
Mechanical Systems and Signal Processing 190 (2023) 110099

A
0

O
o
A
a

b

c

A

C

K
C
F
I
T

1

t
b
i
o
i

t

h
R

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

nline fault classification in Connected Autonomous Vehicles using
utput-only measurements
bdelrahman Khalil a, Mohammad Al Janaideh a,b,∗, Deepa Kundur c

Department of Mechanical Engineering, Memorial University, St. John’s, NL A1B 3X5, Canada
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

R T I C L E I N F O

ommunicated by L. Mevel

eywords:
onnected Autonomous Vehicles
ault classification
mitation learning
ransmissibility

A B S T R A C T

Different health-monitoring techniques were considered in the literature to enhance the safety
and stability of Connected Autonomous Vehicle (CAV) platoons. Mitigating these faults is faster
and more reliable if the fault structure is known. In this paper, we propose using transmissibility
operators, which are relationships that relate a set of velocities with another in the platoon, to
classify the faults. Transmissibility operators were shown to be exceptional in signal estimation.
However, it is also shown to be noncausal and thus can only be used offline. To this end, we
propose using Data Aggregation (DAgger), an extension to imitation learning, to transfer the
classification experience from transmissibility operators to a novice machine learning agent to
be used online. The integration of transmissibility-DAgger gives the ability to adapt to new fault
classes without the need to re-train the diagnosis model from the beginning. A heterogeneous
CAV platoon was modeled with three different faults separately. These faults are actuator
disturbances, false data injection attacks, and communication time delays. The classification
scheme depends on estimating the faulty signal in the case of each fault class. Next, the
measured faulty signal is compared with the three estimations, and the closer fault estimation
to the measured one is considered the actual fault on the platoon. The proposed algorithm
is then tested on the platoon model and then applied to an experimental setup that consists
of three autonomous robots. The proposed results are compared with six different machine
learning classification models. The overall classification accuracy achieved was 95.8% for the
experiment using the proposed approach.

. Introduction

To achieve a fully connected autonomous vehicle platoon, autonomous vehicles should be developed with the adequate ability
o enhance platoon safety and conquer threats. This includes securing the platoon against faults and potential cyber-attacks on
oth physical and cyber layers. Many methods were considered in the literature for fault detection, localization, and mitigation,
ncluding but not limited to artificial neural networks [1] and model-based methods [2]. Considering the technology and complexity
f connected autonomous vehicles evolving, a wide range of different classes of faults may occur [2]. Therefore, fault classification
s necessary for reliable and fast recovery in different dynamic systems [3].

CAV platoon faults can be categorized according to the occurrence layer into physical and cyber faults. Physical faults occur in
he vehicle dynamics, such as sensors and actuator faults [4]. This category of faults is affected by vehicle dynamics. The fault gets

∗ Corresponding author at: Department of Mechanical Engineering, Memorial University, St. John’s, NL A1B 3X5, Canada.
E-mail address: mohammad.aljanaideh@utoronto.ca (M.A. Janaideh).
vailable online 30 January 2023
888-3270/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.ymssp.2023.110099
eceived 23 June 2022; Received in revised form 5 October 2022; Accepted 3 January 2023

https://www.elsevier.com/locate/ymssp
http://www.elsevier.com/locate/ymssp
mailto:mohammad.aljanaideh@utoronto.ca
https://doi.org/10.1016/j.ymssp.2023.110099
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2023.110099&domain=pdf
https://doi.org/10.1016/j.ymssp.2023.110099


Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.

c
u
e
s
m
s
o
s
t

mixed with the vehicle dynamics and will be shaped as dynamic response. For example, assume a bounded disturbance fault in the
velocity sensor used for the closed-loop Cruise Control (CC). The disturbance will be fed back into the controller and then the vehicle
dynamics, which affects the power flow between the different physical components within the vehicle. Such a fault within the CC
system can be easily mitigated by using, for example, the incremental twisting fault-tolerant control with partial vehicle model as in
[5]. On the other hand, cyber faults are easier to recover as they affect the information transmitted through wireless communications
without affecting the power propagation between the physical components. Cyber faults include, but are not limited to, spoofing,
message falsification, false data injection (burst transmission), and denial-of-service [2]. Both fault categories can be avoided easily
if the fault type is classified. For example, for communication time delay, a redundant communication link can be used. In another
example, the event-triggered adaptive formation keeping, and interception introduced in [6] can be used to mitigate malicious
cyberattacks. However, all fault classes result in similar corrupted signals, which makes it difficult for the vehicles to classify them.
This wide range of possible faults requires a novel strategy to classify the fault class within the vehicle’s network to enhance platoon
safety.

In this paper, we consider first classifying faults using transmissibility operators first, which are mathematical relations that
haracterize the relationship between different sets of velocities. Transmissibilities are independent of the inputs acting on the
nderlying system and the dynamics of the underlying system. Transmissibilities will use one subset of the outputs to obtain an
stimation of another subset. These operators re-arrange the system zeros to relate them with each other while excluding the
ystem poles. The dependency on the system input fades with excluding the system poles. Although excluding the system poles
akes it difficult to study the system dynamics directly (the system states), however, it showed great potential in estimating the

ystem output. Transmissibility operators have been improved over the recent years, and have become one of the most beneficial
utput estimators while the system inputs are unknown, see for example [7]. In recent years, transmissibilities have been improved
ignificantly, and the applicability range was developed. Time-domain transmissibilities were introduced in [7] by implementing the
ime differentiation operator 𝐩 = 𝐝

𝐝𝑡 instead of the Laplace complex variable 𝑠 to count for non-zero initial conditions. Transmissibility
operators have the privilege of precisely estimating the faulty velocity signal while the fault dynamics are unknown [7,8].

Transmissibility operators were shown to be independent of the excitation signals that act on the platoon. By formulating the
fault dynamics as independent excitations, transmissibility operators can then overcome the problem of unknown fault dynamics
and estimate the faulty velocity signal. See for example, the transmissibility potentials in dealing with systems under unknown fault
dynamics [9]. However, transmissibility operators are noncausal in some cases and thus can only be used offline. In CAV platoons,
health monitoring has to be done online immediately without any lags since the time between the fault and crash is very small and
might be less than a second. To this end, this paper develops transmissibility operators to classify the platoon faults (expert policy),
then transfers the classification knowledge to a set of deep neural networks (novice policy). Imitation learning was shown to be able
to develop skills from direct experience, however, this approach suffers from data mismatch and compounding errors [10]. DAgger,
which is an extension in the supervised learning that extracts the expert policy to enhance the novice policy training, can enhance
the fault classifiers training [10].

