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Abstract—Mobile edge computing has been considered as a
promising technology to handle computation-intensive and delay-
sensitive tasks in the Internet of Things (IoT) ecosystem such as
smart city and smart tourism. However, due to user mobility,
edge servers with fixed deployment are not flexible enough
to handle time-varying user tasks in hot-spot areas. In this
paper, a novel online unmanned aerial vehicle (UAV)-mounted
edge server dispatching scheme is proposed to provide flexible
mobile-to-mobile edge computing services. UAVs are dispatched
to the appropriate hover locations by geographically merging
tasks into several hot-spot areas. Theoretical analysis guarantees
the worst-case performance bound. Extensive evaluation driven
by real-world mobile requests shows that while maintaining a
good latency fairness, the mobile server dispatching scheme can
serve more UEs as well as achieving a high resource utilization.
Moreover, the hybrid scheme can satisfy even more user demands
while dispatching fewer UAVs with a higher server utilization.

Index Terms—Mobile edge computing, mobile edge server,
online dispatching scheme

I. INTRODUCTION

RECENT years have witnessed the flourish of the Internet
of Things (IoT) techniques to provide real-time analy-

sis for smart cities, intelligent transportation, entertainment
management, etc. To support a lot of devices and process
massive data in time, mobile edge computing (MEC) enables
these latency-sensitive applications by equipping ubiquitous
computation resources close to mobile user equipments (UEs).
Various research topics, e.g., task offloading, caching, and
resource allocation, are all based on the assumption that the
edge servers have been placed already [1]–[3]. How and where
to deploy the edge servers need to be addressed.

Several solutions have been proposed to locate edge servers,
among which, deploying more edge servers to hot-spot areas
outperforms the uniform deployment [4]. Due to user mobility
and dynamic demands, hot-spot areas at the current time may
cool down soon afterward. To serve time-varying crowds,
Yin et al. [5] mapped user clusters to the fixed edge servers
periodically to reduce the infrastructure cost. However, due
to unevenly distributed tasks, some fixed edge servers are
unavoidably overloaded while other servers are idle. Therefore,
techniques such as task migration need to be introduced to
balance the workload among edge servers. This, in turn, results
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in extra communication and signaling overhead, and increases
task latency as the tasks need to be transferred between
servers [6]. On-demand network deployment has been seen as
a promising proposal to serve dynamic hot-spot areas for big
events or disaster. Meanwhile, it can improve the computing
resource utilization with the on-demand provisioning when
compared with the base station (BS) sleeping technologies.

Recently, UAVs have been extensively studied and acknowl-
edged as a feasible way to assist the wireless communication
networks [7]. With the development of UAVs, deploying edge
servers on them draws significant attention due to their flexible
mobility [8]. To overcome the limitations of flight time and
battery power, existing solar power techniques can achieve
28+ continuous flight hours [9]. In addition, UAVs can also
be powered over the tether, which provides unlimited flight
time [10]. Moreover, general commercial UAVs such as DJI
Matrice 600, DJI S900 and Tarot T-18 can take off with 6∼8
kg payloads while heavy lift drones can fly with up to 45 kg
goods such as Hx8 Power XXL. This makes it sufficient for
UAVs to carry a server and hover at specific places to collect
and process the offloaded tasks. Recently, a prototype named
SkyCore was built to support on-demand connectivity [11].
Network functions are softwarized and located in a single-
board light-weight server, which can be directly deployed on
DJI Matrice 600 Pro drones. The synchronization overhead
of inter-UAV communication is reduced by segment-based
routing with the label of the next tunnel segment tagged on
the packets. Real-world experiment shows that mobile edge
servers can not only provide timely services for certain hot-
spot areas but also take advantage of their location flexibility
to deal with the dynamic environment with negligible synchro-
nization overhead.

Most existing work focused on UAV trajectory planning
in which the location of UEs remains unchanged and UAVs
maintain a continuous flight among several fixed UEs [12]–
[14]. The limitation of the existing work lies in either 1)
UE mobility which causes dynamic nonuniform tasks, or 2)
network scalability, i.e., when a large number of UEs offload
tasks, UAV trajectory will be affected by each individual UE,
which is time-consuming and expensive to adjust. Observing
the inefficiency of fixed edge server deployment and the limi-
tation of the current UAV trajectory planning, we are motivated
to investigate how to dispatch UAVs to appropriate hover
locations among time-varying hot-spot areas and associate
mobile UEs with mobile edge servers.

In this paper, mobile-to-mobile edge computing is consid-
ered in which both UEs and edge servers can move around.
UAV-mounted edge servers are employed for flexible edge
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services. Constrained by the limited computation capacity and
communication range, the edge server dispatching problem is
formulated as a variable-sized bin-packing problem with geo-
graphic constraints, which is NP-hard [15]. An online mobile
edge server dispatching scheme is proposed to determine the
hover locations of the mobile edge servers sequentially. With
the gradually increased communication radius, hot-spot areas
are identified based on the task intensity. The performance
of the proposed scheme is theoretically analyzed with the
worst-case performance guarantee. A hybrid scheme is also
evaluated in which UAVs are dispatched to assist the fixed BSs
with task offloading. Simulation results show that the mobile
dispatching scheme excels at handling dynamic nonuniformly
distributed tasks and maintaining a good task latency fairness.
When compared with the fixed server deployment, the number
of served UEs increases 59% on average. The server utilization
achieves 98% during the daytime. In addition, the hybrid
scheme can satisfy even more demands while dispatching
fewer UAVs with a better server utilization.

