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A Recursive Estimator of Worst-Case Burstiness
Shahrokh Valaee, Member, IEEE

Abstract—The leaky-bucket regulator has several potential
roles in the operation of future transport networks; among them,
the bounding of possible source trajectories in implementations of
worst-case approaches to network design. It seems plausible that
there will be applications whose specific traffic characteristics
are known a priori neither to the user nor to the network; in
such cases, arecursive algorithm for setting the leaky-bucket
parameters may prove useful. We devise such an algorithm here.
The leaky-bucket parameters are computed recursively over a
limited period of observation of the source behavior. We provide
an explicit characterization of the dynamics of the estimator, and
the results of a simulation study of performance in the case of real
source trajectories.

Index Terms—ATM, burstiness curve, deterministic source mod-
eling, leaky bucket, reflection mapping, regulator.

I. INTRODUCTION

CALL SETUP in a connection-oriented network is initiated
by a source requesting a certain allotment of buffers and

bandwidth. Depending on the availability of such resources, the
call will be established and data will flow from source to des-
tination. Quantifying the availability of network resources, es-
timating the load imposed on the network by a particular con-
nection, and ultimately dimensioning the network so that the in-
cidence of rejected requests for connection is acceptably small,
all depend upon the characterization of the traffic streams en-
tering the network. There are two broad approaches to the char-
acterization problem. One, forming the basis of what we call
average-case design, begins withstatisticalsource models and
expresses performance in terms of means, variances, and quan-
tiles of appropriate probability distribution functions. The other
views the source as moving arbitrarily over a range of behaviors
circumscribed by a wholly deterministic constraint. It is occa-
sionally possible in this connection to identify a particular be-
havior which in the class of admissible behaviors is least favor-
able, and to design the network assuming that the sources are all
least favorable. We refer to the corresponding methodology as
worst-case design.

The literature on worst-case design is smaller and more recent
than that dealing with average-case or statistical design. It in-
cludes, for example, [1]–[4]. The main results describe the rela-
tionship among worst-case network performance, as expressed
by end-to-end delay or backlog, the parameters of the transmis-
sion scheduling strategy at the switch output buffers, and the
parameters of theregulatorswhich are located at the various
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user-network interfaces for the purpose of filtering or shaping
the traffic which enters the network.

The present paper focuses on the development of arecursive
approach to the selection of the regulator parameters. It is en-
visioned that in the most general case, the regulator parameters
will be determined by some process of negotiation between user
and network which takes into account the character of the pro-
jected data flow, the required quality of service (QoS), and the
ability of the network to meet its ongoing QoS commitments.
We consider just part of that process—the part that ensures that
the regulator parameters provide reasonably and efficiently for
the particular attributes of the projected flow. Our interest in pa-
rameter estimation techniques that are recursive is motivated by
the sense that there will be applications where neither the user
nor the network will have had sufficient prior experience of the
data flow to supply the parameters—without further measure-
ment—at call setup.

We assume throughout that the regulators are leaky buckets
[5]. Our point of departure is the burstiness curve approach to
source characterization [6].

II. BACKGROUND AND PRELIMINARY RESULTS

The regulator in general, and the leaky bucket in particular,
can be viewed as a vehicle for transferring congestion and traffic
loss from the interior of the network to the network boundary,
at which point the likelihood of loss might be anticipated and
averted by action at the source. If the network is thought of as a
pipe from source to sink, then the regulator defines the maximal
effective cross section of that pipe. The leaky bucket itself has
a couple of alternative formulations. We speak of it here as a
token pool replenished by a buffered server and parameterized
by the pair , being the initial number of tokens present
and the instantaneous rate of replenishment when one or more
tokens are absent. A packet of data emitted by the source trans-
fers an equal amount of tokens from the pool to the server buffer
and enters the network without delay; in the event that there are
no such tokens available, the packet is either discarded or de-
layed until a proper number of tokens are generated. A token
emerging from the server returns to the pool. The replenishment
process turns on when the level of the pool drops belowand
shuts off when the pool is full.

