{1}{2} \log \frac{|H_{2}S_{2}H_{2}^{T} + H_{2}S_{1}H_{2}^{T} + S_{z_{2}z_{2}}|}{|H_{2}S_{1}H_{2}^{T} + S_{z_{2}z_{2}}|}$$

Writing on Dirty Paper



- Capacities are the same if S is known *non-causally* at the transmitter.
 - Based on Gel'fand and Pinsker ('80), Heegard and El Gamal ('83).
 - Gaussian scalar channel: Costa ('81). Vector channel: Yu, et al ('01).
 - Generalizations: Cohen, Lapidoth ('01), Erez, Zamir, Shamai ('01).

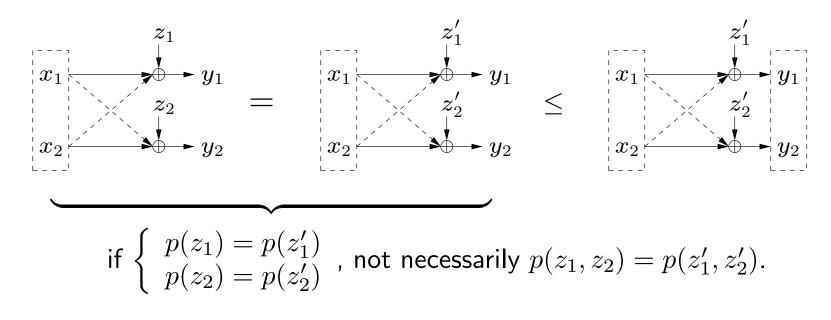
New Achievable Region



$$R_{1} = I(\mathbf{X}_{1}; \mathbf{Y}_{1} | \mathbf{X}_{2}) = \frac{1}{2} \log \frac{|H_{1}S_{1}H_{1}^{T} + S_{z_{1}z_{1}}|}{|S_{z_{1}z_{1}}|}$$
$$R_{2} = I(\mathbf{X}_{2}; \mathbf{Y}_{2}) = \frac{1}{2} \log \frac{|H_{2}S_{2}H_{2}^{T} + H_{2}S_{1}H_{2}^{T} + S_{z_{2}z_{2}}|}{|H_{2}S_{1}H_{2}^{T} + S_{z_{2}z_{2}}|}$$

Converse

• Broadcast capacity does not depend on noise correlation: Sato ('78).



• Thus, sum-capacity
$$C \leq \min_{S_{zz}} \max_{S_{xx}} I(\mathbf{X}; \mathbf{Y}).$$

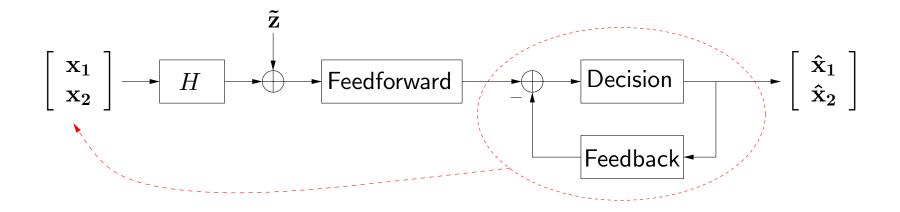
Least Favorable Noise

• Fix Gaussian input S_{xx} :

minimize $\frac{1}{2}\log\frac{|HS_{xx}H^T + S_{zz}|}{|S_{zz}|}$ subject to $S_{zz} = \begin{bmatrix} S_{z_1z_1} & \star \\ \star & S_{z_2z_2} \end{bmatrix}$ $S_{zz} \ge 0$

- Minimizing a **convex** function over **convex** constraints.
- Optimality condition: $S_{zz}^{-1} (HS_{xx}H^T + S_{zz})^{-1} = \begin{bmatrix} \Psi_1 & 0 \\ 0 & \Psi_2 \end{bmatrix}$. - if $S_{zz} > 0$ at minimum.

GDFE Revisited



- Least Favorable Noise \iff Feedforward filter is diagonal!
- Decision-feedback may be moved to the transmitter by precoding.

$$R = \min_{S_{zz}} I(\mathbf{X}; \mathbf{Y})$$
 (i.e. with least favorable noise) is achievable.