The rest of the paper is organized as follows. The related
work is introduced in Section II. The motivation for deploying
mobile edge servers is illustrated in Section III. The com-
munication model and the computation model are introduced
in Section IV. In Section V, the mobile dispatching problem
is formulated and an online mobile edge server dispatching
scheme is proposed with the performance guarantee. The
performance of the proposed algorithm and the impact of
key parameters are evaluated and illustrated in Section VI.
Section VII presents the conclusion and future work.

II. RELATED WORK

A. Fixed edge server placement
Most existing work in MEC assumed that edge servers

are deployed following a certain distribution such as uniform
distribution [1]–[3]. How to locate edge servers has been
heavily studied, which plays an important role in improving
the quality of service (QoS). Li et al. [4] compared the
performance of two different edge server deployment schemes,
i.e., uniform distribution and nonuniform distribution based on
UE density. Evaluation results showed that UE distribution-
aware server deployment can achieve a better performance
than the uniform distribution. Facing dynamic crowds, Yin
et al. [5] first used farthest point clustering to group UEs and
calculated the ideal locations of edge servers in each cluster by
minimizing the total communication distance. Wang et al. [16]
located the edge servers by solving the mixed integer pro-
gramming problem. Lai et al. [17] deployed edge servers and
maximized the number of served UEs through lexicographic
goal programming. However, existing optimization problems
are formulated based on selected BS locations among which
edge servers are deployed.

Moreover, UE mobility can not only affect mobility man-
agement in mobile networks but also influence the network
workload dynamically. Ceselli et al. [18] located cloudlet
facilities among the candidate locations and introduced VM
migration to re-balance the system. Locations of APs and
cloudlets are determined based on the fixed locations of
aggregation nodes.

Due to dynamic nonuniformly distributed tasks, the limi-
tations of the fixed deployment are: 1) multi-hop communi-
cations are needed if the available edge servers are not close
enough to mobile UEs, and 2) computation resources cannot
be fully utilized at off-peak hours.

B. Mobile edge server trajectory planning

To tackle the limitations of the fixed server deployment,
extensive efforts have been dedicated to deploying edge servers
on UAVs. Considering the flexible movement of UAVs, Cheng
et al. [8] designed the architecture of UAV-BS integrated
mobile edge network for road safety scenarios. UAVs are dis-
patched to the area of interest and help process computation-
intensive tasks. Zhou et al. [13] and Cheng et al. [14] de-
termined the UAV trajectory by solving the mixed-integer
non-convex problem with the objective of computation rate
maximization and communication rate maximization, respec-
tively. Similarly, Jeong et al. [12] jointly optimized the UAV
trajectory as well as the bit allocation for both communication
and computation purposes. The formulated energy consump-
tion minimization problem is then solved by successive convex
approximation. Hence, mobile edge servers take advantage of
handling dynamic nonuniform tasks and avoiding the waste of
computation resources. However, most existing work does not
consider the time and space-varying features of user tasks.
Thus, this paper investigates how to dispatch UAV-mounted
edge servers to dynamic hot-spot areas.

III. MOTIVATION

A. Tencent trace description

Real-time mobile request distribution is of great importance
in MEC. It can not only provide us with the geographic
information of a single mobile request but also a macroscopic
view of the dynamic changes. Benefited from the development
of GPS-enabled devices, mobile UEs are offered geo-spatial
and point of interest (POI)-related services.

Tencent provides real-time Tencent user density data
(RTUD) based on the collected geographic information when
UEs are using its services1. According to the Tencent Big Data
report, more than 1.3 billion monthly active devices are using
Tencent location-based applications, e.g., WeChat and QQ, in
2018 [19]. In RTUD traces, UEs are dynamically distributed
due to UE mobility. The device location (latitude, longitude,
and region ID) and query time slot index are provided for each
UE request. Then, the intensity of the geo-spatial requests can
be derived from the traces. The time interval of the query time
slot is 5 min.

B. Dynamic task requests

With the idea of IoT, smart theme park integrates distributed
sensors and mobile devices to enhance the user experience
such as UAV-assisted interactive attractions, traffic congestion
prediction, tour design and finding missing people. Happy
Valley, a theme park in Beijing, is selected as the focused

1The geographic information of the mobile requests can be found at https:
//heat.qq.com/heatmap.php.
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(a) 9:30 AM. (b) 3:30 PM. (c) 9:30 PM.

Fig. 1: Tencent requests distribution on Oct. 1st, 2018 (a national holiday in China) at Happy Valley, Beijing.
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Fig. 2: System model of MEC with UAV-mounted edge
servers.

scenario in this paper due to the following features: 1) the
size of the park is reasonable (1, 000 m × 500 m)—neither
too small that all requests can be covered by one BS and
thus multiple UAVs are not needed, nor too large so that
UAVs cannot reach specific locations on time, and 2) dynamic
requests—UEs have obvious group effect and form different
dense crowds with bursty requests over time. As shown in
Fig. 1, dynamic requests are nonuniformly distributed in the
park on Oct. 1st, 2018. UEs keep forming hot-spot areas at
different places. In the morning, people gather at the entrance
and then enter the park to take amusement rides. At night,
people gradually exit the park and it is nearly empty.

As shown in Fig. 2, the locations of the fixed LTE BSs
are mostly around the theme park2. In MEC, if the edge
server is deployed at each BS, it will result in an unbalanced
workload among BSs and fewer served UEs. When UEs
offload tasks to edge servers, some BSs are fully utilized such
as the ones located near the entrance (BS 1, BS 2 and BS
3). However, other BSs located along the road outside the
park are underloaded and thus their computation resources are
wasted. Even with a better server placement scheme, the fixed
deployment scheme still faces the problem of computation
resource inefficiency in a long run. In contrast, mobile edge
servers can be dispatched to handle burst requests in hot-spot
areas. With fewer requests, some UAVs can stay on while
others can fly back to the warehouse for maintenance.