DAgger was shown to solve many issues in imitation learning. These issues include failing when the neural networks that being
trained encounters situations not adequately within the training dataset [11]. This is represented in inability to adapt with new fault
classes in this paper. The goal of DAgger is to minimize the expert intervention while efficiently train the novice policy. DAgger
allows the novice policy to be in charge, then takes the chance to correct and update the novice policy if it fails. This is done by
firstly monitor the discrepancies between the novice and expert actions. If the novice deviates from the expert policy, DAgger will
place the expert in charge, record the expert actions, and then train the novice on them. This will allow after to use the trained
neural networks online for the purpose of fault classification.

One of the main advantages in this work is the ability to easily adapt with new fault classes without the need to re-train
the classification model from the beginning. This is due to the integration of transmissibility-DAgger, and can be simply done by
creating a new transmissibility operator for the new fault class. Next, DAgger will add the new experience to the previously trained
classification model. Note that transmissibility operators are mathematical estimators (similar to transfer functions) that do not
require any intense training or computations, which gives straightforwardness in including more fault classes to the classification
model. Moreover, it is important to keep in mind that the proposed approach is applicable on deep neural networks, which is the
most common machine learning method used in autonomous vehicles, see for example [12,13].

2. Related work

In [14], machine learning was used to classify the failure types in an autonomous robotic assembly architecture. The assembly
strategy was chosen at the beginning according to the probability of achieving a successful assembly. This makes the classification
algorithm not robust against different assembly strategies. Therefore, the technique in [14] is only applicable under specific operating
conditions, that is, the faulty behavior was already known. This limits the applicability on new unknown faults that the classifier
was not designed on. In [15], an approach was presented to exploit the phase structure of tasks to learn manipulation skills of robot
arms. The robot learns a probabilistic model of phases, then the robot classifies normal or abnormal manipulation behaviors without
classifying the abnormal behavior type. Applying this approach to CAV platoons might only detect the existence of faults, without
the ability to classify the fault class. In [16], Support Vector Machine (SVM) was used to distinguish successful and unsuccessful
automated parts assemblies using the force signature analysis, however, no information was given about the unsuccessful assembly
to recover the failure. Similar to [15], the main disadvantage is represented in the inability to classify the fault class, not only detect
2

it. In [17], the authors detect the failure in a robot picking operation, then the failure was classified according to the fault frequency.



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 1. CAV platoon with 𝑛 vehicles. Each vehicle sends its velocity to the following vehicle using V2V communication links.

An assumption was also made in [17] that high frequency faults mean that something unusual occurred in the production line or
the production process. The main disadvantage of this method is the dependency on the fault dynamics. This renders this method
customized to the investigated system under a limited number of faults.

A novel threading task fault classification was introduced in [18] using the Convolution Neural Networks (CNN), and it was
compared with SVM and Multilayer Perception (MLP). As shown in [18], CNN cannot be spatially invariant to the input data.
SVM was shown to perform well when the fault class was clearly labeled, however, it is difficult to implement it on large data
sets such as fault signals estimation as much higher training time is required [19]. Moreover, MLP requires a very high number of
parameters, which makes the training more intense. A novel use of CNN was introduced in [20] for object classification using vision
and light detection and ranging (LIDAR) fusion of autonomous vehicles in the environment. The work introduced in [20] uses image
processing and each pixel depth data to classify objects. A novel fault classification approach using artificial neural networks was
proposed in [21]. Although, CNN was shown to be used effectively in [20,21], the cost of the improvements in was more intense
training. Another method that is well-proven in ML in the literature is random forest classifier. In random forest classifiers, including
more fault classes needs more classification trees, which makes the algorithm slower and might cause problems in online estimation,
see for example [22,23]. Thus, random fault classifiers are more suitable for offline classification.

This work is highly motivated by the DAgger results in cloning the behavior of different dynamic objects. In [24] DAgger was
successfully used to learn the behavior of a monocular in reactive UAV control in cluttered natural environments. In [10] DAgger
was used to imitate the behavior of a simple inverted pendulum and another results were presented for MuJoCo HalfCheetah OpenAI
Gym environment. In [25] DAgger was used to imitate the behavior of a nonlinear MPC controller for flying robots. DAgger has
shown many desirable properties, including online functionality and theoretical guarantees [10]. Different extensions were proposed
to guarantee DAgger safety such as SafeDAgger as in [26], Human Gate DAgger [27], VanillaDAgger and EnsembleDAgger [10]. In
this paper, the authors focus on imitating the transmissibility potentials in fault estimation, and implying the DAgger extensions is
considered for future work.

On the other hand, estimating sensors measurements, also known as soft sensing, include many techniques from different fields
[28]. The most common techniques in signals estimation of dynamic systems are observer-based techniques, see for example [2,29].
However, observer-based estimation requires the knowledge of the fault dynamics and faulty states to estimate the faulty signals.
Many challenges introduced in [28] for signals estimation. These challenges include minimizing the assistance of human experts,
such as in model selection, and filling the gap between the laboratory outcome and the industrial practice. Considering the soft
sensing techniques in [28], some of these techniques require building a special hardware for the soft sensor [30], where other
require knowledge of the fault dynamics or the dynamics of the system [31], or some information about the system like the impulse
response parameters [32].

With regard to the signals estimation challenges in [28], DAgger is used in this paper to minimize the human interaction as
the expert policy is cloned. The gap between the laboratory outcome and the industrial practice is minimized, as transmissibility
operators are robust against external disturbances and any other external excisions on the platoon. No additional hardware
components or additional sensors are required, and only available velocity sensors are used.

In this paper, we propose a classification scheme to classify both physical and cyber faults in CAV platoons using only velocity
measurements. The proposed classification scheme considers first transmissibility operators for offline classification. Then, DAgger
is used to transfer the transmissibility experience in classifying faults to a novice machine learning agent.

The main contributions of this work based on the literature above are as follows:

• Transmissibility operators are used for fault estimation. Transmissibilities are mathematical operators that do not require
training, independent of the fault and platoon dynamics, and robust against external disturbances.

• DAgger is used to transfer the fault estimation knowledge of to a machine learning agent, which allows for online fault
estimation. Moreover, this allows to include new fault classes directly to the machine learning agent.

• We develop an algorithm that uses output-only measurements available from the CAV platoon for fault classification without
presuming previous knowledge of the type of fault. This algorithm can handle unknown fault dynamics at an unknown location.
This renders the proposed algorithm applicable to a wide range of physical and cyber faults.

3. Heterogeneous CAV platoon modeling

Consider an autonomous heterogeneous vehicles platoon with 𝑛 vehicles as in Fig. 1. Let 𝑖 ∈ {1,… , 𝑛} denote the vehicle order
within the platoon and 𝑣𝑖 denote the velocity of vehicle 𝑖. Each vehicle follows the velocity of its preceding vehicle such that
𝑣∗𝑖 (𝑡) = 𝑣𝑖−1(𝑡) where 𝑣∗𝑖 is the desired velocity of the vehicle 𝑖. We consider three different CAV models within the platoon to
enhance the DAgger training. Each vehicle is considered to have a closed-loop PI controller (cruise control) to track the desired

∗

3

velocity 𝑣𝑖 and produce the control signal 𝑢𝑖.