The leaky bucket, as we have described it, serves merely to
identify, on the basis of the history of the source to which it
is attached, the nonconforming traffic (the traffic arrived in the
absence of tokens). There has been much work [7]–[10] on how
to select the parameters so as to achieve a prescribed data
discard rate when the source is described by some canonical
stochastic process (such as an On/Off process with Poisson or
deterministic arrivals during the On state). Our objective here
is different. We would like to avoid loss altogether, but at the
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same time to assign the parameters as parsimoniously as
possible. These two constraints together can be summarized by
saying that is to be located on the burstiness curve of the
source. A similar result has independently been found in [11].
We proceed to describe the notion of the burstiness curve, first
proposed in [1].

Let be the instantaneous rate of the source at time. The
function , called a “message,” is a real, positive function.
We assume that the rate function is bounded

(1)

where is the maximum rate. This is a valid assumption in
many applications; link capacity always imposes an upper limit
on rate.

The cumulative traffic in the time interval is defined by

(2)

Since the rate is bounded, the cumulative traffic forms a contin-
uous function. We assume throughout that the message belongs
to the class oflinear envelope processes[12]; that is, that there
exist and (possibly unknown) such that

(3)

This constraint imposes an upper bound on burst length—a
burst being a block of data generated concurrently and instan-
taneously. Constraints (1) and (3) together yield

(4)

Furthermore, we assume there exists such that

(5)

uniformly in .
Transmitting this message through a buffered server with a

constant service rate, the unfinished or backlogged traffic in
the buffer at time is given by

(6)
Definition 1 ([1], [6]): The burstiness curve for the traffic

in the interval , is the graph of versus where

(7)

The burstiness is thus the maximum backlog when
is submitted to a deterministic sever of rate. A typical

burstiness curve is depicted in Fig. 1.
The following proposition follows from the definition of the

burstiness curve.
Proposition 1 [Low and Varaiya]:Given the rate function
, , the burstiness curve is a continuous convex de-

creasing function defined in the interval , with
and .

Fig. 1. Intersection of the burstiness curve and the maximum delay constraint.

The following proposition states that the burstiness curve is
monotone.

Proposition 2: For fixed , burstiness is continuous and non-
decreasing in time. In other words, for given and , and

(8)

Proof: The continuity of burstiness curve resides on the
continuity of and . The definition of burstiness
curve produces a nondecreasing .

An immediate result of this proposition is that for any fixed
, the sequence is convergent (possibly to infinity).
Proposition 3: For a traffic satisfying (1) and (5), if ,

then

(9)

and if , then

(10)

where is defined in (5).
Proof: Suppose . Choose so that .

Since uniformly in as , there
exists such that for

(11)

In this case

(12)

It follows that

(13)

uniformly in .
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Now suppose . We know .
Choose to satisfy for . Then

for . Choosing so that
completes the proof.

Starting from the concept of minimum envelope rate, Chang
[12] arrives at a similar result. In [12], it has been proved that,
for a single queue and a work-conserving server, if the minimum
envelope rate of a process is smaller than the link capacity, the
queuing delay is bounded; conversely, if the minimum envelope
rate is larger than the capacity, the delay is unbounded. Since a
uniform convergence is assumed in (5), the minimum envelope
rate is identical to the mean rate [12]; hence, using a burstiness
approach, Proposition 3 justifies the result of [12].

III. L EAKY-BUCKET DESIGN—PROBLEM FORMULATION

Our convention, in referring to the parameterization
of the leaky bucket, is to reserve the first coordinatefor the
size of the token pool and the second coordinatefor the token
generation rate. The regulator will be lossless, when applied to
a source with burstiness curve , if and only if for a given
token replenishment rate

(14)

Our problem, given a source whose behavior and statistics are
unknown, is to set the parameters of the corresponding leaky
bucket recursively. An algorithm which solves the problem is
described in the next section; here we describe the additional
constraints imposed upon so as to ensure that the target
leaky bucket is unique.

The first such constraint istightness, the leaky bucket
being said to be tight relative to the source with burstiness curve

if and only if . Tight designs are economical in
terms of the resources allocated to individual sessions in a net-
work where such allocations are based on worst-case behavior;
see also [11]. Tight designs are also responsive, in the sense that
even small decrements in one of both parameters can have a fa-
vorable impact on performance when the network is congested.