How to dispatch mobile edge servers effectively and ef-
ficiently interests us most. Mobile edge servers can be dis-
patched closer to the crowds to serve UEs as much as possible,
and meanwhile, take advantage of their flexibility to increase

2The location of the fixed LTE BSs in real world can be obtained from
https://opencellid.org.

TABLE I: Definition and notation.

Symbol Definition and notation
N Set of mobile edge servers, and N = |N |
M Set of geo-spatial tasks, and M = |M|
(un, vn, 0) Coordinates of task m, m ∈ M
(um, vm, h) Coordinates of mobile edge server n, n ∈ N , at height h

dmn Distance between server n and task m

γ0 Reference SNR at a distance of 1 m

N0 Noise power

A Data size of each task

B(dmn)
Data transmission rate which depends on the distance
between mobile UEs and edge servers

xmn
Binary variable: task m is served by mobile edge server
n (xmn = 1) or not (xmn = 0), m ∈ M, n ∈ N

Sn Set of tasks assigned to mobile edge server n, n ∈ N

rn
Radius of the coverage of mobile edge server n,
rmin ≤ rn ≤ rmax, n ∈ N

∆r Increment of the radius r

P Computation intensity of each task

QE Computation capacity of a mobile edge server in cycles

φ Latency deadline of each task

ϕ Total budget for mobile edge servers

server utilization.

IV. SYSTEM MODEL

In this section, the communication and computation models
of MEC are introduced. The major notations used in this paper
are summarized in Table I. As shown in Fig. 2, BSs and UAVs
are all equipped with edge servers. Generally, UE m ∈ M
(with |M| = M ) can offload its computing task to edge server
n ∈ N (with |N | = N ) through either the fixed BSs or access
points on UAVs. Tasks at the same location will be processed
one by one. If no confusion arises, we will use m to denote
tasks in the following statement instead of UEs.

A. Communication model

Let (un, vn, h) and (um, vm, 0) denote the coordinates of
mobile edge server n and task m, respectively. Mobile servers
are assumed to hover at the same height h and can adjust
the communication coverage through their antenna angle [20].
The distance between server n and task m can be calculated
as

dmn = ∥(un, vn, h)− (um, vm, 0)∥,
=

√
(un − um)2 + (vn − vm)2 + h2,

(1)
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where ∥·∥ is the Euclidean norm.
The path loss of UAV channel can be modeled as

PLmn = PL(d0) + 10ςlog
(
dmn

d0

)
,m ∈M, n ∈ N , (2)

where ς is the path-loss exponent by jointly considering
UAV line-of-sight (LoS) and non-LoS (NLoS) channel, and
PL(d0) is the path loss at the reference distance d0. The data
transmission rate can be obtained by

B(dmn) = B0log(1 +
PTX|hmn|2

N0
), (3)

where B0 is the channel bandwidth, PTX is the transmission
power of UEs, N0 is the noise power, and hmn is the
total channel gain which consists of pathloss, the effect of
shadowing and the effect of multipath fast fading.

B. Computation model

Let xmn denote whether task m is offloaded to edge server
n (xmn = 1) or not (xmn = 0). As the computation capacity
of each edge server is limited, if task m is offloaded to edge
server n, the task latency DOffload

m consists of the time for
communication DComm.

m , i.e., sending the task and receiving
the results, and the computation latency DComp.

m , which can
be calculated as

DOffload
m = DComm.

m +DComp.
m

=
A

B(dmn)
+

ω

QE
,

(4)

where A/B(dmn) is the communication latency, and B(dmn)
is the data transmission rate with the distance dmn. Assume
that each task has the same data size A. This work can be
extended to variable-sized tasks as the tasks can be divided
into small tasks equally. ω/QE is the queuing latency of
task offloading, ω = P + P ′ is the computation workload
P (in CPU cycles) of task m plus the current workload P ′

of the assigned edge server n, and QE is the CPU processing
capacity (in CPU cycles/s) of the edge server. Several VMs
are deployed at each edge server. If the number of offloaded
tasks exceeds the number of VMs, tasks will be queued up
and executed in a first-come-first-serve (FCFS) manner.

V. ONLINE MOBILE SERVER DISPATCHING SCHEME

In this section, an efficient online UAV-mounted edge server
dispatching scheme is introduced to provide mobile-to-mobile
services. The optimization problem is first formulated as the
variable-sized bin-packing problem with the geographic con-
straint. Then, inspired by the heap-map generation, a greedy
dispatching algorithm is proposed to determine the hover
locations of the edge servers in an online fashion. Theoretical
analysis is also provided with the worst-case performance
guarantee.

A. Problem formulation

Considering the dynamic crowds and nonuniform distribu-
tion of task requests, mobile edge servers can be deployed
flexibly to provide offloading services timely and spatially.
The hover locations of the mobile edge servers need to be
coordinated with time-varying task requests. Intuitively, more
UAV-mounted edge servers should be dispatched to serve the
dense crowds with more requests. Our purpose is to serve
tasks as many as possible with a given task deadline. If we
assign all tasks to one server, although the server facility cost
is the least, the number of served tasks is limited by the
computation capacity and thus the server cannot finish all tasks
on time. If we assign tasks to several servers inefficiently, the
deployed computation resources of some servers are wasted.
This features items (tasks) and bins (UAV-mounted servers),
making it feasible to be formulated as a bin-packing problem.