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.

c
m
t

3

v

w

Fig. 2. Bond graph model of an electric powertrain vehicle that is considered to characterize CAVs.

Table 1
Platoon model Parameters description and values.
Symbol Description Value

𝜏𝑖 Time lag constant in (3.1) 0.5 s
𝑅𝑖 Motor resistance 18 mΩ
𝐼𝑖 Motor inductance 252 μH
𝐶𝑖 Motor constant 0.26 rad∕s A
𝑆𝑖 Shaft moment of inertia 0.2 kg m2

𝐺𝑖 Transmission ratio 0.2
𝑟𝑖 Wheel radius 0.3 m
𝑀𝑖 Vehicle gross mass 1478 kg
𝐹𝑖 Friction coefficient 0.6
𝜎𝑖 Headway gain in (3.3) 0.01
𝜈𝑖 Relative velocity gain in (3.3) 0.28
̇𝑓 (ℎ∗) Constant in (3.3) 0.1.389
𝑘P1 ,𝑖 , 𝑘P2 ,𝑖 , 𝑘P3 ,𝑖 Probational gain in (3.4) 0.75, 2.5, 0.75
𝑘I1 ,𝑖 , 𝑘I2 ,𝑖 , 𝑘I3 ,𝑖 Integral gain in (3.4) 0.01, 0.6, 0.25

3.1. CAV dynamics

The first model is based on an acceleration time lag filter to track the velocity of the preceding vehicle. The second model is
reated using the bond graph approach to simulate a realistic interaction between the different vehicle components, which allows
ore precise physical faults modeling. The third model is a leader–follower dynamic model that assures a safe spacing distance with

he neighboring vehicles.

.1.1. First CAV model
In the first CAV model, we adopt the dynamic vehicle model in [33, Chapter 5, Section 5.3] for the longitudinal motion of the

ehicle. The vehicle is modeled as a first order time-lag filter between the desired acceleration 𝑎∗𝑖 and the actual acceleration. Then
the vehicle velocity is obtained by integrating the time-lag filter such that

𝑣𝑖(𝑡) =
1

𝐩(𝜏𝑖𝐩 + 1)
𝑢𝑖(𝑡), (3.1)

here 𝜏𝑖 is the time-lag constant, 𝐩 = d
d𝑡 is the differentiation operator, and 𝑢𝑖 = 𝑎∗𝑖 is the tracking control signal.

3.1.2. Second CAV model
We model the electric powertrain topology introduced in [34] using the bond graph approach. Following [34], we consider

the drive motor as a Brushless DC Motor that extracts power from the batteries based on the traction control signal. Fig. 2 shows
the bond graph model of the vehicle considered, while parameters description and their numerical values are defined in Table 1.
Following the formulation procedure in [35, Chapter 5], the bond graph model in Fig. 2 can be represented as a linear time-invariant
model, as is Section 4.2.

3.1.3. Third CAV model
Following [4], by assuming constant spacing distances the leader–follower model can be represented as

ℎ̇𝑖(𝑡) = 𝑢𝑖(𝑡) − 𝑣𝑖(𝑡), (3.2)

𝑣̇𝑖(𝑡) = 𝜎𝑖 ̇𝑓 (ℎ∗)ℎ𝑖(𝑡) − (𝜎𝑖 + 𝜈𝑖)𝑣𝑖(𝑡) + 𝜈𝑖𝑢𝑖(𝑡). (3.3)

where ℎ𝑖 is the spacing distance between vehicles 𝑖 and 𝑖−1, 𝜎𝑖 and 𝜈𝑖 are parameters that denote headway gain and relative velocity
gain, respectively, where 𝜎 > 0 and 𝜎 + 𝜈 > 0, and 𝑓 denotes a range policy that is linearized at the constant spacing distance ℎ∗.
4

𝑖 𝑖 𝑖



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.

w

3.2. Cruise control

The tracking control is represented in producing the control command 𝑢𝑖 based on the desired velocity 𝑣∗𝑖 , this can be done by
using the cruise control, which is a simple closed-loop feedback with a proportional–integral (PI) controller given by

𝑢𝑖(𝑡) = (𝑘Pj ,𝑖 +
𝑘Ij ,𝑖
𝐩

)[𝑣∗𝑖 (𝑡) − 𝑣𝑖(𝑡)], (3.4)

here 𝑘Pj ,𝑖 and 𝑘Ij ,𝑖 are the proportional and integrational gains of the 𝑖th vehicle that follows the 𝑗th CAV model, respectively.

4. Faulty platoon modeling

4.1. Fault scenarios

The following faults were investigated thoroughly in [36]. In this paper, same faults are considered to imply the proposed fault
classification approach.

4.1.1. Actuator disturbances
Brushless DC motors that are used in electric vehicles are subjected to vulnerable operating conditions, including high

magnetic force and severe weather conditions. Following [37], we introduce an additive fault to the motor’s nominal value of
the current-to-torque ratio after motor loss of effectiveness occurs. The faulty motor constant is then given by

𝐶̃𝑖(𝑡) = 0.8𝐶𝑖 + 𝛿𝐶𝑖
(𝑡), (4.1)

where 𝐶̃𝑖 is the corrupted motor constant, and 𝛿𝐶𝑖
is the bounded deviation from the original motor constant after the loss of

effectiveness occurs.

4.1.2. False Data Injection (FDI)
We consider false data injection in the communication link between vehicle 𝑖 and vehicle 𝑖 + 1. For all 𝑖 ∈ {1,… , 𝑛},

𝑣̃𝑖(𝑡) = 𝑣𝑖(𝑡) + 𝛿𝑓,𝑖(𝑡), (4.2)

where 𝑣̃𝑖 represents the corrupted velocity of the vehicle 𝑖, and 𝛿𝑓,𝑖 denotes the FDI disturbances.

4.1.3. Communication delay (Denial-of-service)
We consider the velocity of vehicle 𝑖 that is received by vehicle 𝑖+ 1 to be time delayed. Then such a delay yields the corrupted

signal,

𝑣̃𝑖(𝑡) = 𝑣𝑖(𝑡 − 𝛿𝑣,𝑖(𝑡)), (4.3)

where 𝜏𝑣,𝑖 is the time-variant communication delay in 𝑣𝑖. By Applying Taylor’s theorem to (4.3) we can write the time delay as [38]

𝑣̃𝑖(𝑡) = 𝑣𝑖(𝑡) + (−𝜏𝑣,𝑖𝑣̇𝑖(𝑡) +… ). (4.4)

Note that (4.4) is still nonlinear, but only written in the additive form.