We add a second constraint, in the form of an inequality. Con-
sider, for instance, a network in which access to the nodal output
buffers is mediated by generalized processor sharing (GPS) or
one of its nonpreemptive variants. A session is said to bestable
in this connection [6] if the corresponding GPS coefficient is
at least as large as the token generation ratein the associated
leaky bucket. In this case, the connection is contemplated as a
deterministic-server queue with buffer size(the size of the
token pool) and service rate; in fact, the model is approximate
and conservative, the backlog in the single-server queue forming
an upper bound on the end-to-end backlog in the session. This
being so, it is reasonable to require that

(15)

where is an upper bound on the maximal end-to-end delay
deemed acceptable to the source.

The two inequality constraints taken together amount to
. This corresponds to the region marked as

in Fig. 1. The solutions which are tight, in the sense defined
above, form the lower boundary of that region. Within this
restricted feasible domain we select, as our target, the point
with minimal ; that is, the point with coordinates ,
corresponding to the leaky bucket . It is needless to
say that a sophisticated call admission control (CAC) procedure
could make use of the entire feasible part of the burstiness
curve, selecting a preferred operating point. Such a CAC
algorithm might take either network congestion or pricing
into consideration. However, we continue with the minimum
bandwidth.

Our goal, then, is to devise an adaptive recursive approach
to estimating for sessions with unknown traffic
descriptors— being the length of the observation interval. We
assume that the peak rate is given, and thus that

(16)

This helps to limit the domain over which a search is to be per-
formed.

Our estimate, of course, will depend upon. Notice (by
Proposition 2) that , are nondecreasing in and thus
convergent (possibly to infinity) in the limit of large . By
Proposition 3, it is desirable that , where is the
long-run mean rate of the source. Unfortunately, this property
is not satisfied in general. The following lemma asserts that if a
certain lower bound to the burstiness atexists, then
for sufficiently large values of .

Lemma 1: If there exists such that , then
.

Proof: Since the burstiness is nondecreasing in time,
for . Note that

decreases with and .
Notice that , for given , can be estimated by calcu-

lating the maximum backlog in a single-server queue with input
and service rate. Such estimates are used frequently in

the numerical work reported below.

IV. A N ITERATIVE ALGORITHM

In this section, we propose an iterative technique to ascertain
the parameters of a leaky bucket. The output of the source is
stored for seconds (the adaptation period) and the token gen-
eration rate and the token pool size are determined so that the
corresponding leaky bucket is tight. The objective is to solve
the equation . There exist various techniques
to solve such a problem. Here, we propose an iterative algo-
rithm based on intersecting the burstiness curve and the line

.
Choose and with . For a server with the service

rate , find the maximum backlog . Repeat it for the service
rate and obtain . The line crossing the two points
and in the – plane intersects the line at
a point with rate . Next, inject the stored data into a queue
with the service rate and find the corresponding . Con-
tinue this process by connecting and and inter-
secting with . This procedure converges to the point
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Fig. 2. Iterative procedure converging to(� ; � ).

, the cross section of the burstiness curve and the delay
line in Fig. 2. The algorithm is specified by the iterations

(17)

(18)

Define

(19)

(20)

and are the intervals to the right and to the left of the op-
timum point .

Lemma 2: Let and be the initializing service rates; then
for

1) if and , then and ;
2) if and , then and ;
3) if , then and

;
4) if , then .

Proof: Immediate from the fact that the burstiness curve is
a decreasing convex function defined in and that
.
Theorem 1: The iterative technique proposed in (17) and (18)

converges to .
Proof: It is assumed in the algorithm that . We

consider two cases.
Case 1: : Since is larger than , from part 3 of

Lemma 2, for , we have , and hence
is convergent. We now prove that, in fact, the convergence

is to .
Define . Since the burstiness curve is a

continuous convex decreasing function of, we have

(21)

Thus, for any and

(22)

From the iteration (17), we arrive at

(23)

Using (22) yields

(24)

Since the sequence is convergent, , and
hence , .

Case 2: : In this case, belongs to either or
. Here, the set of rate indices is separated into two subsets

containing the indices of the rates inand . If , then
all the rates with the indices , are in

. If , then all the rates with the indices ,
are in . In both cases, the indices of two adjacent

rates in are separated by 3.
From parts 1 and 2 in Lemma 2, for and we

have and therefore the subsequence is
convergent. The limit is represented by.