Bin-packing problems have been widely studied to associate
a set of items to a set of bins. In the original bin-packing
problem, the goal is to minimize the number of used bins
or alternatively maximize the pre-defined profit with a fixed
number of bins. In the server dispatching problem, mobile
servers are dispatched based on task distribution and their
profits can be defined as the number of served tasks given
a task deadline. We aim to determine the hover locations
and the corresponding communication range of mobile edge
servers such that the number of served tasks is maximized.
With the objective of maximizing the number of served tasks
at each time slot, a variable-sized bin-packing problem with
the geographic constraint (Geo-VBP) can be formulated as
follows

max
((un,vn,h),rn)

∑
n∈N

∑
m∈M

xmn, (5)

s.t. xmn ∈ {0, 1},∀m ∈M, ∀n ∈ N , (6)
rmin ≤ rn ≤ rmax,∀n ∈ N , (7)
Sn = {m ∈M : xmn = 1},∀n ∈ N , (8)∑
n∈N

1{|Sn| > 0} ≤ ϕ, (9)

A

B(dmn)
+
|Sn|P
QE

≤ φ,∀m ∈ Sn,∀n ∈ N ,

(10)
dmn ≤ rn,∀m ∈ Sn,∀n ∈ N , (11)∑
n∈N

xmn ≤ 1,∀m ∈M, (12)

where rn is the communication range of mobile edge server n,
and rmin and rmax are the minimum and maximum communi-
cation range, respectively. Sn denotes the set of tasks assigned
to edge server n, ϕ is the maximum number of mobile edge
servers to be dispatched, and φ is the pre-defined task deadline.
User requests change with time and space due to user mobility.

Constraint (6) shows that task m can either be assigned
to server n (xmn = 1) or not (xmn = 0). Constraint (7)
shows the limitation of the communication range. Constraint
(8) denotes the set of tasks assigned to server n,∀n ∈ N .
Constraint (9) shows that the total facility cost cannot exceed
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Algorithm 1 Online Mobile Edge Server Dispatching Scheme

1: for t = 1, . . . T do
2: for n ∈ N do
3: Proactively synchronize UE state and location

among UAVs.
4: Invoke Algorithm 2 for server dispatching.
5: Reach the destination and start off on its missions.
6: end for
7: end for

the expected budget ϕ. The indicator function is equal to 1 if
there exist tasks assigned to server n,∀n ∈ N and 0 otherwise.
Constraint (10) shows that the latency of the assigned tasks
should be less than a given deadline φ. Otherwise, the work
cannot be finished on time. Constraint (11) shows that the
distance between the server and the assigned tasks should
not exceed radius rn. Constraint (12) shows that each task
can be served by at most one edge server at the same time.
Further, the UAV movement time is ignored in this work as
commercial UAVs can reach 100 m/s at maximum and 30
m/s on average, which is much faster than pedestrians [21].
Compared with the static model in [17], UAVs can leverage
their adjustable antenna angle to provide flexible coverage and
move dynamically.

B. Online dispatching scheme

Bin-packing problems have been proved to be NP-hard.
There exist well-known one-dimensional bin-packing algo-
rithms that do not take geographic constraints of the items
packed in the same bin into consideration. Take Next-Fit
Decreasing as an example, items are reindexed in a non-
increasing order according to their sizes. An item is packed
to the current bin if the total size of the assigned items does
not exceed the capacity of the bin. Otherwise, a new bin will
be opened. However, the geographic constraint of the tasks
assigned to the same edge server needs to be considered in
the mobile edge server dispatching problem. Tasks covered
by the same edge server need to be constrained by a circular
area, i.e., the distance between every two tasks should not
exceed the diameter of the communication coverage. On the
other hand, the mobile edge server can adjust its coverage to
meet the demands in either hot-spot or sparse areas. A longer
distance between the task and the server results in a larger
communication latency due to a lower data transmission rate.

Existing location-based clustering algorithms are not appli-
cable as both the server capacity and communication range
need to be jointly considered. To solve the Geo-VBP prob-
lem, an online dispatching scheme is proposed to determine
the hover locations of the deployed UAVs. As shown in
Algorithm 1, mobile edge servers proactively synchronize
the UE information with other mobile servers and determine
their potential hover locations. Considering the geographic
constraint in Geo-VBP, a greedy algorithm is designed to
merge hot-spot areas and assign tasks to the edge servers. After
that, mobile edge servers reach their hover locations and start
handling the offloaded tasks. Details of system implementation

Algorithm 2 UAV hover location decision making (HOLD)
Input: A set {(um, vm, 0),∀m ∈ M}: location of each task,
communication range [rmin, rmax], radius increment ∆r, and
server budget ϕ.
Output: a set of tuples R = {((un, vn, h), rn), n ∈ N}:
server locations (un, vn, h) and the corresponding coverage
radius rn, and the number of dispatched servers H .
Initialization: H ← 0, r ← rmin, I ← ⌊ rmax−rmin

∆r ⌋, dis-
cretized grid J with radius rmin and center {(uj , vj , h),∀j ∈
J}, task intensity {εj ← 0,∀j ∈ J}, R ← ∅, M′ ←M, and
xmn ← 0, ∀n ∈ N ,∀m ∈M′ ;

1: for i = 1, . . . , I do

2: Calculate C(r) =

⌊
QE(φ− A

B(r) )
P

⌋
;

3: ▷ The current service capacity
4: Update task intensity {εj ,∀j ∈ J} with r ;
5: ▷ Hot-spot determination
6: while max(εj) ≥ C(r) or i = I do
7: R← R

∪
{(uj , vj , h), r)} ;

8: ▷ Server location and coverage radius
9: Update xmn = 1 for such m ∈ M′ that m is one

of the nearest C(r) tasks of server n,∀n ∈ N ;
10: ▷ Task assignment
11: M′ ←M′\{m ∈M′ : xmn = 1} ;
12: ▷ Delete assigned tasks
13: H ← H + 1 ;
14: if H = ϕ or |M′| < θ · C(r) then
15: Return R,H ; ▷ Algorithm terminates
16: end if
17: Update task intensity {εj ,∀j ∈ J} with r ;
18: end while
19: r ← r +∆r ; ▷ Increase influence radius
20: end for

such as mobility management (handover for active mode or
tracking for idle mode) and inter-UAV communication can be
found in [11].