4.2. Faulty platoon model

The state space representation for a platoon of 𝑛 vehicles can be given by

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑣𝑣
∗
1(𝑡) + 𝐵𝛿,j𝛿𝑖(𝑡), (4.5)

𝑦(𝑡) = 𝐶𝑥(𝑡), (4.6)

where 𝛿𝑖(𝑡) is bounded unknown signal due to a platoon fault. The aim of this paper is to classify the fault class that produced 𝛿𝑖.
Moreover,

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴1 … 0
𝐵2𝐶1 𝐴2
⋮ ⋱ ⋱ ⋮
0 … 𝐵𝑛𝐶𝑛−1 𝐴𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑣 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵1
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐶 = diag(𝐶1,… , 𝐶𝑛), 𝐶𝑗 =
[

1 0 0
]

,

𝐴𝑖 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
−𝛾𝑖 −𝛽𝑖 −𝛼𝑖

⎤

⎥

⎥

⎦

, 𝐵𝑖 =
⎡

⎢

⎢

⎣

0
𝜖𝑖

𝛾𝑖 − 𝛼𝑖𝜖𝑖

⎤

⎥

⎥

⎦

,

5



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.

C

t

5

I
t
s
t
u

𝐶

r

𝐵

y

where 𝐴 ∈ R𝑛𝑝×𝑛𝑝 , 𝐵𝑣 ∈ R𝑛𝑝×1, 𝐵𝛿 ∈ R𝑛𝑝×1, 𝐶 ∈ R𝑛×𝑛𝑝 , and 𝑛𝑝 is the platoon order. 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, and 𝜖𝑖 are constants derived from the
vehicle model and are different for each CAV model. For the first CAV model, 𝛼𝑖 =

1
𝜏𝑖
, 𝛽𝑖 = 𝜖𝑖 =

𝑘P1 ,𝑖
𝜏𝑖

, and 𝛾𝑖 =
𝑘P1 ,𝑖
𝜏𝑖

. For the second

AV model, 𝜂𝑗 =
𝑆𝑗

𝐺2
𝑗 𝑟

2
𝑗𝑀𝑗

, 𝛼𝑖 = 𝜅𝑖𝑅𝑖[𝜂𝑖 + 1+ 𝐹𝑖𝐼𝑖
𝑅𝑖

], 𝛽𝑖 = 𝜅𝑖[
𝐶2
𝑖 𝜂𝑖
𝑆𝑖

+ 𝐹𝑖 + 𝜁𝑖𝑘I2 ,𝑖], 𝛾𝑖 = 𝜅𝑖𝜁𝑖, 𝜖𝑖 = 𝛾𝑖𝑘I2 ,𝑖, 𝜅𝑖 =
1

𝐼𝑖(𝜂𝑖+1)
, and 𝜁𝑖 =

𝐶𝑖𝑘P2 ,𝑖
𝑘I,𝑖𝐺𝑖𝑟𝑖𝑀𝑖

. And for

he third CAV model, 𝛼𝑖 = 𝜎𝑖 + 𝜈𝑖 + 𝜈𝑖𝑘P3 ,𝑖, 𝜖𝑖 = ̇𝑓 (ℎ∗)𝜎𝑖𝑘P3 ,𝑖 + 𝜈𝑖𝑘I3 ,𝑖, 𝛽𝑖 = 𝜎𝑖 ̇𝑓 (ℎ∗) + 𝜖𝑖, 𝛾𝑖 = 𝜎𝑖𝑘I3 ,𝑖
̇𝑓 (ℎ∗).

Let j denote the fault class, for j ∈ {m, f , d}, j = {m} indicates motor disturbances, j = {f} indicates FDI fault, and j = {d} indicates
V2V time delay, then we can define

𝛿𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛿𝐶𝑖
(𝑡), j = {m},

𝛿𝑓,𝑖(𝑡), j = {f},
(−𝜏𝑣,𝑖𝑣̇𝑖(𝑡) +… ), j = {d},

(4.7)

𝐵𝛿,j =
[

0 … 1 … 0
]T . (4.8)

Note that the entry of the cell that carries the number 1 in 𝐵𝛿,j is different for each fault class.

. Expert classification policy using transmissibility operators

Transmissibility operators are mathematical objects that characterize the relationship between outputs of an underlying system.
n this section, we identify a transmissibility operator for each faulty scenario, then the fault can be classified based on which
ransmissibility operator correctly estimates the measured fault. Transmissibilities can obtain an accurate estimation of the faulty
ignal under unknown fault 𝛿𝑖. However, for such an estimation the transmissibility operators must be noncausal, which results in a
ime-delayed fault classification and cannot be used for online applications. To this end, we implement the fault classification offline
sing transmissibilities, then use DAgger to transfer the classification experience to a new machine learning agent in Section 6.

Consider the platoon described by the state space model (4.5), (4.6). Then, define

𝑦i(𝑡)
𝛥
=
[

𝑣𝑖−1(𝑡)
𝑣𝑖+1(𝑡)

]

= 𝐶i𝑥(𝑡) ∈ R𝑝, (5.1)

𝑣𝑖(𝑡) = 𝐶o𝑥(𝑡) ∈ R, (5.2)

to be two independent sets of noise-free velocity outputs, where 𝑝 = 2 is the number of independent pseudo inputs,

𝐶i =
[

0 … 0 𝐶𝑖−1 0 0 0 … 0
0 … 0 0 0 𝐶𝑖+1 0 … 0

]

, (5.3)

𝐶o =
[

0 … 0 𝐶𝑖 0 … 0
]

, (5.4)

i ∈ R𝑝×𝑛𝑝 and 𝐶o ∈ R1×𝑛𝑝 .
The relationships between 𝑦i and 𝑢 and 𝑣𝑖 and 𝑢 can be written as

𝛿(𝐩)𝑦i(𝑡) = 𝛤i,j(𝐩)𝑢(𝑡), (5.5)

𝛿(𝐩)𝑣𝑖(𝑡) = 𝛤o,j(𝐩)𝑢(𝑡), (5.6)

espectively, where

𝛤i,j(𝐩)
𝛥
= 𝐶iadj(𝐩𝐈𝑛𝑝 − 𝐴)𝐵j, (5.7)

𝛤o,j(𝐩)
𝛥
= 𝐶oadj(𝐩𝐈𝑛𝑝 − 𝐴)𝐵j, (5.8)

𝑢(𝑡) =
[

𝑣∗1(𝑡) 𝛿𝑖(𝑡)
]T , (5.9)

j =
[

𝐵𝑣 𝐵𝛿,j
]

. Multiplying (5.5) by adj𝛤i,j(𝐩) from the left and using the fact that

adj𝛤i,j(𝐩)𝛤i,j(𝐩) = det 𝛤i,j(𝐩)𝐈𝑛𝑝 (5.10)

ields

𝛿(𝐩)adj𝛤i,j(𝐩)𝑦i(𝑡) = det 𝛤i,j(𝐩)𝑢(𝑡), (5.11)

where adj𝛤i,j denotes the adjugate matrix of 𝛤i,j and 𝐈𝑛𝑝 is the 𝑛𝑝×𝑛𝑝 identity matrix. Moreover, multiplying (5.6) by det 𝛤i,j(𝐩) yields

