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A Recursive Estimator of Worst-Case Burstiness

Shahrokh ValaeeMember, IEEE

Abstract—The leaky-bucket regulator has several potential user-network interfaces for the purpose of filtering or shaping
roles in the operation of future transport networks; among them, the traffic which enters the network.
the bounding of possible source trajectories in implementations of The present paper focuses on the developmentefarsive

worst-case approaches to network design. It seems plausible that h to th lecti f1h lat t Iti
there will be applications whose specific traffic characteristics approach to the seiection of the regulator parameters. It 1S en-

are known a priori neither to the user nor to the network; in  Visioned that in the most general case, the regulator parameters
such cases, arecursive algorithm for setting the leaky-bucket will be determined by some process of negotiation between user
parameters may prove useful. We devise such an algorithm here. and network which takes into account the character of the pro-
The leaky-bucket parameters are computed recursively over a jected data flow, the required quality of service (QoS), and the

limited period of observation of the source behavior. We provide bility of th twork t it . S it t
an explicit characterization of the dynamics of the estimator, and ability of the network to meet its ongoing Q0S commitments.

the results of a simulation study of performance in the case of real We consider just part of that process—the part that ensures that

source trajectories. the regulator parameters provide reasonably and efficiently for
Index Terms—ATM, burstiness curve, deterministic source mod-  the particular attributes of the projected flow. Our interest in pa-
eling, leaky bucket, reflection mapping, regulator. rameter estimation techniques that are recursive is motivated by

the sense that there will be applications where neither the user
nor the network will have had sufficient prior experience of the
data flow to supply the parameters—without further measure-
ALL SETUP in a connection-oriented network is initiatednent—at call setup.
by a source requesting a certain allotment of buffers andwe assume throughout that the regulators are leaky buckets
bandwidth. Depending on the availability of such resources, t{8]. Our point of departure is the burstiness curve approach to
call will be established and data will flow from source to dessource characterization [6].
tination. Quantifying the availability of network resources, es-
timaFing the Ioa_d imposgd on t'he.network by a particular con- Il. BACKGROUND AND PRELIMINARY RESULTS
nection, and ultimately dimensioning the network so that the in- . _ .
cidence of rejected requests for connection is acceptably smaliThe regulator in general, and the leaky bucket in particular,
all depend upon the characterization of the traffic streams &@n be viewed as a vehicle for transferring congestion and traffic
tering the network. There are two broad approaches to the cHggs from the interior of the network to the network boundary,
acterization problem. One, forming the basis of what we caf which point the likelihood of loss might be anticipated and
average-case desighegins withstatisticalsource models and averted by action at the source. If the network is thought of as a
expresses performance in terms of means, variances, and qRipe f_rom source to .smk, then th.e regulator defines the.maX|maI
tiles of appropriate probability distribution functions. The otheffective cross section of that pipe. The leaky bucket itself has
views the source as moving arbitrarily over a range of behavigtouple of alternative formulations. We speak of it here as a
circumscribed by a wholly deterministic constraint. It is occdoken pool replenished by a buffered server and parameterized
sionally possible in this connection to identify a particular bdy the pair(o, p), o being the initial number of tokens present
havior which in the class of admissible behaviors is least favdtdp the instantaneous rate of replenishment when one or more
able, and to design the network assuming that the sources arégns are absent. A packet of data emitted by the source trans-
least favorable. We refer to the corresponding methodology f86S an equal amount of tokens from the pool to the server buffer
worst-case design and enters the network without delay; in the event that there are
The literature on worst-case design is smaller and more recBRtSUch tokens available, the packet is either discarded or de-
than that dealing with average-case or statistical design. It [ayed until a proper number of tokens are generated. A token
cludes, for example, [1]-[4]. The main results describe the re@erging from the server returns to the pool. The replenishment
tionship among worst-case network performance, as expresBERFeSS turns on when the level of the pool drops belcand
by end-to-end delay or backlog, the parameters of the transnfi8Uts off when the pool is full. o
sion scheduling strategy at the switch output buffers, and thel h€ leaky bucket, as we have described it, serves merely to
parameters of theegulatorswhich are located at the variousidentify, on the basis of the history of the source to which it
is attached, the nonconforming traffic (the traffic arrived in the
. . , absence of tokens). There has been much work [7]-[10] on how
Ma'nuscnpt received March 20, 2000; revised June 6, 2000 a_nd October 67, | h hi ibed d
2000: approved by IEEE/ACM AANSACTIONS ONNETWORKING Editor G. de 10 Select théo, p) parameters so as to achieve a prescribed data
Veciana. discard rate when the source is described by some canonical
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same time to assign tl{e, p) parameters as parsimoniously as  b.(p)
possible. These two constraints together can be summarized by
saying tha{o, p) is to be located on the burstiness curve of the A(0,T)
source. A similar result has independently been found in [11].
We proceed to describe the notion of the burstiness curve, first
proposed in [1].

Let «; be the instantaneous rate of the source at tintehe burstiness curve
function {a, }, called a “message,” is a real, positive function.
We assume that the rate function is bounded Dus

ar < Py 1)

wherep,; is the maximum rate. This is a valid assumption in o
many applications; link capacity always imposes an upper limit
on rate.