Let . Note that is formed from and
, and similarly is formed from and

. Since the burstiness curve is convex and decreasing,
the slope of the line connecting and
is larger than the slope of the line connecting and

. This means that . Thus, we con-
clude that if with , then and
hence the subsequence is convergent. The limit
is represented by .

We show that . Consider the contrary. Let
. If so, there is no point inside the interval that

can be reached by (17) and (18). We show that this is not true.
Since is convergent, for any fixed, there

exists and such that . Define
and and let .

Notice that , for . Similarly, ,
for , and , , where and are
the source burstiness at the ratesand , respectively. Using
(17), it can be shown that

(25)

Let to arrive at . From part 2 of Lemma 2,
since and , in fact, , which is
contradictory.

Thus , and since and , we have
.

In the present section, we have assumed thatseconds of
data is stored and repeatedly used to estimate the crossing point
of the burstiness curve and the line . During this phase
of adaptation, traffic transmission must be frozen. Although it
might work for nonreal-time data, it will cause data clipping in
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real-time traffics. Thus, an issue of concern is the method that
one should use to select an appropriate. On the one hand,
should be large enough to capture the whole burstiness behavior
of traffic. On the other hand, large introduces delay in the
burstiness estimator. Hence, a tradeoff should be placed into
order; one might set to a minimal value and enlarge it as the
burstiness surpasses a prescribed threshold, or use an elaborate
cost function to arrive at an appropriate resolution. Furthermore,

is also related to the maximum delay . We will discuss
shortly that a large requires a large for convergence; in
fact, the burstiness curve converges faster along a line with a
small .

Nonetheless, choosing is a critical issue that will affect
the performance of the algorithm. In the following section, we
will propose an on-line estimator of burstiness which can be
applied to both real-time and nonreal-time traffics. The on-line
structure of the algorithm simplifies the selection ofand averts
the necessity of storing a frozen window of traffic.

V. DYNAMICS OF THE OPTIMUM POINT

In the present section, we study the evolution of the optimum
point as a function of . The optimum point at time

is the solution of the following set of equations

(26)

(27)

In the following proposition, we show that the optimum rate
and the buffer size are nondecreasing functions of time.

Proposition 4: For we have

(28)

(29)

Proof: Using Proposition 2, for all , we have

(30)

Note that both and are decreasing functions of
(see Proposition 1). Represent by the intersection

of and the line . Define simi-
larly. Since is an upper bound to , the proof is
complete.

Remark: Since , the sequence is convergent.
Let be defined as the queue length for a single server
queue with service rate, i.e.

for (31)

Then

(32)

Using this definition, we have the following proposition.
Proposition 5: For , we have

(33)

Proof: The proof is straightforward from Proposition 4
and (31).

This proposition indicates that for , carries
all the necessary information contained in for computing

. To see this, note that

(34)

where for is defined as

(35)

To get the burstiness at time , we should solve

(36)

where is defined as

(37)

Using Proposition 5 and (31), we have

(38)
We now distinguish two cases.

Case I:

(39)

From (38), we get

(40)

Using Proposition 4, we have

(41)

Inequalities (40) and (41) yield

(42)

This means that the maximum backlog of data in the interval
is smaller than the burstiness computed in . Thus,

the burstiness curve is constant in the interval .
Case II:

(43)

This means that the trajectory of traffic, generated in the interval
, has increased the maximum backlog beyond its pre-

vious limit. Then, from (36) and Proposition 5, we have

(44)

Thus, it can be seen that the optimum point only de-
pends on and the maximum queue length in the in-
terval .
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Fig. 3. Busy cycle containingt.

The two cases above correspond, respectively, to the points of
freezeandincrease. While in freeze, there exists such
that . In the state of increase, for
any , , and similarly .

Theorem 2: The dynamics of the optimum point
can be represented by the following differential equations. If
is a point of freeze

(45)

If is a point of increase

(46)

where is the beginning of the busy cycle containing(see
Fig. 3).

Proof: Let

(47)

(48)

The two cases above correspond, respectively, to the following
two instances.