To identify and track the dynamic hot-spot areas, several
approaches, e.g., machine learning and hot-spot monitoring
with wireless sensors, have been investigated [22], [23].
However, they either require many computation resources or
introduce high overhead. Moreover, the communication and
computation constraints in existing algorithms are not taken
into consideration. In the heat-map generation, tasks will be
merged or clustered under different influence radius to graph-
ically represent the task intensity. When the influence radius
of the tasks increases, the task intensity of the overlapped
areas adds up. That means that if a server is deployed in the
overlapped area with the corresponding influence radius as
the communication range, the tasks that influence the server
location can be covered by the server. This is similar to the
geographic constraint in the Geo-VBP problem.

As illustrated in Algorithm 2, inspired by the merging and
generation of the heat map, the intuition of the proposed
UAV hover location decision-making (HOLD) scheme is to
merge the hot-spot areas, pack UEs sequentially and dispatch
the mobile edge servers accordingly. The service area is
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discretized in J grids with a discretization radius rmin. At each
time slot, based on the Euclidean distance, the task intensity
of grid j ∈ J can be calculated as

εj =
M∑

m=1

εmj ,∀j ∈ J, (13)

where εmj ∈ {0, 1} denotes whether the distance between
task m and the center of grid j is within radius r (εmj = 1)
or not (εmj = 0). Once a grid is above the server capacity
C(r), which is defined as the maximum number of served
tasks, a server can be deployed to the center of that grid, and
meanwhile, the served tasks will be removed. Otherwise, r will
be increased. Each time a server is dispatched or r changes,
the heat map will be updated. As the last processed task of a
server determines whether all assigned tasks can be finished
on time, C(r) is estimated as

C(r) =

QE
(
φ− A

B(r)

)
P

 . (14)

If r reaches the maximum communication range, no matter
whether the intensity of the grids exceeds server capacity or
not, servers will also be dispatched to the grids in the non-
increasing order of task intensity. Repeat these steps until the
number of servers reaches the server budget or all tasks have
been served. To guarantee the server utilization, the algorithm
will also terminate when the number of remaining tasks falls
below a threshold θ·C(r), as shown in Line 14. Let ∆r denote
the increment of radius r. After iterating

I =

⌊
rmax − rmin

∆r

⌋
(15)

times, the hover locations of mobile servers are then deter-
mined one by one.

C. Theoretical analysis

In this section, the worst-case performance of the proposed
algorithm is theoretically analyzed when compared with the
optimal solution of (5) under the same spatial granularity.

Lemma 1. In HOLD, H mobile edge servers are dispatched
sequentially with the assigned tasks. Let bn :=

∑
m∈M

xmn

denote the number of tasks assigned to server n. The number
of served tasks is in the non-increasing order as n increases.

Proof. Assume the earlier dispatched server is n1 and the
later one is n2. Let b1 and b2 denote the number of assigned
tasks in n1 and n2, respectively. Let C1 and C2 denote the
capacity of n1 and n2, respectively. As the coverage radius
of the dispatched servers gradually increases, Lemma 1 will
be proved in the following two cases: 1) n1 and n2 have
the same communication coverage, and 2) n2 has a larger
communication coverage than n1.

If n1 and n2 cover the same-sized area, edge servers are
dispatched in the decreasing order of task intensity. As n1 is
first dispatched to the hot-spot area with a higher intensity of
the tasks, b2 ≤ b1.

If n2 covers a larger area than n1, this means the radius
of n1 does not reach the largest communication range and b1
must have reached the maximum number of served tasks C1 in
HOLD. In (14), as the capacity of a server decreases with the
increase of communication range, b2 ≤ C2 ≤ C1 = b1.

Let OPT (M) and ALG(M) represent the number of
served tasks in the optimal algorithm (OPT) and HOLD under
the same spatial granularity, respectively. Thus OPT (M) =
χ ≤ |M|. For ∀M, the asymptotic worst-case approximation
ratio RHOLD of HOLD is [24]

RHOLD = lim
χ→∞

inf

(
min

{
ALG(M)

χ
: OPT (M) = χ

})
.

(16)
Thus, RHOLD ≥ max(ρ) if there exist two constants ρ and σ
such that [25]

ALG(M) ≥ ρ ·OPT (M) + σ. (17)

Since HOLD terminates in two cases as shown in Line 14:
|M′| < θ · C(r) (case 1) and H = ϕ (case 2). Therefore, we
prepare Lemma 2 to analyze the case that HOLD terminates
because of case 1 and Lemma 3 because of case 2. For ease
of presentation, we say a server n is saturated if bn = Cn.
Otherwise, we say the server is unsaturated.

Lemma 2. If HOLD terminates due to the condition of |M′| <
θ · C(r), RHOLD = k

k+θ , where k ≥ 1 is the number of
saturated servers.

Proof. Recall that H is the number of dispatched servers
output by HOLD. From |M′| < θ · C(r), we know either
M′ = ∅ or 0 < |M′| < θ · C(r).

If all tasks have been served by HOLD, i.e., M′ = ∅, it
is trivial to prove as we have ALG = OPT = |M|. Clearly,
OPT ≤ (1 + θ

k ) ·ALG.
If not all tasks can be served by the dispatched servers,
|M′| < θ ·CH . From Lemma 1, we know that the number of
tasks served by the dispatched saturated edge servers is in a
non-increasing order, which means ALG ≥ b1+b2+...+bk ≥
k · bk. Therefore, we have |M′| < θ ·CH ≤ θ ·Ck = θ · bk ≤
θ
k ·ALG.

