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Abstract- Issues of security and privacy in surveillance systems 
are abound. Much focus has been put toward developing 
security strategies for emerging wireless visual sensor networks. 
Solutions target protection of the overt communication channel. 
However, given the characteristics of these networks which 
include shared resources, high degrees of collaboration and the 
presence of redundancy and uncertainty, they represent a rich 
environment for the presence of covert communications. Thus, 
we assert that threat models for such systems must include 
steganographic models. In this paper, we present the problem 
of preventative steganalysis that addresses steganographic 
issues in wireless visual sensor networks. The goal of 
preventative steganalysis is to offer a proactive solution against 
steganography by increasing the steganalyst’s knowledge of the 
cover-media and thus emphasizing the presence of hidden 
messages. This paper introduces the topic of preventative 
steganalysis. Characteristics of an effective steganographic 
solution are derived and a practical solution is tested. 

Keywords- Steganography; Steganalysis; Wireless Visual 
Sensor Network 

I. INTRODUCTION 

It is well known that wireless visual sensor networks 
(WVSNs) can be used in a wide range of applications from 
the surveillance of potentially dangerous areas, such as war 
zones, to habitat monitoring including the supervision of 
animal territories. Because of their relatively low cost, small 
component size and reasonable autonomy, WVSNs enable 
environmental monitoring in areas considered to be hostile 
for direct human interaction. Given their image capturing 
capabilities, WVSNscan record huge volumes of data which, 
depending on the application, can carry private and sensitive 
information. For this reason security and privacy is of 
fundamental concern for WVSN development and use. 

Much research activity has been dedicated to the 
investigation of security issues in the overt communication 
infrastructure of a WVSN. In this paper, we investigate 
WVSN security in the context of covert communications. 
Specifically, we introduce and present the problem of 
preventative steganalysis. We highlight the steganographic 
security concerns in visual sensor networks and describe the 
competing goals of the steganographer (a party involved in 
covert communications) and the steganalyst (a party 
attempting to discourage covert activity through network 
development and operation) in order to derive system design 
principles to either mitigate or limit steganalytic activity in 
WVSNs. Asteganalytic solution is developed and applied to 
a real case of WVSN video surveillance to illustrate the 
functionality of our approach. 

II. BACKGROUND 

Most well-known measures to protect WVSNs, to date, 
have focused on the problem of providing privacy in vision-
rich systems.  Lo et al. [1] introduced an automated homecare 
monitoring system for the elderly named UbiSense where 
image processing is conducted directly at the camera to 
convert visual data directly into abstractions that reveal no 
personal information and hence protect the privacy of the 
monitored individuals. Fidaleo et al. [2] introduced the 
Networked Sensor Tapestry (NeST) architecture designed for 
the secure sharing, capture, and distributed processing and 
archiving of multimedia data. They introduce the notion of 
“subjective privacy” in which processing of raw sensor data 
is conducted to remove personally identifiable information; 
thus the behavior, but not the identity of an individual under 
surveillance is conveyed. The resulting data, approved for 
public viewing, are communicated in a network that 
employs the secure socket layer protocol and client 
authorization for network-level protection. Wickramasuriya 
et al. [3] presented a privacy preserving video surveillance 
system that monitors subjects in an observation region using 
video cameras along with motion sensors and RFID tags. 
The motion detectors are used to trigger the video cameras 
on or off, and the RFIDs of the subjects provide 
authorization information in order to specify which 
individuals are entitled to privacy and hence have their 
visual information masked through image processing. 
Kundur et al.[4] presented the HoLiSTiC (Heterogeneous 
Lightweight Sensornet for Trusted Visual Computing) 
framework for WVSN security that exploits secure protocols 
in a hierarchical directional link communication network to 
achieve broadband low power communications. A 
decentralized visual secret sharing approach is used to 
preserve privacy. 