Case I:

(49)

(50)

Therefore, we have

(51)

Case II:

For very small, we have

(52)

Note that this case only happens if . This means that the
input rate must be larger than the service rate; otherwise backlog
will not grow. Since is a point of increase for , the backlog
at time should be equal to , i.e.

(53)

From (52) and (53), we get

Now dividing the two sides by and letting , we have

(54)

and the proof is complete.
In summary, the dynamics of the optimum point can be ex-

pressed using a finite state machine (FSM) with two states 0 and
1. While in State 0 (point of freeze), the optimum point
is constant and does not change. In State 1 (point of increase),
the dynamics of the optimum point is abided by the differen-
tial equation (54). It is straightforward to see that the solution to
(54) is

(55)

VI. REFLECTION MAPPING

The technique can also be formulated in terms of the concept
of reflection mapping [13]. Reflection mapping has been used
in [13] to formulate flow controllers and to establish their opti-
mality.

For a given process , its reflection in the time varying in-
terval is defined as

(56)

where and are chosen such that

• ;
• and (respectively, ) increases only

when (respectively, ).
and are called thelower boundary processand theupper

boundary process, respectively. Here, we use single boundary
reflection mapping (either or .)

It can be shown that for a case in which only the lower
boundary is present ( ), we have

(57)

(58)

Similarly, if only the upper boundary is present ( )

(59)

(60)

We use two properties of the reflection mapping, namely
causalityandminimality [13].
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1) Causality:
For any , the reflection of the process at time

with depends only on the value of the process
from onward, neglecting the entire past of the process
before .

2) Minimality:
For given , the boundary process (re-

spectively, ) is the smallest process that reflectsinto
.

Theorem 3: The burstiness given in (55) is an upper
boundary process for the reflection of the backlog process,
downward at zero.

Proof: Define

(61)

Backlog at time is

(62)

Using (58), we note that is the reflection of
upward at zero.

Now find the reflection of downward at zero.
From the definition of reflection mapping, we have

(63)

where is the upper boundary process. Thus

(64)

From (59), we get

(65)

Using the assumption that is nondecreasing, for every, we
have

(66)

Theorem 3 suggests that all properties of the reflection map-
ping—say, minimality and causality—can be extended to the
concept of burstiness. Minimality of indicates that is the
smallest process that reflects below zero. This aligns
with our objective, assigning the parameters as parsimo-
niously as possible—the minimal upper-boundary process cor-
responds to a tight token pool size. Furthermore, the boundary
process in reflection mapping is causal, meaning that for a given

, the upper boundary process, for , is independent of
. We have implicitly used this property to derive an

algorithm in Section VII.
An interesting influence of using the reflection mapping for-

mulation is that the technique might be applied to nondifferen-
tiable processes. This assumption incorporates traffics with in-
stantaneous bursts in the proposed algorithm. To this end, we
digitize the time to a fine grid and apply the technique on that
grid. The optimal rate should be chosen such as to handle
the excess traffic accumulated during the last sampling interval.
Hence, for traffics with sudden bursts, the differential equation

(46) can be substituted with a difference equation. In the fol-
lowing section, we state the proposed on-line algorithm.

VII. T HE ON-LINE ALGORITHM

Let time be decomposed into nonoverlapping intervals of
seconds each. The optimum point is computed at

the end of each interval. The input traffic is introduced to a
constant-rate server and the backlog is monitored and used to
modify the value of the optimum point. The following steps
summarize the algorithm.

1) Initialize the algorithm to , , ,
, .

2) Update the time index as

(67)

End the algorithm if , else continue,

(68)

If .
3) If , go to Step 2 (State 0); Else (State 1),

(69)

(70)

Go to Step 2.
Note that the parameter could be treated generi-

cally—this might suggest that the algorithm be applied to
various delay lines and the whole burstiness curve be approxi-
mated by interconnecting the induced points.