The cumulative traffic in the time interv@d, ¢] is defined by

*

Pr Pur p

A(s, t) = / a, dr. (2) Fig. 1.

Since the rate is bounded, the cumulative traffic forms a contin-
uous function. We assume throughout that the message belo
to the class ofinear envelope process§k?]; that is, that there
existo andp (possibly unknown) such that

Intersection of the burstiness curve and the maximum delay constraint.

The following proposition states that the burstiness curve is
otone.

Proposition 2: For fixedp, burstiness is continuous and non-

decreasing in time. In other words, for givéa, } andp, and

A(s, t) <6+ p(t — 3). @ T'<T

This constraint imposes an upper bound on burst length—a br(p) < br(p). (8)
burst being a block of data generated concurrently and instan-

) . Proof: The continuity of burstiness curve resides on the
taneously. Constraints (1) and (3) together yield

continuity of A(s, t) and(¢ — s)p. The definition of burstiness

Als. £) < mi b 54 50— _ 4) Ccurve produces a nondecreasingdp). O
(s, &) < min{pn(t =), 7 4 4(t = 5)} @ An immediate result of this proposition is that for any fixed
Furthermore, we assume there exjts j such that p, the sequencébr(p)} is convergent (possibly to infinity).
Proposition 3: For a traffic satisfying (1) and (5), i > p,
Als, B) 5 then
0
t—s
t— o0 (5) Jim br(p) < oo )
uniformly in s > 0. and if p < p, then

Transmitting this message through a buffered server with a im b _ 10
constant service rate, the unfinished or backlogged traffic in Jim br(p) = o0 (10)

the buffer at timet is given by whereg is defined in (5).

/t( ) Proof: Suppose > p. Choose: so thatp + ¢ — p < 0.
ar — p

dr = sup [A(s, ) = (t = s)Pl-  SinceA(s, t)/(t — s) — p uniformly in s ast — oo, there
0<s<t

Qi(p) = sup
0<s<t .
- (6) existsT such that for — s > 7

Definition 1 ([1], [6]): The burstiness curve for the traffig Als, )
in the interval[0, T7, is the graph obr(p) versusp where

br(p) = sup Qu(p) = sup sup [A(s, t)—(t—s)p]. (7) In this case
0<t<T 0<t<T 0<s<t
A(s, ) —(t—s)p<(p+e—p)(t—s)<0. (12)

<p-te (12)
t—s

The burstinesdr(p) is thus the maximum backlog when
{a:} is submitted to a deterministic sever of rateA typical It follows that
burstiness curve is depicted in Fig. 1.

The following proposition follows from the definition of the br(p) = sup sup [A(s, t) = (t — s)p]
burstiness curve. OSI=T 0=o=t

Proposition 1 [Low and Varaiya]: Given the rate function =S swp [Als, 1) — (E= )]
at, t € [0, T, the burstiness curve is a continuous convex de- < p;{; o (13)

creasing function defined in the intenl p,s], with b7 (0) =
A(0, T) andbr(ppr) = 0. uniformly in 7'.
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Now supposey < p. We knowbr(p) > A(0, T) — Tp. FinFig. 1. The solutions which are tight, in the sense defined
Chooser to satisfy A(0, T) > (p — ¢)T for T > 7. Then above, form the lower boundary of that region. Within this
br(p) > (p—p—e)T forT > 7.Choosing: so thatp—p—ec > 0 restricted feasible domain we select, as our target, the point
completes the proof. O with minimal p; that is, the point with coordinates;., o7.,

Starting from the concept of minimum envelope rate, Chamgrresponding to the leaky buckéty., p%.). It is needless to
[12] arrives at a similar result. In [12], it has been proved thatay that a sophisticated call admission control (CAC) procedure
for a single queue and a work-conserving server, if the minimuocould make use of the entire feasible part of the burstiness
envelope rate of a process is smaller than the link capacity, theve, selecting a preferred operating point. Such a CAC
queuing delay is bounded; conversely, if the minimum envelopégorithm might take either network congestion or pricing
rate is larger than the capacity, the delay is unbounded. Sindet® consideration. However, we continue with the minimum
uniform convergence is assumed in (5), the minimum envelopandwidth.
rate is identical to the mean rate [12]; hence, using a burstines©ur goal, then, is to devise an adaptive recursive approach

approach, Proposition 3 justifies the result of [12]. to estimating (o7, p%) for sessions with unknown traffic
descriptors—4’ being the length of the observation interval. We
lll. LEAKY-BUCKET DESIGN—PROBLEM FORMULATION assume that the peak raig; is given, and thus that

Our convention, in referring to the parameterization p)
of the leaky bucket, is to reserve the first coordinater the o < pmDyr. (16)
size of the token pool and the second coordingia the token
generation rate. The regulator will be lossless, when applied_to. . _ ) )
a source with burstiness curbg( - ), if and only if for a given This helps to limit the domain over which a search is to be per-

token replenishment rage formed. _ _
Our estimate, of course, will depend up@h Notice (by

Proposition 2) thawv ., p}. are nondecreasing i and thus
convergent (possibly to infinity) in the limit of largé’. By