𝛿(𝐩) det 𝛤i,j(𝐩)𝑣𝑖(𝑡) = 𝛤o,j(𝐩) det 𝛤i,j(𝐩)𝑢(𝑡). (5.12)

Next, substituting the left-hand side of (5.11) in (5.12) yields
6

𝛿(𝐩) det 𝛤i,j(𝐩)𝑣𝑖(𝑡) = 𝛿(𝐩)𝛤o,j(𝐩)adj𝛤i,j(𝐩)𝑦i(𝑡). (5.13)



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.

d
t
A

𝑣

v

C

w
a
v
𝐸
a
(
c
i

5

m
p
w

w
o
t

Then the transmissibility whose pseudo input is 𝑦i and whose pseudo output is 𝑣𝑖 while vehicle 𝑖 is under the fault class j satisfies
[7]

𝑣𝑖(𝑡) = j(𝐩)𝑦i(𝑡), (5.14)

where

j(𝐩)
𝛥
=

𝛿(𝐩)
𝛿(𝐩)

𝛤o,j(𝐩)adj𝛤−1
i,j (𝐩), (5.15)

Note that (5.14) is a compact way of writing the differential equation (5.13). Cancellation of the common term 𝛿(𝐩) in (5.13)
oes not exclude any solutions of the differential equation (5.13), and thus is allowed. This cancellation yields a reduced order
ransmissibility operator. Although this result may seem straightforward to the reader, the proof has many technical details [7].
fter canceling the common term 𝛿(𝐩), (5.13) becomes

det 𝛤i,j(𝐩)𝑣𝑖(𝑡) = 𝛤o,j(𝐩)adj𝛤i,j(𝐩)𝑦i(𝑡), (5.16)

which can be written as (5.14) with j in (5.15) redefined as

j(𝐩)
𝛥
= 𝛤o,j(𝐩)𝛤−1

i,j (𝐩). (5.17)

It is important to mention that the transmissibility operator j(𝐩) in (5.17) is independent of the excitation signals 𝑢 that includes
the fault dynamics, the initial condition 𝑥(0), and the dynamics of the platoon denoted by the polynomial 𝛿(𝐩). Different faults will
result in different 𝐵j and therefore different transmissibility operator j. The faulty signal 𝑣𝑖 can be estimated while the vehicle 𝑖 is
under unknown fault 𝛿𝑖 along with the velocity subset 𝑦i from

𝑣̂𝑖, (𝑡) = j(𝐩)𝑦i(𝑡). (5.18)

Note that estimating 𝑣̂𝑖, depends on the velocity of the front vehicle 𝑣𝑖+1 that occurs in a timely-manner after 𝑣𝑖. That is, estimating
̂𝑖 depends on the future measurements of 𝑣𝑖+1, which results in a noncausal transmissibility operator j (the second output channel
in 𝑦i will always have more zeros than the output channel of 𝑣𝑖). Define the discrepancy between the measured and estimated
elocities

𝑒j, (𝑡) = 𝑣𝑖(𝑡) − 𝑣̂𝑖, (𝑡). (5.19)

onsider discretizing 𝑒j, then compute

𝐸j, (𝑘,𝑤)
𝛥
=

√

√

√

√

𝑤+𝑘
∑

𝑖=𝑘
‖𝑒j, (𝑖)‖, (5.20)

hich represents the norm of the residuals over a sliding window of 𝑤 steps width. The transmissibility-based fault classification
lgorithm depends on the discrepancy between the measured and estimated velocities. That is, if the fault class that affects the
ehicle 𝑖 is the same as the class j was derived on, then the level of the normal of residual 𝐸j, is low, otherwise, the level of
j, will be high. Note that estimating 𝑣̂𝑖, depends on the velocity of the following vehicle 𝑣𝑖+1 that occurs in a timely-manner
fter 𝑣𝑖. That is, estimating 𝑣̂𝑖 depends on the future measurements of 𝑣𝑖+1, which results in a noncausal transmissibility operator j
the second output channel in 𝑦i will always have more zeros than the output channel of 𝑣𝑖). Therefore, transmissibility-based fault
lassification can only be used offline. To this end, we use DAgger in the rest of the paper to transfer the transmissibility experience
n classifying the fault type to a supervised machine learning agent to classify platoon faults online.

.1. Transmissibility identification

The transmissibility derivation introduced in Section 5 is based on the platoon model. However, in practice, the platoon model
ight be uncertain or even unknown. This section identifies the transmissibility in the structure of FIR models in case of unknown
latoon model. Since sensor measurements are obtained in discrete time, we replace 𝐩 by the forward shift operator 𝐪. Accordingly,
e consider identifying  in the 𝐪 domain. The FIR model structure of  is given by

 (𝐪) =
𝑟
∑

𝑗=−𝑑
𝐻𝑗𝐪−𝑗 , (5.21)

here 𝑟, 𝑑 denote the order of the causal and noncausal parts of the FIR model of  , respectively, and 𝐻𝑗 ∈ R1×𝑚 is the 𝑗th coefficient
f the transmissibility operator  . Let 𝛩 = [𝐻−𝑑 ,… ,𝐻𝑟 ]T, then assume the system to be under healthy conditions for 𝜖 steps, then
he least squares estimate of the transmissibility parameters 𝛩 is given by

𝛩̂ = (𝛷𝛷T)−1𝛷𝛹, (5.22)

𝛹 =
(

𝑣𝑖(𝑟) ⋯ 𝑣𝑖(𝜖 − 𝑑)
)T , (5.23)

𝛷 =
(

𝜙(𝑟) ⋯ 𝜙(𝜖 − 𝑑)
)

, (5.24)

𝜙(𝑘) =
(

𝑦i(𝑘 + 𝑑) ⋯ 𝑦i(𝑘 − 𝑟)
)T . (5.25)
7

where 𝑣𝑖 and 𝑦i are the platoon velocities as defined in Eqs. (5.1)–(5.2).



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 3. Fault classification scheme. Three fault estimations are considered, each for a different fault class. Then the closest fault estimation to the measured one
is considered as the actual fault. The DAgger algorithm in Algorithm 1 is used to train the estimators.

6. Novice classification policy training using imitation learning

As mentioned earlier, the difference between the expert and novice policies is the estimation method. The novice policy
estimation is based on a neural network for each fault class as shown in Fig. 3, where the fault detection and localization are
considered in [4]. Inspired by the work introduced in [10,27], we use DAgger to transfer the estimation experience from the
transmissibility operators to the neural networks as in Algorithm 1, then we use the trained novice policy 𝜋 for online classification
as in Fig. 3. Moreover, DAgger will give the ability to adapt to new fault classes without the need to re-train the diagnosis model
from the beginning.