More recently, research has also emerged with the goal 
of assuring the authenticity of the data collected by sensor 
networks. When nodes are corrupted and provide false 
information, the entire network’s legitimacy is compromised. 
The authentication of each node allows for the network to 
remain trusted.  Several proposed solutions utilize common 
cryptographic concepts to provide such security. Feng et al. 
[5] introduced a paradigm to cryptologically embed 
signatures into the collected data via watermarking 
techniques. Their objective is to efficiently watermark the 
data while introducing as little distortion as possible. Zheng 
et al. [6] proposed to offer authenticity assurance using a 
public key cryptographic scheme. A derivable public key 
scheme is used which has the effect of simplifying the 
cryptography and reducing the need for key storage, 
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therefore making it more suitable for large scale sensor 
networks. Because these methods still increase the workload 
of the WSN, Martinovic et al. [7] proposed a novel paradigm 
that relies on the properties of wireless communications to 
provide authentication capabilities.  They focus their study 
on taking advantage of frequency jamming to detect attacks 
and strengthen the WSN’s security. Given the need for 
energy conservation in distributed wireless networks, Blaß 
et al. [8] developed Extended Secure Aggregation for 
Wireless Sensor Networks (ESAWN). ESAWN finds a 
trade-off between decreasing the energy consumption of the 
network via data aggregation and providing authentication 
mechanisms that are fundamentally weaker compared to 
techniques that are not driven by energy preservation. 

These existing approaches for WVSN protection all 
focus on protecting the overt data acquisition and 
communications systems. Fundamental questions however 
arise regarding the possibility of covert approaches for 
networking leading to breaches in both security and privacy. 
In this paper, we propose to study the possibility of, 
implications to and mitigation approaches for covert 
networking in the context of WVSNs. 

III. SECURITY CHALLENGES 

A. Covert Channels and Steganography 

Covert channels exist in information systems that 
possess the following general characteristics: (1) shared 
resources, (2) redundancy, and (3) uncertainty. The shared 
resources enable communications to take place and the 
redundancy and uncertainty provide capabilities to hide the 
information transfer. Typically covert communications make 
use of system resources that are not normally used for 
communications; classical covert channels are known as 
either timing or storage channels. Thus, such mechanisms 
are often exploited to pass secret information discretely 
between two parties. Covert channels are typically identified 
and limited as much as possible to avoid unwanted 
information leakage from a trusted system component to an 
untrusted or less trusted component. Information leakage 
presents an important threat for any network. In such 
scenarii, corrupt system components can extract sensitive 
data from high security areas without raising alarm. WVSNs 
are easily attackable because they are often deployed in 
public areas where nodes can easily be accessed. Moreover, 
the collaborative nature of the ad hoc networking typical of 
sensor networks enables a single corrupted node to have 
unwanted effects on an extended part of the overall system. 
Figure 1 demonstrates how a stealthy malicious network can 
covertly exist atop of an existing overt and seemingly 
trusted network. 

Figure 1 points demonstrates how an attacker can 
strategically corrupt physically accessible nodes to build his 
or her own covert overlay network. Due to the highly 
collaborative nature of networking and the need for shared 
resources, the attacker can have access to more information 
than the set of corrupted nodes originally provides. 
Additionally, WVSNs are of particular interest to attackers 
because they convey information as visual frames which are 
typically represented as large volumes of data. These images 
captured by every node, or camera, of the network represent 

a rich environment for hiding data to facilitate covert 
communication via the process of steganography. 