) ) .. Proposition 3, it is desirable that, > p, wherep is the
Our problem, given a source whose behavior and statistics fgy.run mean rate of the source. Unfortunately, this property
unknown, is to set the parameters of the corresponding legky, ot satisfied in general. The following lemma asserts that if a
bucket recursively. An algorithm which solves the problem isqrtain lower bound to the burstinessgagxists, therp?. > 7
described in the next section; here we describe the additiogg sufficiently large values of.

constraints imposed updia, p) SO as to ensure that the target | emma 1: 1f there exists: such thath, () > pDyr, then
leaky bucket is unique. limy oo p7 > .

o > br(p). (14)

The first such constraint iightnessthe leaky buckefo, p) Proof: Since the burstiness is nondecreasing in time,
being said to be tight relative to the source with burstiness CUNES) — 5Dy, > 0 for T > 7. Note thatby(p) — pDy
br(-)ifandonlyifo = br(p). Tight designs are economical ingecreases witp andbg (%) —_pi}DM —0. 0

terms of the resources allocated to individual sessions in a netyotice thatbr(p), for given{a, }, can be estimated by calcu-

work where such allocations are based on worst-case behavigfing the maximum backlog in a single-server queue with input
see also [11]. Tight designs are also responsive, in the sense y&% and service ratg. Such estimates are used frequently in
even small decrements in one of both parameters can have - merical work reported below.

vorable impact on performance when the network is congested.
We add a second constraint, in the form of an inequality. Con-
sider, for instance, a network in which access to the nodal output IV. AN ITERATIVE ALGORITHM

buffers is mediated by generalized processor sharing (GPS) of, this section, we propose an iterative technique to ascertain

one of its nonpreemptive variants. A session is said tst@kle e harameters of a leaky bucket. The output of the source is
in this connection [6] if the correspor_ldlng_ GPS coeff|(_:|ent iStored forT” seconds (the adaptation period) and the token gen-
at least as large as the token generauo_n pgtethe associated gration rate and the token pool size are determined so that the
leaky bucket. In this case, the connection is contemplated asqesponding leaky bucket is tight. The objective is to solve
deterministic-server queue with buffer size(the size of the o equatiorhr(p) — pDys = 0. There exist various techniques
token pool) and service ragein fact, the model is approximate_to solve such a problem. Here, we propose an iterative algo-

and conservative, the backlog in the single-server queue formifig m, pased on intersecting the burstiness curve and the line
an upper bound on the end-to-end backlog in the session. This_ pDys.

being so, it is reasonable to require that Choosep; andp» with p; > po. For a server with the service

ratep;, find the maximum backlog; . Repeat it for the service
o< pDy (15)  ratep, and obtains,. The line crossing the two pointg; , o;)
and(p2, o2) in the p—o plane intersects the line = pD,, at
whereD,, is an upper bound on the maximal end-to-end delaypoint with rateps. Next, inject the stored data into a queue
deemed acceptable to the source. with the service ratez and find the correspondings. Con-
The two inequality constraints taken together amount tmue this process by connectifg, o2) and(ps, o3) and inter-
br(p) < o < pDy,. This corresponds to the region marked asecting withc = pDj,. This procedure converges to the point
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Fig. 2. lIterative procedure converging(e., o).
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Thus, for anyp; andp; 1

_TiT %l o (22)
Pi — Pi—1
From the iteration (17), we arrive at
a; — Dyp;
lpit1 — pil = g —o1 | (23)
D]\l -
Pi — Pi—1
Using (22) yields
loi — Dagpil
il — pi] > ————11 24
lpit1 — pil = Dy+T (24)

Since the sequendg; } is convergentjo; — Dysp;| — 0, and
hencep; — pi., 0; — o7

Case 2:p; € R: In this caseps belongs to eithel or
‘R. Here, the set of rate indices is separated into two subsets
containing the indices of the rates®and L. If p; € R, then
all the rates with the indices = 3K, K = 1,2, ... arein

(p%, o), the cross section of the burstiness curve and the delay!f #2 € £, then all the rates with the indicés= 3K — 1,

line in Fig. 2. The algorithm is specified by the iterations

Oi—1pPi—2 — 03—20i—1

;= 17
P Drn(pi—2 — pi—1) — (0i—2 — 0i—1) an
;= sup sup [A(s, t)— (t— s)pi] (18)
0<t<T 0<s<t
Define
RE {p|py <p<pu (19)
L2 {p|0<p< o). (20)

R and L are the intervals to the right and to the left of the op-

timum pointp7..

Lemma 2: Let p; andp, be the initializing service rates; then

fori =23, ...
1) if p,—1 € L andp; € R, thenp; 11 € R andp; 1 < p;;
2) if p;_1 € Randp; € £,thenp;y; € Randp;y1 < pi—1;
3) if pi_1, pi € L, thenp;,; € £ andmax{p;_1, p;i} <
Pit+1;
4) if Pi—1, Pi € R, thean_l e L.

=1, 2, ...areinL. In both cases, the indices of two adjacent
rates inL are separated by 3.

From parts 1 and 2 in Lemma 2, for, p; € R andi > j we
havep; < p; and therefore the subsequerge | p; € R} is
convergent. The limit is represented hy.