The training procedure starts with a pre-recorded labeled data set 0 and the initial novice policy 𝜋1
is trained on it. For epochs

𝑖 = 1,… , 𝐾𝑒, DAgger is then implemented to update the novice policy from 𝜋1
to 𝜋 = 𝜋𝐾𝑒+1

. Each epoch represents an update
in the novice policy such that epoch 𝑖 updates 𝜋𝑖

to 𝜋𝑖+1
. Each epoch consists of 𝐾𝑟 rollouts (runs), each of these rollouts updates

the training data set . Each run is 𝐾𝑘 time steps long. Dagger allows the novice classification policy to work as long as the novice
decision taken about the fault class 𝑑 is the same as the decision taken by the expert policy 𝑑 . Otherwise, the algorithm follows
the expert classification policy and the decisions taken by the expert are recorded and added to the training data set , and then
the novice policy is trained on the updated training data set by the end of the epoch.

6.1. Data collection and neural networks structure

To collect the pre-recorded data set , the platoon model in (4.5)–(4.6) was constructed with five vehicles such that the first and
third vehicles follow the first CAV model, the second and fifth vehicles follow the second CAV model, and the fourth vehicle follow
the third CAV model. The desired velocity of the platoon 𝑣∗1 was set to band-limited white noise with zero mean and maximum
absolute amplitude of 30 m∕s. The frequency of the desired velocity is constant during each run and varies randomly between 1−50
s from one run to another. Only one fault class was emulated to a different vehicle in each run.

We recorded the faulty vehicle’s velocity signal for 6000 runs, such that 2000 runs with each class of the three faults. Each signal
was 50 s long with sampling time 0.1 s. Note that the steady transition platoon movement case is included when the velocity signal
is 50 s long and the desired velocity frequency is 0.02 Hz. Moreover, the case where the platoon moves with oscillatory velocity is
also included when the desired velocity frequency is relatively high. We create three deep neural networks, one for each fault class.
Each neural network consists of six hidden layers, where each hidden layer consists of 128 neurons. The sixth layer is then followed
by a scaling layer and a regression layer. Each neural network estimates the faulty signal 𝑣𝑖 for a different fault class.

The integration between transmissibility and DAgger has the ability to adapt to new fault classes without the need to re-train
a diagnosis model from the beginning each time we wish to include a new fault class. This can be simply done by creating a
new transmissibility operator for the new fault class, then DAgger will add the new experience to the previously trained diagnosis
model. Please note that transmissibility operators are mathematical estimators (similar to transfer functions) that do not require any
intense training or computations. The following procedure shows how a new fault class can be added to the diagnosis model using
the transmissibility-DAgger integration:
8



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Algorithm 1: Novice policy training using DAgger.
 ⟵ 0
train 𝜋1

on 
for epoch 𝑖 = 1 ∶ 𝐾𝑒 do

for rollout 𝑗 = 1 ∶ 𝐾𝑟 do
novice is in charge
for time step 𝑘 = 1 ∶ 𝐾𝑘 do

if 𝑑 = 𝑑 then
keep novice in charge

else
expert takes charge
record expert labels into 𝑗

end
end
 =  ∪𝑗

end
train 𝜋𝑖+1

on 
end

1. Derive the new fault input vector 𝐵𝛿,j for the new fault class as in Eqs. (4.7) and (4.8).
2. Define a new transmissibility operator using Eq. (5.18) in the revised manuscript for the new fault. This can be simply done

by substituting the new fault input vector 𝐵𝛿,j in Eqs. (5.7) and (5.8).
3. Run DAgger algorithm in Algorithm 1 of the revised manuscript. When it reaches the if statement, 𝑑 will follow the new

fault class and thus 𝑑 ≠ 𝑑 . This will result in the new labels being recorded in 𝐷𝑗 , and then the diagnosis model will be
adapted with 𝐷𝑗 .

6.2. Faults emulation

Following the model in (4.7), we set 𝛿𝑖 to band-limited white noise with zero mean and unit variance. The faults emulation
differs in constructing 𝐵𝛿,j according to the models (4.1)–(4.4). The actuator fault is emulated in vehicle #2 as it follows the bond
graph model. FDI and V2V delay faults were emulated in vehicles (#2 − #4) as these vehicles send their velocities through the V2V
communication links.

6.3. Models training

After collecting a set of 6000 signals labeled from the expert, we used this set as an initialization for the novice policy training
0. Training the novice policy on 0 produces the initial novice policy 𝜋1

, then we use DAgger to enhance 𝜋1
. We set the number

of DAgger epochs to 𝐾𝑒 = 40, that is, the novice policy is enhanced 40 times from 𝜋1
to 𝜋41

. The number of rollouts was set in
each epoch to 𝐾𝑟 = 100, that is, each epoch consists of 100 faulty signals. Each signal (rollout) is 50 s long with 0.1 s sampling time,
that is, 𝐾𝑘 = 501 steps. To conclude the training procedure, the novice policy was first trained on a set of 6000 labeled signals, and
then the novice policy was enhanced 40 times over a set of 4000 signals.

6.4. Fault classification

The enhanced trained machine learning agent that consists of three neural networks is then used to obtain three estimations of
the faulty signal, one for each fault class. Each of the estimations will be compared to the measured one, and the closest estimation to
the measured behavior is assumed to be the fault class. This comparison represents the fault classification, which is determining what
class of faults the measured fault belongs too. To distinguish the machine learning estimation from the transmissibility estimation,
we denote the machine learning estimation with 𝑣̂𝑖, ,j where j ∈ {m, f , d}. Similar to the transmissibility-based classification, define
the discrepancy between the measured and estimated velocities

𝑒j, (𝑡) = 𝑣𝑖(𝑡) − 𝑣̂𝑖, (𝑡). (6.1)

and compute the norm of residuals over a sliding window with 𝑤 steps width

𝐸j, (𝑘,𝑤)
𝛥
=

√

√

√

√

𝑤+𝑘
∑

‖𝑒j, (𝑖)‖. (6.2)
9

𝑖=𝑘



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 4. Simulation Results: A simulation example of three measured faulty signals, each with a different fault class, and their online estimations using the DAgger
trained machine learning agent.

Fig. 5. Simulation Results: Norm of residuals over a sliding window using (6.2) where the emulated fault switches every 50 s. Note that the level of the norm
of residual that is based on the same emulated fault is lower than the other two residuals.

The classification policy is then based on the level of norm or residuals. That is, if the norm of residual of the fault class that 𝐸j,
was obtained on is the same as the actual fault acting on the system then the level of 𝐸j, should be low, otherwise the level of
𝐸j, will be high.

It is important to notice here that the proposed approach does not identify faults. The proposed approach is independent of the
fault dynamics. Thus, even when the fault dynamics are unknown, the proposed approach does not require identifying them. This
is due to the transmissibility’s ability of estimating the faulty behaviors through the velocity measurements only.