The adaptation time in Step 2 is a parameter of design. Note
that the flow of traffic is not interrupted in this technique and
only acts as a means to end the algorithm and can be very large.
A large captures the burstiness of the traffic in a more reliable
framework. For all that, the parameters of the regulator—if the
burstiness is used to assign a regulator to the traffic—can be
floating and might change as the time advances. In practice,
however, one might be willing to freeze the regulator and mark
or even stop the nonconforming traffic. Hence, a mechanism
should be employed to select an appropriate. Note that this
might be fragile and inaccurate—a fairly regular source might
happen to become bursty in the future. If the algorithm ends
before such an impetuous behavior of the source is activated,
the burstiness of the data will be unseen and uncaptured. To
alleviate the problem one might come up with a rigorous rule of
selecting . For instance, the QoS that the user expects can be
utilized as a prescription to cease the algorithm. The algorithm
could be ended ( is reached) as soon as the QoS is satisfied for
the user—the mechanism, however, might not be trivial.

An alternative would be to monitor the growth of the token
pool size and/or token generation rate. If a regular behavior for
the growth of these parameters could be found,would be the
minimal time at which the convergence of the growth is ratified.
Take, for instance, a greedy source transmitting traffic with rate

starting at time zero. Then, the algorithm is always in the
point of increase and we have

(71)
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Fig. 4. Normalized convergence rate of the algorithm for a greedy source.

Fig. 4 illustrates the plot of , normalized with respect to ,
for various delay bounds . Note a hyperbolic increase of the
parameter. For this example, can be selected as the time at
which is sufficiently close to —again the closeness is a
parameter of design.

For the traffic of Fig. 4, increasing reduces the rate of
convergence of the algorithm. This conclusion can be extended
to other type of traffic, as well. Recall that the growth rate of
the parameters is administered by (69). In [11], the supremum
of (69) for has been defined as thedeterministic ef-
fective bandwidthof the traffic accumulated during the interval

. Note that in a point of increase, the burstiness of the traffic
changes. In fact, for a timebeing a point of increase

(72)

Hence, is the deterministic effective bandwidth of the traffic
calculated in the interval .

VIII. A PPLICABILITY OF THE ALGORITHM

The convergence rate of the algorithm for a nongreedy source
is upper bounded by (71). The rate of convergence depends on
the stochastic behavior of source. Roughly speaking, a source
illustrating a typical transmission characteristics—such as a
semiperiodic video traffic—will behave nearly like a periodic
source. Hence, for such a source, a hyperbolic growth rate for

(similarly ) can be expected. This characteristic might be
exploited to get a measure of adjustment of the regulator to the
projected flow.

On the other hand, a nonreal-time best-effort traffic can in-
troduce an unexpected burstiness growth rate. The burstiness of
such a source might stay low for a very long period of time, or
change in a sudden rush. Due to instantaneous bursts, selection
of might not be trivial. The best-effort nature of a nonreal-time
traffic, however, permits application of a buffer to smoothen the
burstiness.

The techniques we have addressed in this paper may fall into
two categories. In Section IV, we proposed an iterative proce-

dure for the adjustment of a regulator based on a stored fragment
of data. The adaptation period was assumed to be large enough
to convey the burstiness behavior of the input traffic. Iterations
were performed on the same observation window and repeated
until a convergence was observed. Therefore, the technique is
off-line and cannot be applied to real-time traffics. Nonetheless,
a fixed adaptation period cannot characterize the burstiness of a
whole trace. Yet, it is applicable to nonreal-time data and can be
used to capture the burstiness of a delay-insensitive traffic. For
nonreal-time traffic, an adjusted regulator can be employed as
a shaper—the nonconforming traffic is delayed and introduced
into the network in a more regular setting. Hence, the technique
of Section IV is applied to adjust a regulator to data, and then
the regulator is employed as a shaper with frozen parameters.

A second contribution of this paper is the on-line algorithm
proposed in Section VII. As noted, the technique of Section IV
will fail to catch the burstiness in the traffic outside the adapta-
tion window. The second algorithm proposes a recursive method
to capture the burstiness of the whole trace. The procedure starts
with and will keep running adaptively to the progress of
the source traffic. Thus, the recursive method can quickly adapt
to any prospective burstiness in the forthcoming data. The char-
acterized leaky-bucket parameters are still useful for network
provisioning; the network can use this information to reserve
required resources such as bandwidth and buffers for the intro-
duced traffic.