Letp,, pitrs € L. Note thatp; is formed fromp;_; € R and
pi—2 € R, and similarlyp, 3 is formed fromp;; € R and
pi+2 € R. Since the burstiness curve is convex and decreasing,
the slope of the line connectin@; 1, 0s+1) and(p;+2, 0i12)
is larger than the slope of the line connectipg 2, o;_2) and
(pi—1, 0s—1). This means thas; < p;43 < p%. Thus, we con-
clude that ifp;, p; € £ with ¢ > j, thenp; < p; < ph and
hence the subsequenfe; | p; € £} is convergent. The limit
Is represented by;.

We show thatp, = p; = p}.. Consider the contrary. Let
pu > p1- 1T S0, there is no point inside the intenjak, p,] that
can be reached by (17) and (18). We show that this is not true.

Since{p; | pi € R} is convergent, for any fixed, there
existsp,_1 € R andp; € £ such thatp,_; < p, + . Define
61 = pi_1—p;andéy = o;—o;_ andleto;, 1 Dpy—o; 1 = .
Notice thats; — p, — g, fori — oc. Similarly, 62 — o; — oy,
fori — oo, andg8 — p,Dys — oy, @ — oo, Whereo,, ando; are

a decreasing convex function definedin p,,] and thatD,,; >
0 O

Theorem 1: The iterative technique proposedin (17) and (18) pit1

converges tdp?., o).
Proof: It is assumed in the algorithm that > p.. We
consider two cases.

(17), it can be shown that

B61 < pot
P e e
Dprby + 62 — ’

B61
Dpéy + 627

Lete — O to arrive atp,41 < p,. From part 2 of Lemma 2,
sincep;—1 € R andp; € L, infact, p* < p;41 < pu, Which is

=pi_1 — (25)

Case 1:p; € L: Sincep; is larger tharp,, from part 3 of contradictory.

Lemma 2, for: > j > 2, we havep; < p; < p}., and hence
{p:} is convergent. We now prove that, in fact, the convergence

is to p¥..

Thusp, = pi, and sincep, € R andp; € L, we have
=pi = pr- O
In the present section, we have assumed Thakeconds of

Define-(p) = dbr(p)/dp. Since the burstiness curve is a1, js stored and repeatedly used to estimate the crossing point

continuous convex decreasing functionpofve have

max [o7(p)] = |07 (0)] =T (21)

of the burstiness curve and the lime= pD,,. During this phase
of adaptation, traffic transmission must be frozen. Although it
might work for nonreal-time data, it will cause data clipping in
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real-time traffics. Thus, an issue of concern is the method that Proof: The proof is straightforward from Proposition 4
one should use to select an appropriateéOn the one hand]” and (31). O
should be large enough to capture the whole burstiness behavioFhis proposition indicates that fat > 77, (5., pk. ) carries
of traffic. On the other hand, lard€ introduces delay in the all the necessary information containedin7”] for computing
burstiness estimator. Hence, a tradeoff should be placed g, p%.). To see this, note that

order; one might sef’ to a minimal value and enlarge it as the

burstiness surpasses a prescribed threshold, or use an elaborate Qr(t; pr) = Qr(t; p7) + Qrr(t; p7) (34)
cost function to arrive at an appropriate resolution. Furthermore, N . .
T is also related to the maximum deldy,;. We will discuss whereQrr(t; o) for T < t < Tis defined as

shortly that a largeD,; requires a larg€’ for convergence; in Q £ 05 = sup [A

: ees 1 (2 = sup s, t)—(t —s)p] 35
fact, the burstiness curve converges faster along a line with a ot 7) ogsgt[ (5 8) = ( )7) (33)
small Dyy.

. . .
Nonetheless, choosing is a critical issue that will affect To get the burstiness;. at time’, we should solve

the performance of the algorithm. In the following section, we ok = sup Qr(t; pi)
]

will propose an on-line estimator of burstiness which can be 0<t<T
applied to both real-time and nonreal-time traffics. The on-line = sup Qp(t; p7)V sup Qpr(t; p7) (36)
structure of the algorithm simplifies the selectior{tdénd averts O=<t=T" T'=t=T
the necessity of storing a frozen window of traffic. wherea V b is defined as
V. DYNAMICS OF THE OPTIMUM POINT aV b= max{a, b}. (37)

In the present section, we study the evolution of the optimumsing Proposition 5 and (31), we have
point (p%., o) as a function off". The optimum point at time '

T is the solution of the following set of equations sup Qr(t; pr)< sup Qri(t; p7)V sup  Qrir(t; pr).
0<t<T T o<t<T T/ <t<T
b= swp sup [Als, )~ (t—s)p}]  (26) o (38)
0<t<T 0<s<t We now distinguish two cases.
O'; IP;DJW- (27) Case I
In the following proposition, we show that the optimum rate S Qrr(t; o) < iy Qr(t; p). (39)
p5 and the buffer size}. are nondecreasing functions of time. T T
Proposition 4: ForZ” < T we have From (38), we get
* * su t; pr) < su (t; pr). 40
o S 07 (29 ysing Proposition 4, we have
Proof: Using Proposition 2, for alp € [0, pas], we have sup OQpi(t; ph) < sup Orlts ph)- (41)
br(p) 2 b () (30) s
T(p) = br/(p).
Inequalities (40) and (41) yield
Note that bothir(p) and b1 (p) are decreasing functions of . .
p (see Proposition 1). Represent by, p%.) the intersection S Qr(t; p1v) = S Qr(t; p7).- (42)

of br(p) and the linec = pDy,. Define (o7, pk.) simi-

larly. Sincebr(p) is an upper bound td7(p), the proof is This means that the maximum backlog of data in the interval

complete. O [TV, T]is smaller than the burstiness computefirZ”]. Thus,
Remark: Sincep? < par, the sequencép?.} is convergent. the burstiness curve is constant in the intef@al 7).