7. Simulation example

The same platoon considered for the training in Section 6.1 is considered for simulation testing. All faults are emulated as in
6.2. The faulty velocity signals were recorded for the testing purposes by setting 𝛿𝐶,𝑖, 𝛿𝑓,𝑖, and 𝛿𝑣,𝑖 to different random values. Fig. 4
shows an example of three measured faulty signals, each with a different fault class, and their online estimation using the DAgger
trained machine learning agent 𝑣̂𝑖, . We can see that by using DAgger, the novice policy was able to obtain a close estimation of
the faulty signals under different fault classes. To show the online classification more clearly, an example run was conducted by
running the platoon for 150 s. For the first 50 s, the motor disturbances fault was emulated, then we switched the emulated fault
from motor disturbances to FDI for 50 s, and then switched it again from FDI to V2V delay for 50 s. The recorded signal was then
compared with the three novice estimations as in Fig. 3, and the three residuals were obtained between the recorded signal and
the three estimations. The norms of residuals over sliding windows are then obtained as in (6.2) with 𝑤 = 100 steps for the three
residuals as shown in Fig. 5. We can see from Fig. 5 that the level of the norm of residual that is based on the same emulated fault
is lower than the other two residuals.

8. Experimental testing results

We consider the experimental setup shown in Fig. 6 consisting of three autonomous differential Quanser robots called Qbots 2e.
Each Qbot consists of two coaxial wheels, where each wheel is driven by a DC motor that is controlled using a closed-loop inverse
kinematic controller. If the desired angular velocity is zero, then both wheels velocities are equal and the Qbot moves forward
or backward in a straight line. Qbot1 receives the excitation signal from a computer through wireless communication, and Qbot2
10



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 6. The experimental setup. Qbot1 receives the desired velocity from the computer while Qbot2, and third Qbot3 receive the desired velocity from the
preceding Qbot via V2V communication.

Fig. 7. Experimental emulation of the platoon faults. Three faults are considered separately, as represented by the red blocks. A physical fault is represented in
actuator disturbances, and two cyber faults are FDI and V2V delay.

is connected with Qbot1 via a V2V communication channel. Similarly, Qbot3 is connected with Qbot2 via a V2V communication
channel. We run the setup by setting the first Qbot desired velocity to band-limited white noise with maximum absolute velocity of
0.15 m∕s.

8.1. Qbot internal noise emulation

We consider injecting Gaussian noise in the command signal of the DC-motor that derives the right wheel of the Qbot as shown
in Fig. 7. This makes the velocities of the wheels in Qbot3 not equal, which results in a 2-D motion of Qbot3 (i.e. a physical fault).
We set the injected noise to band-limited white noise with maximum absolute amplitude of 0.05 m∕s. This fault was emulated in
the second and third Qbots. We recorded 40 runs with Qbot internal disturbances, each is 50 s long with 0.1 s sampling time. The
disturbances signal injected is adjusted to change its frequency after each run, such that the disturbances’ frequency varies randomly
between 1 − 0.02 Hz.

8.2. FDI emulation

Following (4.2), we set 𝛿𝑓,𝑖 to band-limited white noise with maximum absolute amplitude of 0.05 m∕s as shown in Fig. 7. FDI
fault was emulated in the first and second Qbots as these robots send their velocities through the V2V communication links. We
recorded 40 runs with FDI, each is 50 s long with 0.1 s sampling time. The disturbances signal 𝛿𝑓,𝑖 also changes its frequency after
each run to vary randomly between 1 − 0.02 Hz.

8.3. Communication time delay emulation

Following (4.3), we set 𝜏𝑣,𝑖 to a constant value between 1 − 3 s, as shown in Fig. 7. Similar to the FDI emulation, V2V
communication time delay was also emulated in the first and second Qbots as these robots send their velocities through the V2V
communication links. We recorded 40 runs with V2V delay fault, each is 50 s long with 0.1 s sampling time. The delay value 𝜏𝑣,𝑖
changes from one run to another randomly between 1 − 3 s.
11



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 8. Experimental Results: An experimental example of three measured faulty signals, each with a different fault class, and their online estimations using the
novice policy before implementing DAgger.

Fig. 9. Experimental Results: An experimental example of three measured faulty signals, each with a different fault class and their online estimations using the
DAgger trained machine learning agent.

8.4. Fault classification

Fig. 8 shows test runs of three measured faulty signals, each with a different fault class, and their online estimation while the
machine learning agent is only trained on 0. That is, the estimations in Fig. 8 are before enhancing the training using DAgger.
Fig. 9 shows test runs of three measured faulty signals, each with a different fault class, and their online estimation using the DAgger
trained machine learning agent from Section 6. Similar to the simulation example presented in Section 7, we run the setup for 270
s, actuator disturbances fault was emulated for the first 90 s, then we switch the emulated fault to FDI for 90 s, and then switch it
to V2V delay for the last 90 s. Fig. 10 shows the norm of residuals over a sliding window computed using (6.2) with 𝑤 = 100 steps,
where the residuals are between the measured faulty signal and the three estimations. Note from Fig. 10 the level of the norm of
residual that is based on the same emulated fault is lower than the other two residuals. Moreover, Fig. 11 shows the average of
the norms of residuals for the offline classifier (transmissiblity), online classifier before DAgger, and the online classifier after using
DAgger to enhance the online classification with the transmissiblity.

9. Results comparisons

We consider comparing the current results with nine classification trees. These classification trees are: Support Vector Machine
(SVM), Naive Bayes (NB), Quadratic Discriminant (QD), and K-Nearest Neighbors (KNN). SVM is configured with Quadratic (Q-SVM)
12



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 10. Experimental Results: Norm of residuals over a sliding window using (6.2) where the emulated fault switches every 90 s. Note that the level of the
norm of residual that is based on the same emulated fault is lower than the other two residuals.

Fig. 11. Average of the norms of residuals for the offline classifier (transmissiblity), online classifier before DAgger, and the online classifier after using DAgger
to enhance the online classification with the transmissiblity.

Table 2
Classification accuracy for the experimental test with the number of correctly classified signals.
Method Act. Dist. FDI Delay # Success runs Accuracy

Transmissibility-DAgger 37∕40 40∕40 38∕40 115∕120 95.8%
Q-SVM 28∕40 31∕40 35∕40 94∕120 78.3%
C-SVM 33∕40 25∕40 34∕40 92∕120 76.6%
QD 38∕40 37∕40 28∕40 103∕120 85.8%
G-NB 36∕40 29∕40 31∕40 96∕120 80%
CE-KNN 29∕40 34∕40 33∕40 96∕120 80%
C-KNN 25∕40 32∕40 31∕40 88∕120 73.3%
RF 33∕40 29∕40 31∕40 93∕120 77.5%
BE 26∕40 27∕40 19∕40 72∕120 60%

and Cubic (C-SVM) Kernel functions separately in two separate models. NB is configured with Gaussian Kernel type (G-NB). KNN
is configured with Coarse Euclidean (CE-KNN) and Cubic (C-KNN) distance metrics separately in two separate models. Moreover,
two ensembles techniques are: Random Forest Classifier (FC), and Boosted Ensemble (BE). After comparing all model structures, the
fault classification is shown to be most effective when Q-SVM is considered for the first classifier and QD for the second classifier.
All of these models are first trained on the data set obtained in Section 6.2, and then used to classify the data recorded from the
experimental setup.