 
Fig. 1 Corrupt covert sensor network atop an original seemly trusted 

network 

Steganography is the process of hiding covert 
information within other seemingly innocuous information 
called the host. Typical media types for host information are 
still and moving images. A simple steganographic system, as 
illustrated in Figure 2(a), involves two entities sharing 
information: the sender and the receiver. The sender can 
transmit data stealthily by hiding a message in an innocuous 
looking host image, for example. This embedding of 
information is commonly done via the use of a symmetric 
secret key K shared by both parties. The overt host 
information, which will be referred as I, is called the cover-
media. The hidden information, denoted W, is also 
commonly referred as a watermark. After embedding the 
covert information W within the cover-media I, the resulting 
signal is called the stego-media, I’, and is typically identical 
in some “perceptual” senseto the cover-media hence making 
it difficult for another party to identify the occurrence of 
covert communications. For instance if the media represents 
still or moving images then the stego-image would have to 
be visually identical to the cover-image. The receiver can 
retrieve the hidden information W by means of the same key 
K used for the embedding. Because of the potential for 
covert communications in wireless sensor networks and 
their relative lack of defense against attackers, it is of 
importance to better understand the capabilities for and 
defense against covert activities. 

 
Fig. 2 (a) Steganographic system. (b) Active and passive wardens in 

steganalysis 
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B. Steganalysis 

Steganalysis represents a defense against steganography 
by either identifying the presence of data hiding or limiting 
its possibility in a given system. Several classifications of 
steganalysis exist. Steganalysis can be reactive or proactive 
and it can involve an active or passive warden scenario as 
illustrated in Figure 2(b).  

A proactive steganalysis solution is necessary when 
protection against a class of steganographic techniques is 
required. On the other hand, reactive steganalytic solutions 
target a specific steganographic embedding method. In an 
active warden scenario, the steganalyst acts as a middle man 
between the sender and the receiver of the stego-media. This 
implies that the warden is free to apply any data processing 
techniques to the covert-media before passing it to the actual 
receiver of the covert-communication. By doing so, the 
warden can deliberately transform the potentially corrupted 
host and as a consequence weaken or even eradicate the 
presence of steganography. In a passive warden scenario, 
however, the steganalyst can only eavesdrop on the 
communication between the two suspicious parties. The role 
of the steganalyst is therefore rather limited in the sense that 
it can only detect the presence of steganography but cannot 
prevent the covert-communication to occur. Thus, passive 
warden steganalytic solutions are often too restrictive to 
effectively defend against WVSN steganography. Active 
warden solutions may also be unsuitable for WVSNs 
because they usually require the use of lossy transformations 
in order to compromise the steganography which may raise 
questions as to the integrity of the WVSN information. 

Therefore a grand challenge that arises is for the 
steganalyst to create an efficient solution against covert-
communications that does not compromise the salient 
application-specific data content by effectively accounting 
for the specific architecture and goals of the network. 
Furthermore, it is possible that certain visual processing 
could serve to facilitate the intended overall WVSN goal, 
while ensuring to a high degree that any data formerly 
embedded or posthumously embedded will have a chance of 
detection by a steganalyst. We leverage this concept for 
preventative steganalysis.   

The goal of preventative steganalysis is to provide 
protection against covert communications in WVSNs by 
ensuring that any potential cover-media within the network 
has statistical characteristics such that any previously hidden 
data has close to no chance of being undetected by a covert 
receiver and any possible future data to be hidden has 
limited opportunity to be communicated imperceptibly 
within that cover-media. Stated more specifically, the 
presence of steganography within the cover-media has a 
detection probability 1-ε. We strive to design solutions that 
make εapproach zero so that the steganalysis can reach ideal 
success rates thus discouraging any potential attacker from 
conducting data hiding. 

IV. PROPOSED ALGORITHM 

We first adopt a specific model for the images captured 
by the network. We initially restrict our study to the 

behavior of one single node Ni for simplification. To 
represent the entirety of the network, the process can then be 
extended on a node-by-node basis to the entire network. 
Node Ni is set to capture frames, noted I’, which are 
modeled as the sum of three different components or 
subframes as shown in Equation 1. 

𝐼𝐼′ = 𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵                                 (1) 
where: 

- W is the watermark, 
- D is the critical data, 
- B is the frame background, 
- W and B maybe correlated, 
- W and D are independent, 
- B and D are independent. 