Let Q7 (t; p) be defined as the queue length for a single serverCase II:

queue with service ratg, i.e. . .
sup Qpizr(t; pr) > sup Qp(t; ppr).  (43)

Qr(t; p) = sup [A(s, t) — (t—s)p], fort<T. (31) rstst ost<T’
0<s<t This means that the trajectory of traffic, generated in the interval
Then [T7, T], has increased the maximum backlog beyond its pre-
vious limit. Then, from (36) and Proposition 5, we have
oy = sup Qrlt; pp). (32)
0<t<T sup Qr(t; pr) = sup Qrr(t pr). (44)

. . _ . " 0<t=T st
Using this definition, we have the following proposition.
Proposition 5: ForZ” < T, we have Thus, it can be seen that the optimum pdis., p%) only de-
pends on(a}., p¥) and the maximum queue length in the in-

Qr/(t; p1v) 2 Qri(t; pT)- (33) terval[T”, T1.
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A0, 7) Note that this case only happensiif> p*. This means that the
input rate must be larger than the service rate; otherwise backlog
will not grow. Sincet is a point of increase for;, the backlog
at time¢ should be equal te}, i.e.

o of = Qu(t; pf). (53)
/ o From (52) and (53), we get
/ U;k+dt — oy =Q(t; p:+dt) — Qu(t; py) + (ar — p:-l—dt) dt
=(t = S)(Piyar — p7) + (@ — piyar) di.
Now dividing the two sides byt and lettingdt — 0, we have
t

T

St

o = (t = 3)p; + (ar — pf) (54)

and the proof is complete. O
In summary, the dynamics of the optimum point can be ex-
to the point§6‘?ssed using a finite state machine (FSM) with two states 0 and
h 1. Whilein State O (point of freeze), the optimum pdinf, p;)
is constant and does not change. In State 1 (point of increase),
the dynamics of the optimum point is abided by the differen-
tial equation (54). It is straightforward to see that the solution to

Fig. 3. Busy cycle containing

The two cases above correspond, respectively,
freezeandincrease While in freeze, there exist&” > 0 suc
that(ot, 57 PTos7) = (o7, p7). In the state of increase, for
anyéT > 0, oy s > o, and similarlyp?. , s > p7-.

Theorem 2: The dynamics of the optimum poift;, p;) .
can be represented by the following differential equations. 1154) i
is a point of freeze ot = Dy = Dy

6F =Dyt =0.

If ¢ is & point of increase VI. REFLECTION MAPPING

6 = Dypp = (t—5¢) + (ar — pf) (46)  The technique can also be formulated in terms of the concept
where s; is the beginning of the busy cycle containitdsee _Of reflection mapping [13]. Reflection mapping has begn us_ed
Fig. 3). in [1.3] to formulate flow controllers and to establish their opti-

Proof: Let mality. . . o . o
For a given process;, its reflection in the time varying in-
T =t (47) tervall, = [ay, B¢] is defined as
T =t+ dt. (48) @ Al — (56)

The two cases above correspond, respectively, to the foIIowi\glvg] erel
t

. andwu; are chosen such that
two instances.

s oy < qr X B

Case I: . )
e fy- = ug- = 0 and/, (respectivelyu,) increases only
Tipar =04 (49) wheng, = oy (respectivelyg = 5).
Prvar =P} (50) ¢ andu, are called théower boundary procesand theupper
boundary processespectively. Here, we use single boundary
Therefore, we have reflection mapping (eithet; = —oc or 3; = +0.)
ce s It can be shown that for a case in which only the lower
ot = pe =0 (51) boundary is present){ = +oc), we have
Case II: 4 = min{— ogfgt(xs + ay), 0} (57)
O—:(-i—dt = t<t§g£)+dt Qr, tae(t'; p:(+dt)
= swp  swp [A(s ) = (¢ — $)ptyul- g =z + Imn{ Og;fét(xs + ), O} . (58)

1<t/ <t+4dt 0<s<t/ L. . .
Similarly, if only the upper boundary is present (= —o)
For dt very small, we have

* * = e s — 35 B 0 59
Otqar = 0<§g>+dt[A(s, tdt) — (t+dt — s)pt,a] Ut = max {Oigr;t(w Bs) } (59)
- oﬁjgidt[A(S’ t) o di = (t B S)pH_dt P dt] gt = Ty — 1Inax {os<u2 (xs - /35)7 0} ) (60)
* * <s<t
= sup [A(s, t) = (t — $)pipar] + (@ — pipqr) dt . . .
0<s<t+dt We use two properties of the reflection mapping, namely