Gaussian Broadcast Channel Sum Capacity

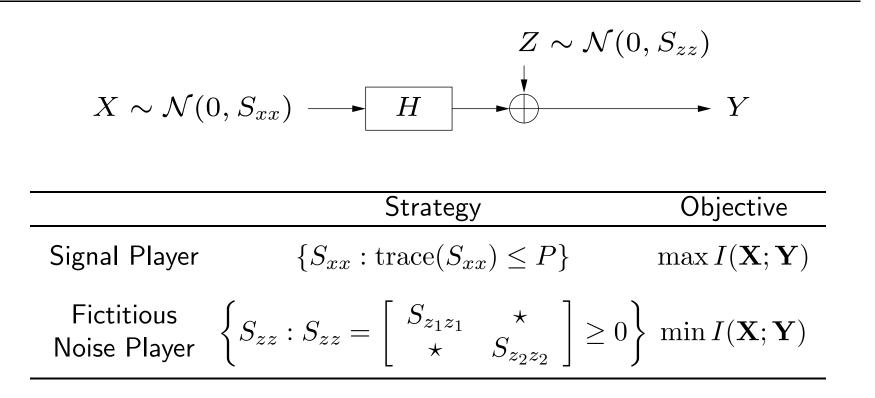
- Achievability: $C \ge \max_{S_{xx}} \min_{S_{zz}} I(\mathbf{X}; \mathbf{Y}).$
- Converse (Sato): $C \leq \min_{S_{zz}} \max_{S_{xx}} I(\mathbf{X}; \mathbf{Y}).$
- (Diggavi, Cover '98): $\min_{S_{zz}} \max_{S_{xx}} I(\mathbf{X}; \mathbf{Y}) = \max_{S_{xx}} \min_{S_{zz}} I(\mathbf{X}; \mathbf{Y}).$

Theorem 2. Gaussian vector broadcast channel sum capacity is:

$$C = \max_{S_{xx}} \min_{S_{zz}} \frac{1}{2} \log \frac{|HS_{xx}H^T + S_{zz}|}{|S_{zz}|}$$

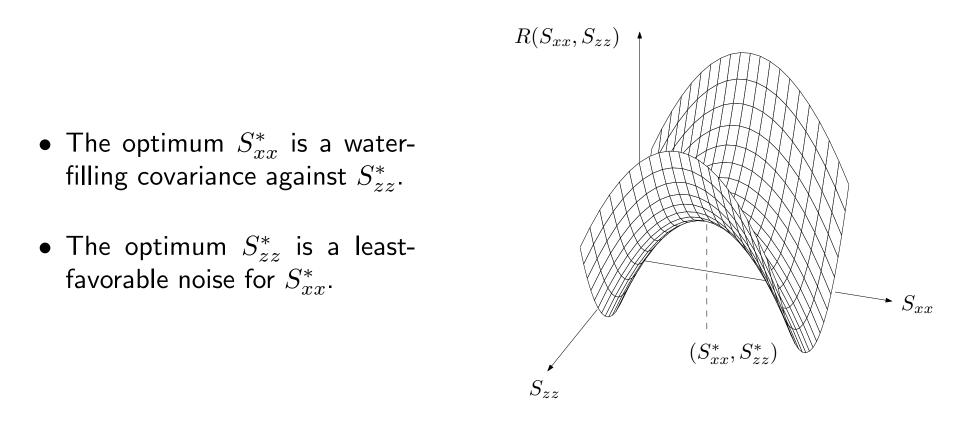
whenever $S_{zz} > 0$ at the saddle-point.

Gaussian Mutual Information Game



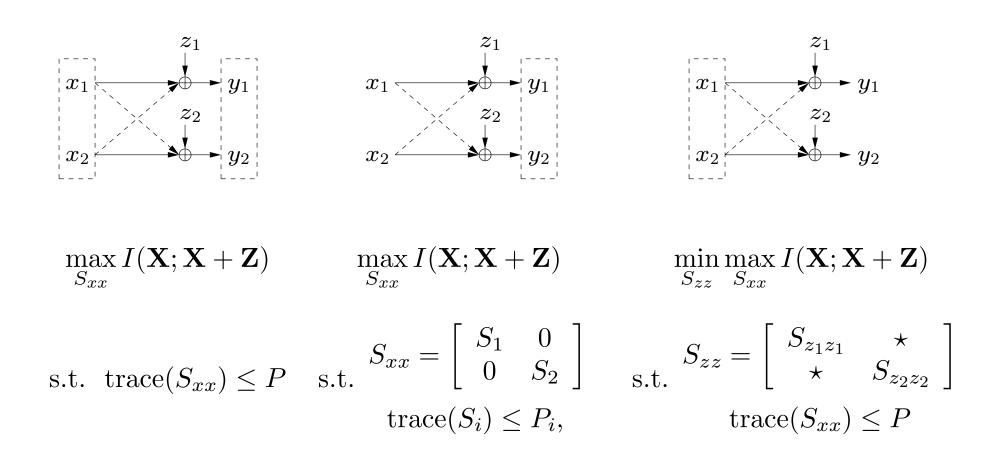
Competitive equilibrium exists.