A. Steganalysis Considerations 

The definition of preventative steganalysis implies 
thatasimple analysis of the media I’ gives as much 
information about the watermark W as possible such that the 
steganalysis can yield high success rates. This can be 
achieved by exploiting the uncertainty between W and I’, or 
more specifically, the uncertainty about W from the 
observation of I’. This quantity can be measured via the 
uncertainty coefficient as described in [10]. The uncertainty 
coefficient between two variables X and Y is defined as: 

 𝑈𝑈(𝑌𝑌|𝑋𝑋) = 𝐼𝐼(𝑋𝑋;𝑌𝑌)
𝐻𝐻(𝑌𝑌)

                          (2) 

It quantifies the amount of knowledge about Y that can 
be derived from X. The uncertainty coefficient takes value 
between 0 and 1. It achieves 0 when X and Y are 
uncorrelated and reaches 1 when Y can be entirely predicted 
fromX. 

In our case, we are interested in evaluating the 
watermark W with the knowledge of the potentially 
corrupted frame I’. This involves computing the uncertainty 
coefficient U1 (W, I’): 

 𝑈𝑈1(𝑊𝑊|𝐼𝐼′) =
𝐼𝐼(𝑊𝑊; 𝐼𝐼′)
𝐻𝐻(𝑊𝑊)

 (3) 

Our goal is to make 𝑈𝑈1(𝑊𝑊|𝐼𝐼′) as close to 1 as possible so 
that the most information about W can be obtained from I’. 
This can be achieved if we manage to build a frame I’ in 
such a manner that the following equality can be obtained: 

 𝐼𝐼(𝑊𝑊; 𝐼𝐼′) = 𝐻𝐻(𝑊𝑊) (4) 
Equation 4 does represent the steganalyst’s ultimate goal 

since from the derivation given by Equation 5, Equation 4 
implies that the conditional entropy of W given I’ is zero, i.e. 
the knowledge of frame I’ leads to the perfect knowledge of 
the watermark. Under such circumstances, the watermark is 
clearly identifiable and no covert communication can occur 
undetected. 

 𝐼𝐼(𝑊𝑊; 𝐼𝐼′) = 𝐻𝐻(𝑊𝑊) −𝐻𝐻(𝑊𝑊|𝐼𝐼′) (5) 

B. Data Preservation 

While it is of the utmost importance to provide a 
steganalytic cover for the network, it is at least equally 
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important that the WVSN can still perform its primary duty, 
whether it involves data mining activities or area monitoring. 
In other word, the steganalysis must not interfere with the 
integrity of the data D collected by the network. In other 
words, when data is present in frame I’, it is important that 
D can be easily and preferably entirely predicted with the 
observation of I’. This can be expressed with another 
uncertainty coefficient U2(D|I′): 

 𝑈𝑈2(𝐷𝐷|𝐼𝐼′) =
𝐼𝐼(𝐷𝐷; 𝐼𝐼′)
𝐻𝐻(𝐷𝐷)

 (6) 

Our goal is to make U2(D|I′) as close to 1 as 
possible. U2(D|I′) = 1can be achieved if there exists a frame 
I’ such that: 

 𝐼𝐼(𝐷𝐷; 𝐼𝐼′) = 𝐻𝐻(𝐷𝐷) (7) 

C. Common Solution 

In order to develop a preventative steganalytic solution 
that will protect the network against covert communications 
and will keep the collected data intact, both Equations 4 and 
7 must be satisfied. Therefore the steganalyst must find a 
common solution to the system: 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐼𝐼′𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑡𝑡ℎ𝑎𝑎𝑡𝑡 �𝐼𝐼
(𝑊𝑊; 𝐼𝐼′) = 𝐻𝐻(𝑊𝑊)
𝐼𝐼(𝐷𝐷; 𝐼𝐼′) = 𝐻𝐻(𝐷𝐷)