As the optimal solution can serve at most |M| tasks, thus
we have

OPT ≤ |M|

=
H∑
i=1

bi + |M′|

= ALG+ |M′|

≤ ALG+
θ

k
·ALG

= (1 +
θ

k
) ·ALG,

(18)

which concludes the proof.

Lemma 3. If HOLD terminates due to the condition of H = ϕ,
RHOLD = 1− e−1.

Proof. Recall that bn denotes the number of served tasks of
server n. Let dn denote the difference between ALG and OPT
at the n-th dispatched server, i.e., dn = OPT −

∑n
j=1 bj ,
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tasks

Fig. 3: Illustration of Lemma 3.

where
∑n

j=1 bj is the number of served tasks up to the n-th
server. Thus, d0 = OPT .

We assume that OPT tasks are served by 1 ≤ K ≤ ϕ
servers in the optimal solution. In the generalized pigeonhole
principle, if n pigeons are placed into m ≤ n pigeonholes,
there exists at least one pigeonhole contains at least n

m
pigeons. As dn tasks are covered by the K subsets in OPT, by
the pigeonhole principle, one of the K subsets in OPT must
serve at least ⌈dn/K⌉ tasks [26]. As HOLD greedily chooses
the set covering the maximum number of unserved tasks,

bn+1 ≥ dn/K. (19)

As illustrated in Fig. 3, let us assume OPT has covered
OPT = 15 tasks with K = 2 servers and HOLD has covered∑2

j=1 bj = 10 tasks up to the 2-nd iteration. There exist at
least d2 = 5 tasks (in blue and yellow) which have been
covered by OPT but not HOLD. Within these 5 tasks, one
of the servers in OPT needs to cover at least ⌈d2/K⌉ = 3
tasks. As the next server dispatched by HOLD covers the most
intensive uncovered area which consists of at least 3 tasks,
b3 ≥ 3 ≥ d2/K.

Thus, b1 > bn+1 ≥ d0/K = OPT · 1
K . We further have

d1 = OPT − b1

≤ OPT −OPT · 1
K

= OPT · (1− 1

K
).

(20)

By the definition of dn and (19), we have

dn = dn−1 − bn

≤ dn−1 − dn−1 ·
1

K

= dn−1 · (1−
1

K
).

(21)

By induction hypothesis, we have

dn ≤ OPT · (1− 1

K
)n. (22)

Since (1− 1
K )K ≤ 1

e ,

ALG = OPT − dϕ

≥ OPT − dK

≥ OPT −OPT · (1− 1

K
)K

≥ OPT −OPT · 1
e

≥ OPT · (1− 1

e
),

(23)

which concludes the proof.

VI. PERFORMANCE EVALUATION

In this section, extensive simulations are conducted to
evaluate the proposed mobile dispatching scheme. As shown
in Fig. 2, according to the deployment in the real world, 7
fixed BSs are distributed in and around the theme park. The
number of available mobile edge servers is set as ϕ = 7 to
be comparable to the number of fixed servers at BSs. For fair
performance comparison purposes, we assume all servers have
the same computation capacity by default. B0, N0 and the
reference Signal-to-Noise ratio at the reference distance are
1 MHz, −60 dBm and −30 dB, respectively [27]. The data
size and the computation intensity of the offloaded task are
set according to the face recognition application, i.e., A = 60
kB and P = 31, 680 cycles/bit [28]. The total computation
capacity of each edge server is set as QE = 1010 cycles/s
with 10 VMs deployed [29]. The task deadline is set to 10
s. θ, ∆r, rmin and rmax are set 1, 90 m, 100 m and 1, 000
m [30].

Performance metrics are: 1) service capacity, i.e., the num-
ber of served tasks with a given task deadline; 2) service
fairness in terms of latency defined in (24); 3) the number
of UAVs needed; and 4) server utilization, which measures
whether VMs in each server are fully utilized or not. Jain’s
fairness index is defined as [31]

Fairness(D) =
(
∑M

i=1 Di)
2

M
∑M

i=1 D
2
i

=
D

2

D2
, (24)

where D = {D1, D2, ..., DM} is the latency of all tasks. The
fairness index reaches the maximum when all UEs experience
the same latency, i.e., Fairness(D) = 1.

For a fair comparison, the following server placement
schemes are introduced:

• Fixed deployment (Fixed only): The fixed BSs are
equipped with edge servers. Tasks are assigned to the
BSs based on the strongest RSS.

• Mobile dispatching (Mobile only): Only UAV-mounted
mobile edge servers are deployed to complete the of-
floaded tasks. Based on the proposed mobile dispatching
scheme, mobile edge servers are dispatched to the hot-
spot areas and then serve the crowds.

• Hybrid dispatching (Hybrid): Both the fixed and mobile
edge servers are participating in task offloading. A simple
hybrid scheme is considered here where mobile edge
servers assist to offload the tasks for the UEs that cannot
be served by the fixed servers. Hybrid-Mobile refers to
the performance of mobile edge servers in the hybrid
dispatching scheme.

• Spiral [32]: UAVs are placed sequentially like a spiral.
The algorithm starts from a random-selected UE at the
boundary and places UAVs counterclockwise with the
coverage radius 200 m. For each iteration, the UAV first
aims to cover the boundary UEs as much as possible
and then refines its location to cover inner UEs as
much as possible by solving the 1-center facility location
problem [33]. Due to the randomness of Spiral, we take
the average value over 100 runs of the simulation.
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Fig. 4: The number of associated tasks for each fixed BS.
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Fig. 5: Impact on service capacity.