=Qu(t; pyyar) + (ar — pyay) dt. (52) causalityandminimality [13].
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1) Causality: (46) can be substituted with a difference equation. In the fol-
For anys > 0, the reflection of the process at timelowing section, we state the proposed on-line algorithm.
s+t with ¢t > 0 depends only on the value of the process
from s~ onward, neglecting the entire past of the process VII. THE ON-LINE ALGORITHM
befores—.
2) Minimality:
For givenl, = [«4, B3], the boundary process (re-
spectively/;) is the smallest process that reflegisinto

Let time be decomposed into nonoverlapping intervals of
A seconds each. The optimum poiat’, ;) is computed at
the end of each interval. The input traffic is introduced to a
constant-rate server and the backlog is monitored and used to

L . . . , modify the value of the optimum point. The following steps
Theorem 3:The burstiness7. given in (55) is an upper ¢, mmarize the algorithm.

boundary process for the reflection of the backlog process,l) Initialize the algorithm td = 0, 7 = 0, 0 = 0, Q(f) =
downward at zero. 05 -0 , ,
y Ot — Y

Proof: Define 2) Update the time index as
2(t; p) = A(0, t) — pt. (61) F—t 4 A 67)

i <t<Ti . . .
Backlog attimed < ¢ < T'is End the algorithm it > 7, else continue,

Qr(t; p) = Oigrét[w(t; p) — x(s; p)] Q(t) = max{A(5;. t) — (t — 5,)p%. O} (68)
=z(t; p) — og;fgtx(s; p). (62) If Q) =0= 5 =t

If < of 2 ; El 1
Using (58), we note thaf)+(¢; p) is the reflection ofz(¢; p) 8) IfQ(t) < o7, goto Step 2 (State 0); Else (State 1),

upward at zero. . A3, t) (69)
Now find the reflection ofQr(¢; p%) downward at zero. Pt — 6+ Dy
From the definition of reflection mapping, we have of =pf Dy (70)
Qr(t; pi) —w <0 (63) Go to Step 2.

Note that the parameteP,; could be treated generi-

whereu, is the upper boundary process. Thus cally—this might suggest that the algorithm be applied to

Qr(t; ) < . (64) various delay lines and the whole burstiness curve be approxi-
mated by interconnecting the induced points.
From (59), we get The adaptation tim@ in Step 2 is a parameter of design. Note
w = sup Qr(s; pih). (65) that the flow of traffic is not interrupted in this technique dfid

0<s<t only acts as a means to end the algorithm and can be very large.
A largeT captures the burstiness of the traffic in a more reliable

Using the assumption that is nondecreasing, for evefly, we '
framework. For all that, the parameters of the regulator—if the

have
burstiness is used to assign a regulator to the traffic—can be
or = sup Qr(t; p7) = ur. (66) floating and might change as the time advances. In practice,
ost<T however, one might be willing to freeze the regulator and mark

or even stop the nonconforming traffic. Hence, a mechanism

O

Theorem 3 suggests that all properties of the reflection magould be employed to select an appropri&iteNote that this
ping—say, minimality and causality—can be extended to tteight be fragile and inaccurate—a fairly regular source might
concept of burstiness. Minimality af; indicates that;. is the happen to become bursty in the future. If the algorithm ends
smallest process that reflecds(¢; pi-) below zero. This aligns before such an impetuous behavior of the source is activated,
with our objective, assigning ﬂ'(er’ p) parameters as parsimo_the burstiness of the data will be unseen and Uncaptured. To
niously as possible—the minimal upper-boundary process céfeviate the problem one might come up with a rigorous rule of
responds to a tight token pool size. Furthermore, the bound&gjectingZ’. For instance, the QoS that the user expects can be
process in reflection mapping is causal, meaning that for a givétilized as a prescription to cease the algorithm. The algorithm
us, the upper boundary process for t > s, is independent of could be ended[( is reached) as soon as the QoS is satisfied for
u-, 7 < s. We have implicitly used this property to derive arthe user—the mechanism, however, might not be trivial.
algorithm in Section VII. An alternative would be to monitor the growth of the token

An interesting influence of using the reflection mapping forP0ol size and/or token generation rate. If a regular behavior for
mulation is that the technique might be applied to nondiffereff?e growth of these parameters could be foufigvould be the
tiable processes. This assumption incorporates traffics with fiinimal time at which the convergence of the growth is ratified.
stantaneous bursts in the proposed algorithm. To this end, ¥@ke, for instance, a greedy source transmitting traffic with rate
digitize the time to a fine grid and apply the technique on thaws starting at time zero. Then, the algorithm is always in the
grid. The optimal rate} should be chosen such as to handlBoint of increase and we have
the excess traffic accumulated during the last sampling interval. . tom
Hence, for traffics with sudden bursts, the differential equation Pr = t+ Dy (71)
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dure for the adjustment of a regulator based on a stored fragment
M2 - - T - 1 T - - - of data. The adaptation period was assumed to be large enough
to convey the burstiness behavior of the input traffic. Iterations

were performed on the same observation window and repeated

Ve 1 until a convergence was observed. Therefore, the technique is

1ab i off-line and cannot be applied to real-time traffics. Nonetheless,
a fixed adaptation period cannot characterize the burstiness of a

ey 7 whole trace. Yet, itis applicable to nonreal-time data and can be

used to capture the burstiness of a delay-insensitive traffic. For
nonreal-time traffic, an adjusted regulator can be employed as
a shaper—the nonconforming traffic is delayed and introduced
into the network in a more regular setting. Hence, the technique

ol increasing D, | of Section IV is applied to adjust a regulator to data, and then
the regulator is employed as a shaper with frozen parameters.