� (8) 

Reasoning in two separate steps and using Equation 1, 
we first focus on the mutual information I (W, I’) which can 
be further derived: 

 

𝐼𝐼(𝑊𝑊; 𝐼𝐼′)= 𝐼𝐼(𝑊𝑊;𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵)
= 𝐻𝐻(𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵) −𝐻𝐻(𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵|𝑊𝑊)
= 𝐻𝐻(𝑊𝑊 + 𝐵𝐵) + 𝐻𝐻(𝐷𝐷) − 𝐻𝐻(𝐷𝐷 + 𝐵𝐵|𝑊𝑊)
= 𝐻𝐻(𝑊𝑊 + 𝐵𝐵) + 𝐻𝐻(𝐷𝐷) − 𝐻𝐻(𝐷𝐷) −𝐻𝐻(𝐵𝐵|𝑊𝑊)

= 𝐻𝐻(𝑊𝑊 + 𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝑊𝑊)     (9)

  

For the previous equation to lead to the desired result 
offered by Equation 4, it is necessary to solve: 

 𝐻𝐻(𝑊𝑊 + 𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝑊𝑊) = 𝐻𝐻(𝑊𝑊) (10) 
This equality can be achieved in two trivial cases: when 

W and B are independent or when B is a known, temporally 
independent entity. On the case whereW and B are 
independent, Equation 10 becomes: 

 
𝐻𝐻(𝑊𝑊 + 𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝑊𝑊)= 𝐻𝐻(𝑊𝑊) + 𝐻𝐻(𝐵𝐵) − 𝐻𝐻(𝐵𝐵)

= 𝐻𝐻(𝑊𝑊)  (11) 

Alternatively, if B is a known and temporally 
independent entity, B can be seen as a constant Bc for which 
we have: 

 𝐻𝐻(𝑊𝑊 + 𝐵𝐵𝑠𝑠) = 𝐻𝐻(𝑊𝑊)
𝐻𝐻(𝐵𝐵𝑠𝑠 |𝑊𝑊) = 𝐻𝐻(𝐵𝐵𝑠𝑠) = 0 (12) 

And Equation 10 would become: 

 𝐻𝐻(𝑊𝑊 + 𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝑊𝑊) = 𝐻𝐻(𝑊𝑊) (13) 
Both solutions are satisfying. However, assuming W and 

B are independent is not realistic and goes against our initial 
set of assumptions. The steganalyst should expect the 
attacker to use elaborate steganographic techniques where 
the steganography would not stand out in the background 
which implies a degree of correlation between W and B. 

Therefore, the solution where B is set as a known constant 
Bc is preferred.  

Assuming that the background is a known entity such 

that H(BC) = 0, we derive the second equality in Equation 8, 

i.e. the mutual information I (D; I’), which boils down to: 

Equation 14 injected in Equation 6 gives an uncertainty 
coefficient U2(D|I′) of 1 which by definition ensures that the 
data will remain identifiable when the frame I’ is observed. 
Thus the substitution of the actual frame background B for a 
known and constant background Bc guarantees that the 
potential watermarking W appears more evidently in the 
frame I’ and that the integrity of the data collected by the 
network is preserved. 

V. IMPLEMENTATION 

Let Bk represent the first frame captured by Ni during the 
calibration of the network. It is reasonable to assume that Bk 
is an untainted image free of steganography and critical data. 
Thus frame Bk is a perfect candidate to replace the actual 
background of any future visual recording. 

The frames I’ that node Nirecords can now be 
decomposed into four components: the data, the watermark, 
the background and some noise. Therefore Equation 1 
becomes: 

 𝐼𝐼′ = 𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵
= 𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵𝑘𝑘 + 𝑁𝑁 (15) 

where: 

- Bk is the reference frame, 
- W is the watermark, 
- D is the critical data, 
- N is some noise corresponding to the difference 

between Bk and B. 