The proposed technique in Section VII can be applied to
both real-time and nonreal-time traffics. For a nonreal-time
traffic, once the convergence of the algorithm could be con-
ceived, the estimated leaky-bucket parameters are frozen. The
nonconforming traffic is then delayed and injected into the
network on a more regular basis. For real-time traffic, however,
the adjustment of the leaky bucket cannot be halted and must
continue with the burstiness behavior of the projected traffic. In
this case, the algorithm will keep running and the results of the
leaky-bucket adjustment are used for source classification and
network resource provisioning. If the setting of the leaky-bucket
regulator is frozen at a prescribed time, the nonconforming
data in the ensuing traffic will be tagged and delivered to the
network. The tagged traffic illustrates the burstiness of the
source that has not been captured by an earlier adjustment of
the regulator due to a finite adaptation period. It is then up to
the network to either re-initiate the adaptation of the regulator
and/or provide extra resources for the tagged traffic.

IX. SIMULATION RESULTS

The objective is to design a leaky-bucket regulator for the
traffic of a given source. The leaky bucket should be designed
such as to minimize the token generation rate. The leaky-bucket
parameters are determined independent of the state of the net-
work. The simulation is performed on a real Motion JPEG en-
coded video trace taken from [14]. The trace is a full-length
video of the movie Jurassic Park and represents the number of
bytes contained in each encoded frame.

The trace of the movie for 600 s is depicted in Fig. 5. It is seen
that the input rate is time varying—the maximum and minimum
frame sizes are 21 099 and 1977, respectively. The burstiness
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Fig. 5. Video trace for ten minutes of the movie Jurassic Park.

Fig. 6. Burstiness curve for the movie Jurassic Park. The burstiness curve was
computed at the end of each minute of observed data.

curve for this trace is illustrated in Fig. 6. Here, the time is de-
composed into nonoverlapping snapshots of one minute each.
The burstiness curve is calculated at the end of each snapshot.

We compute the parameters of a leaky bucket using the two
techniques discussed in this paper. In the first technique, we find
the crossing point of the burstiness curve with the line
with ms. Here, the burstiness curve is calculated on a
grid of rates ranging from 0.8 to 5.6 Mb/s with the step size of 40
kb/s. For the second technique, we use the algorithm proposed
in Section VII. The results have been shown in Fig. 7. It is seen
that the two algorithms perform closely. The difference is due
to using a coarse grid for rate; for a finer grid, the dashed line
approaches the solid line. Note that the algorithm of Section VII
has a smaller computational cost and can also be applied on line.

In Fig. 8, the evolution of the burstiness of the traffic for the
same trace of Jurassic Park has been illustrated for various delay
bounds. Note that the burstiness increases with. This is in

Fig. 7. Dynamics of the optimum point (burstiness) using the two proposed
techniques for the same trace of the movie Jurassic Park.

Fig. 8. Evolution of the burstiness of the movie Jurassic Park as function of
the maximum delay.

contrast to the behavior of the optimum rate—the optimum ser-
vice rate decreases with . This behavior is in agreement with
the results obtained in Fig. 4 for a greedy source.

To study the effect of (the adaptation period) in the per-
formance of the algorithm, we simulate a scenario in which the
traffic is regulated by a leaky bucket tailored to the burstiness
of a traffic for 60, 300, and 600 s of the same trace. The max-
imum delay is ms. The leaky bucket is used as a
shaper—the excess traffic is queued and smoothened with the
rate . Fig. 9 represents the cumulative excess traffic for dif-
ferent values of the adaptation period for a trace of 2000 s of the
same movie. Note that for small, the burstiness of the source
is not captured thoroughly—a notable amount of data is back-
logged in the leaky bucket. The volume of the backlogged data
decreases with increasing. Fig. 10 illustrates the delay experi-
enced by the traffic in the leaky bucket. Note that a largecon-
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Fig. 9. Cumulative excess traffic to be regulated by an adapted leaky bucket.
The adaptation periods areT = 60, T = 300, andT = 600 s.

Fig. 10. Delay suffered by the excess traffic in the leaky bucket. The adaptation
periods areT = 60, T = 300, andT = 600 s.

stitutes a small delay. Inside the network, the delay is bounded
by provided that at least a rate of is guaranteed for the
traffic.