Saddle-Point is the Broadcast Capacity

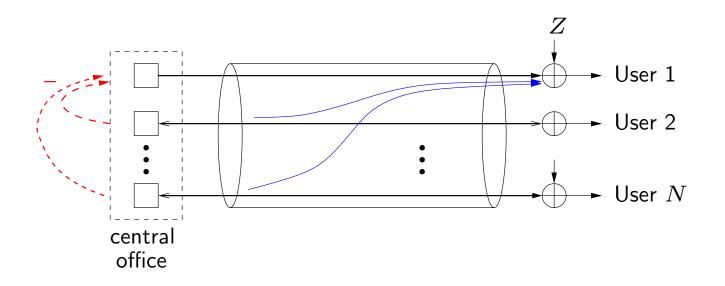


Broadcast Channel Sum Capacity = Competitive Equilibrium

The Value of Cooperation

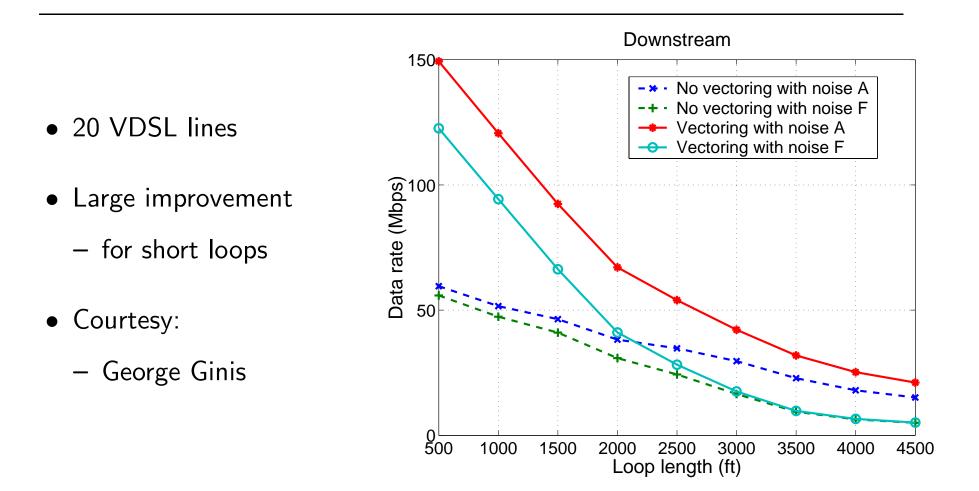


Application: Multi-line Transmission in DSL

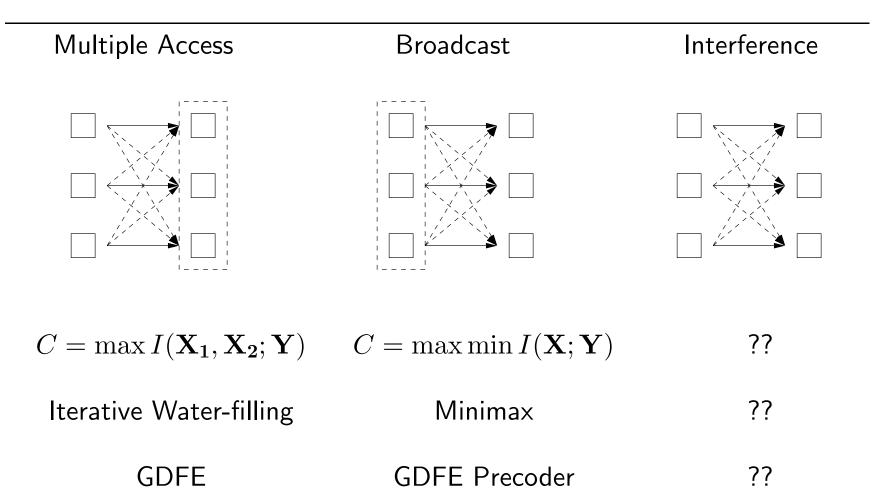


- With coordination, crosstalk can be "pre-subtracted".
 - Practical pre-subtraction: Tomlinson precoding.
 - Optimal pre-subtraction: "Dirty-paper" precoding.