In order for I’ to be of the desired form I′ = W + D + Bc , 
it is necessary forNto be removed from I’: 

 𝐵𝐵𝑠𝑠 = 𝐵𝐵𝑘𝑘   𝑎𝑎𝑓𝑓𝑓𝑓  𝑁𝑁 = 0 ⇒𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵𝑘𝑘
+ 𝑁𝑁 = 𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵𝑠𝑠  

(16) 

For illustration purposes, we use a sequence of 
surveillance of a child’s playground. Figure 3(a) shows the 
frame which serves as the reference Bk.  Figure 3(b) shows a 
random frame I’ from the same sequence where the data D, 
i.e. the ball, has appeared. 

To facilitate the denoising process, we can isolate N by 
subtracting  Bk from I’ so that only the noise and the data 
remain as illustrated in Figure 3(c) which shows the 
disparities between the actual background of  I’ and the 
reference frame Bk. The objective is to isolate the data and 
get rid of the other irrelevant discrepancies so that nothing 
left can negatively affect the steganalysis and D remains 

 

𝐼𝐼(𝐷𝐷; 𝐼𝐼′)= 𝐼𝐼(𝐷𝐷;𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵𝑠𝑠)

= 𝐻𝐻(𝑊𝑊 + 𝐵𝐵𝑠𝑠) + 𝐻𝐻(𝐷𝐷) − 𝐻𝐻(𝑊𝑊 + 𝐵𝐵𝑠𝑠)

= 𝐻𝐻(𝐷𝐷)

 (14) 
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intact. We try two solutions to achieve the suppression of N 
based on the same assumptions: the data covers a large 
block of connected pixels whereas the noise N is zero-mean 
and sparsely distributed over I’. These two solutions 
respectively involve a simple denoising filter and an area-
based masking technique. 

 
Fig. 3 Illustrations of algorithm.(a) Reference frame Bk,(b) Frame I’ with 
intruder ball, (c) Frame difference Bk-I’,(d) Average filtering ofBk-I’, (e) 

Mask obtained after thresholding,(f)  Reconstructed frame after filtering,(g) 
Mask from area-based technique,(h) Reconstructed frame from area-base 

algorithm with original data highlighted by rectangle 

A. Average Filtering 

Because N has the characteristics of a zero-mean noise, a 
simple denoising filter, e.g. an averaging filter, can at least 
considerably weaken N.  

By filtering the frame difference Bk-I’, the data will of 
course be altered as well but as a large group of  pixels of 
similar intensity, it will retain most of its shape after 
filtering whereas the rest of the smallest artifacts will mostly 
be erased. Figures 3(d) and 3(e) provide insight on the effect 
of using an averaging filter on the frame of Figure 3(c). As it 
can be seen, a great portion of the discrepancies present in 
Figure 3 (c) is erased whereas the data is still visible in 
Figure 3(e). 

Figure 3(e) is used as a mask to reconstruct the final 
frame from Figure 3(f): black pixels in Figure 3(e) are 
replaced by pixels from the reference frame Bk and white 
pixels are preserved from the original frame I’.  

Although the average filtering solution shows great 
results in this case, it is to be noted that depending on the 
size and shape of the data D, the denoising filter can have 
serious consequences on the integrity of D. For example, a 
square shape will become rounder with the use of an 
averaging filter. And although the network will probably 
still flag the presence of data in I’, it might be more difficult 
for the user to identify the true nature of the data. 

B. Area-Based Alternative 

In order to avoid the problems that can be encountered 
with a filtering technique, we also try using analternative 
technique based on area selection. This solution works in 
such a way that large clusters of connected pixels emerging 
from the difference I’-Bk are protected whereas the rest of 
the difference is cleared of any interferences by setting all 
unprotected pixels to black. 