02p ] A second contribution of this paper is the on-line algorithm
0 . . s . . s , . . proposed in Section VII. As noted, the technique of Section IV
oo B e P % il fail to catch the burstiness in the traffic outside the adapta-

tion window. The second algorithm proposes a recursive method

Fig. 4. Normalized convergence rate of the algorithm for a greedy source. ¢ capture the burstiness of the whole trace. The procedure starts

) _ ) ) with " = oo and will keep running adaptively to the progress of
Fig. 4 illustrates the plot of;, normalized with respect {or,  the source traffic. Thus, the recursive method can quickly adapt
for various delay bound®),, . Note a hyperbolic increase of they any prospective burstiness in the forthcoming data. The char-
parameter. For this exampl&, can be selected as the time ajcterized leaky-bucket parameters are still useful for network
which pj is sufficiently close tqy,—again the closeness is aprovisioning; the network can use this information to reserve
parameter of design. required resources such as bandwidth and buffers for the intro-

For the traffic of Fig. 4, increasing,, reduces the rate of 4,ced traffic.
convergence of the algorithm. This conclusion can be extendedrpe proposed technique in Section VII can be applied to
to other type of traffic, as well. Recall that the growth rate Qfoth real-time and nonreal-time traffics. For a nonreal-time
the parameters is administered by (69). In [11], the supremymasiic, once the convergence of the algorithm could be con-
of (69) for 3, = 0 has been defined as thteterministic ef- cqjved, the estimated leaky-bucket parameters are frozen. The
fective bandwidtlof the traffic accumulated during the imerVa‘nonconforming traffic is then delayed and injected into the

[0, £]. Note thatin a point of increase, the burstiness of the traffiatwork on a more regular basis. For real-time traffic, however,

changes. In fact, for a timebeing a point of increase the adjustment of the leaky bucket cannot be halted and must
. A5, t) . continue with the burstiness behavior of the projected traffic. In
P e ¥ Dy ool Ps (72) " this case, the algorithm will keep running and the results of the

.. o _ _ _leaky-bucket adjustment are used for source classification and
Hencep; is the deterministic effective bandwidth of the traffiG,etwork resource provisioning. If the setting of the leaky-bucket

calculated in the interv4, ¢]. regulator is frozen at a prescribed time, the nonconforming
data in the ensuing traffic will be tagged and delivered to the
VIII. A PPLICABILITY OF THE ALGORITHM network. The tagged traffic illustrates the burstiness of the

The convergence rate of the algorithm for a nongreedy soug@urce that has not been captured by an earlier adjustment of
is upper bounded by (71). The rate of convergence dependstd® regulator due to a finite adaptation period. It is then up to
the stochastic behavior of source. Roughly speaking, a soutide network to either re-initiate the adaptation of the regulator
illustrating a typical transmission characteristics—such asagd/or provide extra resources for the tagged traffic.
semiperiodic video traffic—will behave nearly like a periodic
source. Hence, for such a source, a hyperbolic growth rate for
of (similarly o7) can be expected. This characteristic might be
exploited to get a measure of adjustment of the regulator to theThe objective is to design a leaky-bucket regulator for the
projected flow. traffic of a given source. The leaky bucket should be designed

On the other hand, a nonreal-time best-effort traffic can isuch as to minimize the token generation rate. The leaky-bucket
troduce an unexpected burstiness growth rate. The burstinesparmeters are determined independent of the state of the net-
such a source might stay low for a very long period of time, avork. The simulation is performed on a real Motion JPEG en-
change in a sudden rush. Due to instantaneous bursts, seleatimted video trace taken from [14]. The trace is a full-length
of 7"might not be trivial. The best-effort nature of a nonreal-timeideo of the movie Jurassic Park and represents the number of
traffic, however, permits application of a buffer to smoothen tHaytes contained in each encoded frame.
burstiness. The trace of the movie for 600 s is depicted in Fig. 5. It is seen

The techniques we have addressed in this paper may fall ithat the input rate is time varying—the maximum and minimum
two categories. In Section 1V, we proposed an iterative procigame sizes are 21099 and 1977, respectively. The burstiness

IX. SIMULATION RESULTS
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Fig. 5. Video trace for ten minutes of the movie Jurassic Park. Fig. 7. Dynamics of the optimum point (burstiness) using the two proposed

techniques for the same trace of the movie Jurassic Park.
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Fig. 6. Burstiness curve for the movie Jurassic Park. The burstiness curve was
computed at the end of each minute of observed data.