One can also use Figs. 9 and 10 to examine the performance
of a network composed of a single node serving the traffic reg-
ulated by the designed leaky bucket. Assume a leaky bucket op-
erating in a filtering mode (nonconforming traffic is tagged and
passed to the network). Figs. 9 and 10 can then be interpreted
as the accumulated queue size and delay for the tagged traffic
in the node. Note again that to obtain an appropriate estimate of
the traffic burstiness, one should use a fairly large.

To study the QoS of a video trace regulated by the proposed
leaky-bucket estimator, we compute the jitter for the noncon-
forming traffic in a regulator, acting as a traffic shaper and tuned
to the input traffic for a prescribed adaptation period. The result
for an adaptation period of s has been illustrated

Fig. 11. Jitter suffered by the excess traffic in the leaky bucket. The adaptation
period isT = 1000 s.

Fig. 12. Maximum, mean, and standard deviation for the jitter suffered by the
nonconforming traffic in the leaky bucket as a function of the adaptation period.

in Fig. 11. Here, we assume that the on-line algorithm ends in
s and the traffic is smoothened by the regulator with

frozen parameters. This is in contrast to the proposed policy
in Section VIII (keep the algorithm running with for
real-time traffics) in order to study the behavior of a real-time
video traffic regulated by a leaky-bucket shaper. The jitter has
been calculated on the last byte of each delayed frame. Fig. 12
illustrates the maximum, the mean and the standard deviation
of the jitter versus the adaptation period. Note that the jitter
is reduced by increasing the adaptation period. An appropriate
jitter-removal buffer can be utilized in the receiver to thwart the
induced jitter in the regulator. For instance, consulting Fig. 12,
for an adaptation period of 20 min (1200 s), a jitter-removal
buffer that stores up to two seconds of traffic, can be used to
avert the whole effect of jitter and produce a jitter-free trace.

Finally, we use the leaky-bucket regulator as a filter (noncon-
forming traffic is discarded). The same trace of 2000 s was used
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Fig. 13. Ratio of the dropped data to the total input traffic for an adaptation
period ofT = 800 s.

Fig. 14. Cumulative ratio of the dropped data to the total input traffic for the
adaptation periodsT = 200; 400; 800; and1200 s.

and the adaptation period was assumed to be 200, 400, 800, and
1200 s. The output traffic was monitored and the ratio of the
dropped data to the total input traffic was computed. Fig. 13 il-
lustrates the ratio of the discarded traffic to total input traffic for

s. The cumulative sum of the percentage of the dis-
carded traffic is depicted in Fig. 14. A notable improvement is
observed by increasing the adaptation period.

X. SUMMARY AND CONCLUSION

In this paper, we introduced a technique to adapt the param-
eters of a leaky bucket to the source traffic at call setup. The
objective was to adjust the leaky bucket so as to avoid traffic
discard at the network boundary, regardless of the possibility
of congestion in the network. This can be used as an approach
to the assessment of burstiness of a given stream of data. The

leaky-bucket parameter assignment should have imposed a con-
straint on the traffic such that the maximum delay incurred was
bounded below a prescribed threshold.

We identified a feasible region in the parameter space
which satisfied both constraints. We further assumed that the
bandwidth was expensive, so that the objective was to select a
point in the feasible region with the smallest bandwidth. This
assumption reduced the problem to intersecting the so-called
burstiness curve with the maximum delay constraint. We used
the term optimum to refer to the intersection point.

An iterative procedure was introduced which converged to
the optimum point without the necessity of forming the whole
burstiness curve. This could drastically reduce the computa-
tional cost. It was proved that the proposed procedure was con-
vergent to the true optimum point.

The dynamics of the optimum point as a function of time was
also studied. It was shown that the evolution of the optimum
point could be managed by a differential equation. The solution
to the differential equation was formulated in terms of a two-
state machine. In State 0, the optimum point froze and in State
1, it increased.

The proposed algorithm was also formulated via reflection
mapping. This extended the properties of the reflection map-
ping, such as minimality and causality, to the concept of bursti-
ness and justified our parsimony in selecting the leaky-bucket
parameters.

Finally, we backed up our algorithm by applying it to a real
video trace. The simulation study showed that the algorithm suc-
cessfully begetted the intrinsic burstiness nature of the data and
found an appropriate leaky bucket in an on-line procedure.
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