A. Dynamic task requests and unbalanced workload

The fixed deployment of edge servers is first evaluated.
The ID of each BS has been labeled in Fig. 2. Fig. 4 shows
the number of tasks assigned to the corresponding BS. To
guarantee that the tasks are completed before the given task
deadline, according to the default setup, each edge server
can handle around 50 tasks at the same time at maximum.
In general, the number of associated tasks shows a sharp
difference between the daytime and night. After 2 AM, there
are fewer than 20 tasks per BS in the park. The number
remains relatively stable until 7 AM. After that, the number of
tasks increases considerably in the morning and reaches a peak
at 1 PM. Over the 24 hours, BSs near the park entrance, i.e.,
BS 1, BS 2 and BS 3, have a large number of tasks to deal with
while BS 4, BS 5 and BS 7 have far fewer tasks assigned to
them. Dynamic task requests and the nonuniform distribution
of the crowds result in the unbalanced workload among the
fixed BSs. Meanwhile, tasks will not be assigned to the BSs
far away from them, considering the communication range and
cost. This motivates us to dispatch mobile edge servers closer
to the hot-spot areas to handle the dynamic demands.

B. Number of served tasks

Fig. 5 shows the total number of served tasks with the given
task deadline, which is constrained by both the communication
and the computation cost. At night, the number of tasks is
much smaller than the maximum service capacity of the edge
servers. All four schemes can satisfy all UE demands. How-
ever, during the day time, the tasks increase dramatically. Due
to the flexible placement, mobile edge servers are dispatched
closer to the crowds. With the same computation capacities,
mobile dispatching can serve 59% and 31% more tasks dur-
ing peak hours when compared with the fixed deployment
and Spiral, respectively. The fixed deployment ignores the
dynamic UE distribution and Spiral overlooks the hot-spot
areas. Thus, the performance of the aforementioned schemes
sacrifices during the daytime. In the hybrid scheme, mobile
edge servers assist the fixed servers and help serve more
tasks. On average, 96.2% tasks can be finished on time in
the hybrid scheme, indicating the need to increase the server
computation capacity or number of UAVs beyond the default
setup as shown in Section VI-G. Moreover, the fluctuation of
the number of served tasks can reflect network stability under
different algorithms. When the demand exceeds supply, the
standard deviation of the mobile dispatching scheme, Spiral,

and the fixed deployment is 5.8, 13.8, and 16.1, respectively.
No matter how the number of tasks changes and how UEs are
distributed due to their mobility, the number of served tasks
remain stable with a higher value. This indicates the robustness
of the proposed scheme for dynamic networks.

C. Number of UAVs dispatched

Fig. 6 shows the number of mobile edge servers dispatched
over 24 hours in the mobile dispatching scheme, the hybrid
scheme, and Spiral. Generally speaking, the number of dis-
patched UAVs depends on real-time demands. Intuitively, more
UAVs will be dispatched to serve the crowds with higher
density. During the day time, UAVs are dispatched to support
the hot-spot areas. At night, more UAVs are dispatched by
Spiral as UEs are sparsely distributed in the theme park and
Spiral starts from randomly selected UEs at the boundary.
In contrast, only 1 or 2 UAVs are employed in the mobile
dispatching scheme. Moreover, the hybrid scheme shows its
ability to deal with varying tasks with fewer UAVs. As the
fixed BSs can handle all the tasks at night, there is no need to
dispatch extra UAVs after midnight until early morning when
crowds form again. This means the hybrid scheme can leverage
the benefits of existing fixed BSs, which, in turn, not only
exploits the flexibility of UAVs but also saves power and cuts
down the total UAV maintenance cost.

D. Utilization of the computation resources

As mentioned above, the fixed BSs can complete all the
tasks quickly at night and there is no need to dispatch extra
UAVs. Thus, the latency variation in the mobile dispatching
scheme can be larger than that in the fixed deployment, as all
demands queue up for processing with fewer mobile servers.
This, however, increases server utilization at night. Therefore,
the server utilization and the service fairness in terms of user-
experienced latency are evaluated during the daytime with
bursty tasks from 10 AM to 6 PM for a fair comparison
between schemes.

Fig. 7 illustrates the CDF of server utilization during the
daytime. At each time slot, a fairness index of the whole
system is calculated based on (24) and then the CDF over
all time slots is obtained. On average, the server utilization in
the mobile dispatching scheme and the hybrid scheme is 98%
and 93.8%, respectively. In the fixed deployment, the server
utilization is 90.5%, which indicates one out of the ten VMs at
each fixed server is idle. In the mobile dispatching scheme, the
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Fig. 10: Impact of server capacity on
service capacity.
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Fig. 11: Impact of server capacity on the
number of dispatched UAVs.

probability of the server utilization higher than 90% increases
by 80% when compared with the fixed deployment. Even faced
with a large number of tasks, the fixed edge servers still cannot
be fully utilized. The reason is that some tasks in the hot-
spot areas either are refused by the overloaded BS or do not
have the opportunity to connect to the idle BSs that are far
away from them. Mobile edge servers overcome this limitation
by dispatching UAVs in close proximity to UEs. Spiral also
performs well during the daytime. Because Spiral and the
mobile dispatching scheme both act in a best-effort manner
by serving UEs as much as possible. But the difference is
that the mobile dispatching scheme focuses on hot-spot areas
with adjustable coverage radius while Spiral starts from the
boundary with a constant radius.