Figure 3(f) shows the mask obtained after the area 
selection algorithm has been applied to the frame in Figure 
3(c). In this case, the white rectangle shows that the area 
containing the large group of light pixels is the only 
remaining part of the original frame. As for the previous 
algorithm, the black pixels in Figure 3(f) are replaced by 
pixels from Bk and white pixels are replaced by pixels from 
the original I’ frame. The result of this area-based technique 
is shown in the reconstructed frame of Figure 3(g). A 
rectangle is drawn around the area containing the original 
pixels from I’ which clearly proves that the area surrounding 
the object constituting the data remains.  

This method is more efficient in getting of any potential 
discrepancy between the actual frame background and the 
reference one Bkas shown in Figure 3(f). However, 
depending on how precise the selection of the concerned 
area is, the number of protected, or masked, pixels that do 
not belong to the data D varies. For example, Figure 3(g) 
indicates that a portion of the original frame inside the 
marked rectangle, although not part of the data D itself, 
manage to find its way in the reconstructed frame unchanged. 
In case the area masked is of large proportions, more noise 
might go through the cleaning process untouched. This 
could therefore diminish the efficiency of the preventative 
steganalysis. 

C. Common Outcome 

In both cases, after processing, the steganalyst expects to 
find I’ to be as close as possible as being the sum of only 
three parts: 

 𝐼𝐼′ ≈ 𝑊𝑊 + 𝐷𝐷 + 𝐵𝐵𝑘𝑘  (17) 
From this equality, it is clear that in the absence of 

watermark, the isolation of the data D becomes an easy task 
as Bk is a known entity. When steganography has occurred, 
because W and Dhabe different distribution and Bk is known, 
the preventative steganalysis is expected to yield high 
success rates.   

VI. SIMULATIONS 

To assess the validity of the proposed algorithm as a 
working proactive steganalytic  system, several experiments 
are conducted. These experiments include: 

- Simulations on the uncertainty coefficient, 
- Simulations on data preservation, 
- Simulations on steganography detection. 

The simulations are conducted on a series of sequence of 
frames showing a child’s playground shown in Figure 3(b). 
In this setting, the goal of the network is to detect the 
presence of a ball in the playground by identifying round 
objects in the frame. 

A. Uncertainty Coefficient  𝑈𝑈1(𝑊𝑊|𝐼𝐼′) 

 U1(W|I′) is computed for watermarked sequences where 
W is an additive white Gaussian noise. Tests are conducted 
on unprocessed sequences first, then on the same sequences 
when the actual background is replaced by the reference 
background Bk. The tests are also conducted on the 
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sequences derived after the filtering process and the area 
selection technique have been applied after the background 
has been substituted for Bk. The watermark is embedded 
with a signal-to-noise ratio of 20 dB relative to the image. 

 
Fig. 4 Uncertainty coefficient for frame sequence at various stages of 

processing with a watermark embedded with a SNR of 20dB 

Figure 4 shows that our proposed solution is effective in 
increasing the uncertainty coefficient  U1(W|I′)  eventually 
making the watermark more easily detectable. When the 
actual background is replaced with Bk, it logically appears 
that the first frames in the sequence obtain the highest 
uncertainty coefficient due to the higher correlation with Bk. 
The uncertainty coefficient gets lower with time which can 
be explained by the appearance of the relevant data D in the 
frame and the eventual perturbation of the scenery has time 
goes by. This suggests that improvement could be achieved 
if the reference frame was refreshed at different points in 
time. 

Overall, the computation results for the uncertainty 
coefficient  U1(W|I′) provide proof that the derived 
algorithms can greatly improve the knowledge of the 
steganalyst on the potential presence of watermarking. 

B. Data Preservation 

Although the primary objective of the steganalyst is to 
protect the network against covert communications, the 
steganalysis must not interfere with the network’s main 
objective. In monitoring applications, the network collects 
critical data which must still be identifiable after the 
steganalysis has taken place.  

To quantify the effects of the steganalysis on the data, 
we test the efficiency of a data detection algorithm with the 
unmodified frame sequence and after our proposed solution 
has been applied.  