Fig. 8. Evolution of the burstiness of the movie Jurassic Park as function of
the maximum delay.
curve for this trace is illustrated in Fig. 6. Here, the time is de-
composed into nonoverlapping snapshots of one minute eacbntrast to the behavior of the optimum rate—the optimum ser-
The burstiness curve is calculated at the end of each snapshdte rate decreases wifD,,. This behavior is in agreement with
We compute the parameters of a leaky bucket using the tilw results obtained in Fig. 4 for a greedy source.
techniques discussed in this paper. In the first technique, we findTo study the effect of” (the adaptation period) in the per-
the crossing point of the burstiness curve with thedine pD,, formance of the algorithm, we simulate a scenario in which the
with D, = 100 ms. Here, the burstiness curve is calculated ortaffic is regulated by a leaky bucket tailored to the burstiness
grid of rates ranging from 0.8 to 5.6 Mb/s with the step size of 48f a traffic for 60, 300, and 600 s of the same trace. The max-
kb/s. For the second technique, we use the algorithm proposmdim delay isDjy; = 150 ms. The leaky bucket is used as a
in Section VII. The results have been shown in Fig. 7. It is seshaper—the excess traffic is queued and smoothened with the
that the two algorithms perform closely. The difference is duate p.. Fig. 9 represents the cumulative excess traffic for dif-
to using a coarse grid for rate; for a finer grid, the dashed liderent values of the adaptation period for a trace of 2000 s of the
approaches the solid line. Note that the algorithm of Section \Bhme movie. Note that for smdll, the burstiness of the source
has a smaller computational cost and can also be applied on lisenot captured thoroughly—a notable amount of data is back-
In Fig. 8, the evolution of the burstiness of the traffic for théogged in the leaky bucket. The volume of the backlogged data
same trace of Jurassic Park has been illustrated for various delagreases with increasifig Fig. 10 illustrates the delay experi-
bounds. Note that the burstiness increases With. This is in enced by the traffic in the leaky bucket. Note that a ldfgmon-
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Fig.10. Delay suffered by the excess traffic in the leaky bucket. The adaptatfypnconforming traffic in the leaky bucket as a function of the adaptation period.
periods arel’ = 60,7 = 300, andT = 600 s.

in Fig. 11. Here, we assume that the on-line algorithm ends in

stitutes a small delay. Inside the network, the delay is bound&d= 1000 s and the traffic is smoothened by the regulator with
by Dy, provided that at least a rate gf. is guaranteed for the frozen parameters. This is in contrast to the proposed policy
traffic. in Section VIII (keep the algorithm running with = ~c for

One can also use Figs. 9 and 10 to examine the performaneal-time traffics) in order to study the behavior of a real-time
of a network composed of a single node serving the traffic regideo traffic regulated by a leaky-bucket shaper. The jitter has
ulated by the designed leaky bucket. Assume a leaky bucket dgen calculated on the last byte of each delayed frame. Fig. 12
erating in a filtering mode (nonconforming traffic is tagged anillustrates the maximum, the mean and the standard deviation
passed to the network). Figs. 9 and 10 can then be interpretédhe jitter versus the adaptation period. Note that the jitter
as the accumulated queue size and delay for the tagged trafficeduced by increasing the adaptation period. An appropriate
in the node. Note again that to obtain an appropriate estimatgitier-removal buffer can be utilized in the receiver to thwart the
the traffic burstiness, one should use a fairly lafge induced jitter in the regulator. For instance, consulting Fig. 12,

To study the QoS of a video trace regulated by the proposked an adaptation period of 20 min (1200 s), a jitter-removal
leaky-bucket estimator, we compute the jitter for the noncobuffer that stores up to two seconds of traffic, can be used to
forming traffic in a regulator, acting as a traffic shaper and tunedert the whole effect of jitter and produce a jitter-free trace.
to the input traffic for a prescribed adaptation period. The resultFinally, we use the leaky-bucket regulator as a filter (noncon-
for an adaptation period dff = 1000 s has been illustrated forming traffic is discarded). The same trace of 2000 s was used
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028 — leaky-bucket parameter assignment should have imposed a con-

straint on the traffic such that the maximum delay incurred was
bounded below a prescribed threshold.

We identified a feasible region in the, p) parameter space
which satisfied both constraints. We further assumed that the
bandwidth was expensive, so that the objective was to select a
point in the feasible region with the smallest bandwidth. This
assumption reduced the problem to intersecting the so-called
burstiness curve with the maximum delay constraint. We used
the term optimum to refer to the intersection point.

An iterative procedure was introduced which converged to
the optimum point without the necessity of forming the whole
burstiness curve. This could drastically reduce the computa-
tional cost. It was proved that the proposed procedure was con-
vergent to the true optimum point.

The dynamics of the optimum point as a function of time was
also studied. It was shown that the evolution of the optimum
Fig. 13. Ratio of the dropped data to the total input traffic for an adaptatiqpoint could be managed by a differential equation. The solution
period of I" = 800 s. to the differential equation was formulated in terms of a two-
state machine. In State 0, the optimum point froze and in State
1, it increased.

The proposed algorithm was also formulated via reflection
mapping. This extended the properties of the reflection map-
ping, such as minimality and causality, to the concept of bursti-
ness and justified our parsimony in selecting the leaky-bucket
parameters.

Finally, we backed up our algorithm by applying it to a real
video trace. The simulation study showed that the algorithm suc-
cessfully begetted the intrinsic burstiness nature of the data and
found an appropriate leaky bucket in an on-line procedure.
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