E. Service fairness in terms of latency

Fig. 8 shows the cumulative distribution function (CDF) of
the service fairness index with the four schemes. The trend
of service fairness over time is similar to that of utilization
except for Spiral. In the fixed deployment, the service fairness
deteriorates with bursty requests in certain areas, e.g., a huge
crowd gathers at the entrance in the morning. This results
in the overloaded BSs near the entrance and underloaded
BSs along the outside road, thus leading to a high variation
among task latencies. Similarly, Spiral places UAVs from the
boundary to center and thus performs a bit better than the
fixed deployment. The steep slope of the mobile dispatching
scheme indicates that the service fairness concentrates on 0.82
over all time slots. This not only implies network stability
under dynamic UE distributions but also shows that the mobile
dispatching scheme outperforms other schemes by maintaining

a better service fairness. The hybrid scheme increases service
fairness when compared with the fixed deployment by intro-
ducing mobile edge servers. It can be seen that 60% of the
time, service fairness is higher than 0.8 while 25% of the
time in the fixed deployment. When compared with the mobile
dispatching scheme where UAVs are determined to serve the
hot-spot areas first, mobile servers in the hybrid scheme only
assist the UEs that cannot be served by the fixed BSs on time.
Thus, its performance is affected by the number of its served
tasks and the corresponding distance between the tasks and
the servers.

F. Practical performance of HOLD

Fig. 9 shows the practical performance of the proposed
dispatching algorithm HOLD and Spiral when compared with
the optimal solution OPT. OPT is obtained by solving (5)
through the optimization tool Gurobi 8.1.1. The x-axis denotes
the proportion of the number of tasks served by each algorithm
and OPT, and the y-axis shows the CDF of the proportion
over the time slots. In more than 80% of the time slots,
the number of tasks served by HOLD can reach as many as
90% of OPT, which is bounded by 1− e−1. However, Spiral
can only achieve the same situation with 30% of the time
slots. A larger gap between HOLD and OPT is caused by the
algorithm termination condition, i.e., the dispatching algorithm
stops when the number of the remaining tasks falls below a
threshold. In the circumstance where the remaining tasks are
sparsely distributed, dispatching extra mobile servers results
in the deterioration of the server utilization.
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Fig. 13: Impact of server capacity on
server utilization.
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Fig. 14: Impact of radius step ∆r on
service capacity.

G. Impact of parameters

Based on the analysis of the limitations mentioned above,
the impact of computation capacities, i.e., the number of VMs
deployed in each edge server, and radius increment ∆r, is
further investigated. We select a specific time slot, 1 PM, to
illustrate the impact of the parameters.

Fig. 10 shows the impact of the number of VMs per edge
server on the service capacity. Here each VM has the same
computation capacity as the default setup. It can be seen that
the number of served tasks in the fixed deployment and Spiral
continuously increases. This is because when the computation
capacity increases, the computation latency of UEs reduces
sharply with lower execution latency and queuing latency.
Thus, with more VMs available, tasks can be executed as soon
as possible and more tasks can be finished before the given
deadline. In the hybrid scheme, the number of served tasks
triples when the number of VMs per edge server increases
from 2 to 6. 8 VMs per server can meet all the UE demands
in the hybrid scheme while 14 VMs in mobile dispatching.
After that, fewer UAVs are needed because of the increased
computation capacity of the fixed BSs. Thus, in the hybrid
scheme, the number of tasks served by mobile edge servers
decreases.

Fig. 11 shows the impact of VMs on the number of
dispatched UAVs needed to meet all demands. Equipped more
computation capacities, each edge server can complete more
tasks with the same task deadline. This results in fewer mobile
edge servers to be dispatched for all demands. The number of
dispatched UAVs first decreases with 8 VMs, 14 VMs and
18 VMs in the hybrid scheme, the mobile dispatching scheme
and Spiral, respectively. This, in turn, shows that the number
of served tasks per mobile edge server increases.

Fig. 12 and Fig. 13 show the impact of the number of
VMs per edge server on server utilization and service fairness.
Overall, the fairness index decreases with the increase of
VMs. In the fixed deployment and Spiral, more tasks in the
hot-spot areas queue up to be processed. This leads to a
larger latency variation. In the mobile dispatching scheme,
the service fairness jitters around 16 VMs per edge server.
The reason is that with the same number of dispatched UAVs,
higher computation capacities reduce the per task latency, thus
leading to a slight increase in service fairness. The same reason
applies to the hybrid scheme. In addition, servers are fully
utilized when the demand exceeds the supply or with fewer

UAVs to just meet the demands. That is, the server utilization
reduces with extra VMs installed in the fixed BSs while the
mobile dispatching scheme can fully utilize the resources by
adjusting the number of dispatched UAVs.

Fig. 14 shows the impact of radius increment ∆r on the
number of served tasks. ∆r affects the scale of identifying
the hot-spot areas. A small ∆r makes the mobile dispatching
scheme more accurate, which, however, increases the com-
putation complexity. A large ∆r may fail to determine the
most appropriate location of the edge server, thus leading
to fewer served tasks. The fixed deployment and Spiral do
not rely on ∆r and thus are used as the baselines. With
the increase of ∆r, the performances of both the mobile
dispatching and the hybrid scheme decrease. A large radius
increment makes the mobile edge servers be located at the
center of a large hot-spot area, which, however, exceed their
computation capacities. This leads to the problems that the
servers miss the smaller hot-spot areas inside and thus need
to pay a larger communication cost.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, an online UAV-mounted mobile edge server
dispatching scheme is proposed for mobile-to-mobile edge
computing scenarios. The mobility of both UEs and edge
servers are jointly considered to tackle the issues of nonuni-
formly distributed tasks and dynamic crowds. UAVs iteratively
find their appropriate hover locations to serve the crowds.
Simulations show that either the mobile dispatching alone
or the hybrid dispatching scheme is superior to the fixed
deployment. In the mobile dispatching scheme, the number
of served tasks increases by 59% on average and the server
utilization can reach 98% with the same computation capa-
bilities. For future work, UAVs can act as a relay to fully
utilize the computation resources of the fixed edge servers
by interacting with the ground fixed BSs. Moreover, inter-
UAV interference and collision avoidance need to be further
addressed by considering the constraints of the minimum
distance among UAVs if they have to use the same channel.
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