Performance: Vector DSL/Ethernet

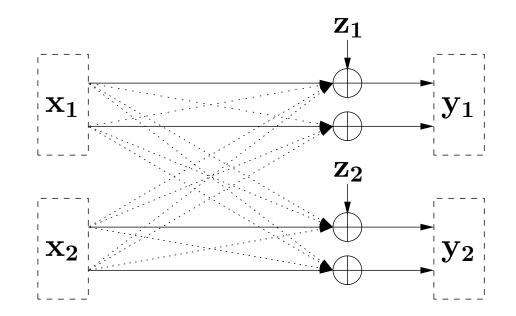


Results So Far



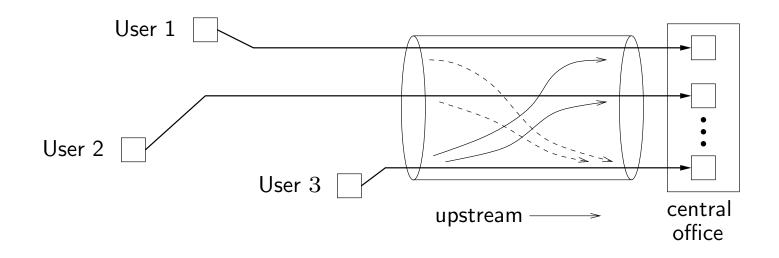
Interference Channel

• No transmitter coordination. No receiver coordination.



- Capacity is a difficult open problem.

DSL Interference Environment



- Near-far problem: The closer user emits too much interference.
 - Power back-off is necessary.
 - Current system imposes a maximum power-spectral-density limit.

Power Control Problem

• Find an optimum $(P_1(f), P_2(f))$ to maximize:

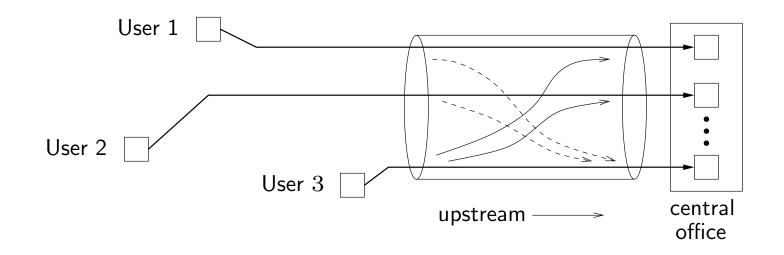
$$R_{1} = \int_{0}^{W} \log \left(1 + \frac{|H_{11}(f)|^{2} P_{1}(f)}{N_{1}(f) + |H_{21}(f)|^{2} P_{2}(f)} \right) df,$$

$$R_{2} = \int_{0}^{W} \log \left(1 + \frac{|H_{22}(f)|^{2} P_{2}(f)}{N_{2}(f) + |H_{12}(f)|^{2} P_{1}(f)} \right) df.$$

s.t.
$$\int_{0}^{W} P_{1}(f) df \leq \mathcal{P}_{1}, \quad \int_{0}^{W} P_{2}(f) df \leq \mathcal{P}_{2}$$

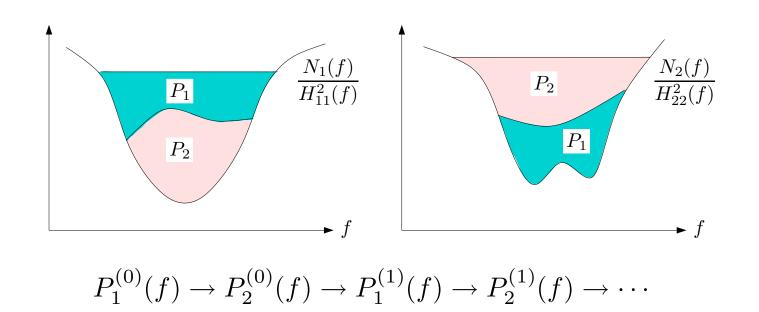
• Finding the global optimum is computationally difficult.