 
Fig. 5 Data detection outcomes for uncorrupted frame sequences 

Figure 5 shows the success and error rates of the 
algorithm used to detect the presence of round objects. The 
results are drawn in the case where no steganography has 
occurred since purely the effects on the data are desired. 
What we are interested in is not the efficiency of the 
detection algorithm itself but rather in the changes in the 
detection outcome after the use of our proposed steganalytic 
solution. The results show a slight decrease in the rate of 
true positives but an important decrease in the rate of false 
positives. The results also show a rather similar true 
negative rate and a slight increase in the rate of false 
negatives. From these results we can infer that the data 
identification algorithm performs as well in each situation. 
Although the critical sensibilityis slightly decreased, the 
specificity of the detection is improved. It is to be noted that 
parameters in the steganalytic solutions can be tweaked to 
find the best compromise between steganalytic protection 
and data preservation depending on the desire of the 
network’s users. 

C. Steganography Detection 

Because steganalysis is about protecting the sensor 
network against the possibility of covert communication, it 
is necessary to evaluate how well the preventative 
steganalysis performs. In order to verify if our preventative 
steganalytic approach leads to high success rates a simple 
threshold-based detector is derived. In this paper, we use an 
average block variance threshold-based detector. 

The detector computes the average variance of blocks of 
pixels from the frame I’. Each frame is divided in a certain 
number of blocks where the variance is computed. The 
block variances obtained are then averaged over the whole 
frame. A block-based algorithm is suggested in order to 
reduce the effect that the presence of data might have on the 
final steganalytic decision. For example, if the steganalyst 
was to count the number of pixels originating from image 
aberration, the data D, as a large group of pixels, would have 
a great influence on false positive rate of the detector 
decision. 

Frames are chosen randomlyand corrupted with an 
additive white Gaussian watermark in both sequences 
obtained after the steganalytic solutions proposed have been 
applied to the original sequence. For the fairness of 
comparison, the same frames in both sequences are 
corrupted with identical watermark. The embedding is done 
using a signal-to-noise ratio of 30dB with regards to the 
original image. Computations of the average block variance 
are derived and presented in Figure 6. 

 
Fig. 6 Average block variance in corrupted processed sequences 
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Figure 6 shows similar results for both derived solutions. 
In presence of a watermark the computation of the average 
block variance leads to an important increase in value. The 
presence of data, mostly visible from frame 170 to 200 in 
Figure 6, also creates an increase in the computed variance 
but in a different scale than watermarking does therefore 
confusion between the presence of data and the presence of 
watermarking is unlikely.  

Computing the ratios of the obtained variance extrema 
shows that when with the averaging filter solution, the 
presence of watermarking increases the average block 
variance by a 2e+4factor, whereas for  the area-based 
solution, this factor increases to 5e+4, thus concluding that 
the area-based solution leads to better steganalytic results. 

VII. CONCLUSION 

In this paper we have discussed the problem of defenses 
against covert communications in visual sensor networks. 
Because of the critical purpose of a WVSN, precautions 
have been implemented to insure the integrity of the data 
collected by the network’s cameras. Solutions providing 
both protection against steganography and against data 
corruption have been presented and their efficiency 
discussed through several simulations. Results from the 
simulations proved that the detection of steganography is 
made easier for the steganalyst while the data identification 
algorithm still performs well.  

While promising, preventative steganalysis obviously 
needs to be investigated further. Preventative solutions 
imply that the processing of the information needs to be 
done early on in the chain of node communication. It would 
be interesting to assess the effect of such solutions on 
already corrupted frames. By doing so, we might find out 
preventative steganalytic solutions would not imperatively 
need to be applied at the capturing node to ensure protection 
against steganography. It is also important to develop 
customized solutions adapted to the specifics of the network 
such as its function, its size and its available resources in 
order to increase the efficiency of the steganalysis. 
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