Competitive Environment



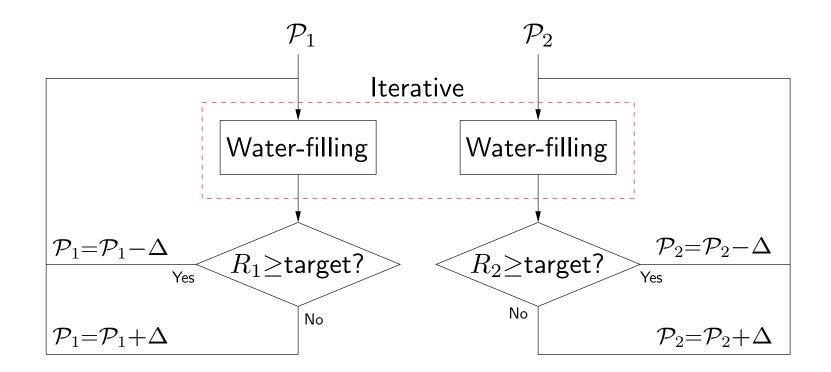
- Each user maximizes its *own* data rate regarding other users as noise.
 - Non-cooperative game.

Iterative Water-filling



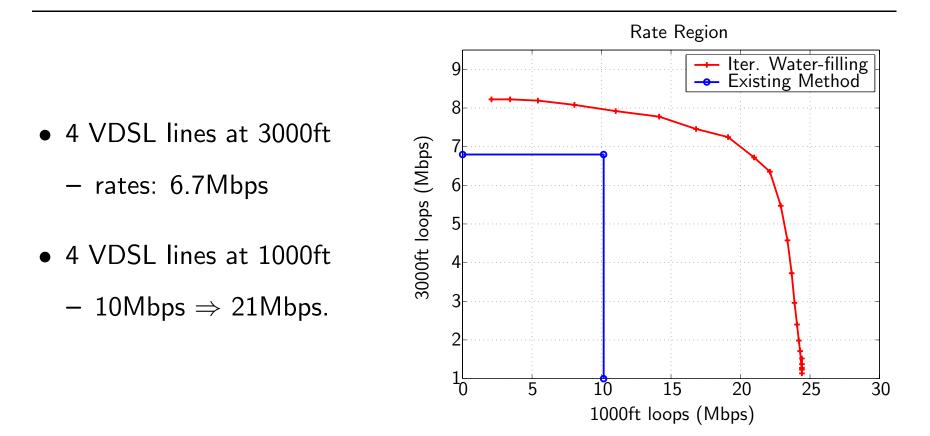
Theorem 3. Under a mild condition, the two-user Gaussian interference game has a competitive equilibrium. The equilibrium is unique, and it can be reached by iterative water-filling.

Distributed Power Control for DSL



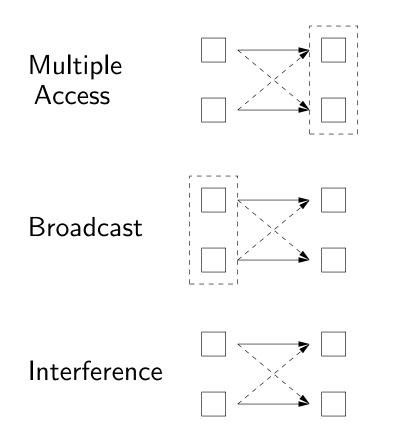
Control $(P_1(f), P_2(f))$ by setting $(\mathcal{P}_1, \mathcal{P}_2)$.

Performance



Competitive optimal points are much better than existing methods.

Conclusion



Iterative water-filling achieves sum capacity.

Sum Capacity is a saddle-point of a mutual information game.

Competitive optimum is a desirable operating point.

Future Work

- Network Information Theory
- Multi-antenna/Multi-line Signal Processing
- Multiuser system design: physical layer vs network layer
- Applications to broadband access networks:
 - Wireless Local Area Networks
 - High-speed Ethernet
 - Digital Subscriber Lines
 - Computer Interconnects