We recorded 120 runs, 40 runs with each Qbot fault class. Each run is 50 s long with 0.1 s sampling time. The actuator disturbances
signal injected is adjusted to change its frequency after each run, such that the disturbances’ frequency varies randomly between
1 − 0.02 Hz. Similarly, the FDI disturbances signal also changes its frequency after each run to vary randomly between 1 − 0.02 Hz.
The delay value 𝜏𝑣,𝑖 for the V2V delay changes from one run to another randomly between 1 − 3 s. We then use the DAgger trained
classification scheme presented in Fig. 3 to classify the fault class in each of the 120 runs. The proposed approach is then compared
with the six classification trees. Table 2 lists the successfully classified runs, where the overall classification success achieved using
the proposed approach is 95.8%, while the second accuracy achieved was 85.8% using QD. Fig. 12 shows the average of the norms
of residuals for each fault class of the methods in Table 2. The norm of residual was computed between the measured faulty velocity
signals and their ML-based estimation.
13



Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
Fig. 12. Average of the norms of residuals for each fault class of the methods in Table 2. The norm of residual was computed between the measured faulty
velocity signals and their ML-based estimation.

10. Conclusions

Fault mitigation techniques could be faster and more reliable with known fault class in CAV platoon. In this paper we used
transmissibility operators, which are relationships that relate a set of velocities with another in the platoon, to classify the faults.
However, transmissibility operators are shown to be noncausal and therefore can only be used offline. We then used DAgger, which
is an extension in imitation learning that transfers experience from the expert agents (transmissibility operators) to novice agents
(untrained neural network). A heterogeneous CAV platoon was modeled with three different faults separately. These faults are
actuator disturbances, FDI attack, and V2V communication time delay. The classification scheme depends on estimating the faulty
signal in case of each fault class. Next, the measured faulty signal is then compared with the three estimations and the closer fault
estimation to the measured one is considered as the actual fault on the platoon. After using DAgger to train the novice agent, we test
it on the simulation model, and then we apply it on an experimental setup that consists of three autonomous robots. The proposed
results are compared with six different machine learning classification models. The overall classification accuracy achieved using
the proposed approach was 95.8% for the experiment.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Funding

All of the sources of funding for the work described in this publication are acknowledged below:
Natural Sciences and Engineering Research Council of Canada.

Data availability

No data was used for the research described in the article.

References

[1] A. Stolt, M. Linderoth, A. Robertsson, R. Johansson, Detection of contact force transients in robotic assembly, in: IEEE International Conference on Robotics
and Automation, ICRA, 2015, pp. 962–968.

[2] A. Petrillo, A. Pescape, S. Santini, A secure adaptive control for cooperative driving of autonomous connected vehicles in the presence of heterogeneous
communication delays and cyberattacks, IEEE Trans. Cybern. 51 (2021) 1134–1149.

[3] A. Prasad, J.B. Edward, K. Ravi, A review on fault classification methodologies in power transmission systems: Part—I, J. Electr. Syst. Inf. Technol. 5
(2018) 48–60.

[4] A. Khalil, M. Al Janaideh, K.F. Aljanaideh, D. Kundur, Fault detection, localization, and mitigation of a network of connected autonomous vehicles using
transmissibility identification, in: American Control Conference, ACC, 2020, pp. 386–391.

[5] T. Han, Q. Hu, H.-S. Shin, A. Tsourdos, M. Xin, Incremental twisting fault tolerant control for hypersonic vehicles with partial model knowledge, IEEE
Trans. Ind. Inform. (2021).

[6] Y. Lu, R. Su, C. Zhang, L. Qiao, Event-triggered adaptive formation keeping and interception scheme for autonomous surface vehicles under malicious
attacks, IEEE Trans. Ind. Inform. (2021).

[7] K.F. Aljanaideh, D.S. Bernstein, Time-domain analysis of sensor-to-sensor transmissibility operators, Automatica 53 (2015) 312–319.
[8] A. Magdaleno, A. Lorenzana, A transmissibility-based procedure to estimate the modal properties of an on-board tuned mass damper, Mech. Syst. Signal

Process. 135 (2020) 106378.
[9] N.M. Maia, R.A. Almeida, A.P. Urgueira, R.P. Sampaio, Damage detection and quantification using transmissibility, Mech. Syst. Signal Process. 25 (7)

(2011) 2475–2483.
14

http://refhub.elsevier.com/S0888-3270(23)00006-7/sb1
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb1
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb1
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb2
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb2
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb2
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb3
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb3
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb3
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb4
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb4
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb4
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb5
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb5
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb5
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb6
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb6
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb6
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb7
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb8
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb8
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb8
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb9
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb9
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb9


Mechanical Systems and Signal Processing 190 (2023) 110099A. Khalil et al.
[10] K. Menda, K. Driggs-Campbell, M.J. Kochenderfer, Ensembledagger: A bayesian approach to safe imitation learning, in: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, IEEE, 2019, pp. 5041–5048.

[11] H. Daumé, J. Langford, D. Marcu, Search-based structured prediction, Mach. Learn. 75 (3) (2009) 297–325.
[12] A.R. Javed, M. Usman, S.U. Rehman, M.U. Khan, M.S. Haghighi, Anomaly detection in automated vehicles using multistage attention-based convolutional

neural network, IEEE Trans. Intell. Transp. Syst. 22 (7) (2020) 4291–4300.
[13] L. Chen, S. Lin, X. Lu, D. Cao, H. Wu, C. Guo, C. Liu, F.-Y. Wang, Deep neural network based vehicle and pedestrian detection for autonomous driving:

A survey, IEEE Trans. Intell. Transp. Syst. 22 (6) (2021) 3234–3246.
[14] L.S. Lopes, L.M. Camarinha-Matos, Learning to diagnose failures of assembly tasks, in: Artificial Intelligence in Real-Time Control 1994, 1995, pp. 97–103.
[15] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, J. Peters, Towards learning hierarchical skills for multi-phase manipulation tasks, in: IEEE International

Conference on Robotics and Automation, ICRA, 2015, pp. 1503–1510.
[16] A. Rodriguez, D. Bourne, M. Mason, G.F. Rossano, J. Wang, Failure detection in assembly: Force signature analysis, in: IEEE International Conference on

Automation Science and Engineering, 2010, pp. 210–215.
[17] X. Song, H. Liu, K. Althoefer, T. Nanayakkara, L.D. Seneviratne, Efficient break-away friction ratio and slip prediction based on haptic surface exploration,

IEEE Trans. Robot. 30 (2013) 203–219.
[18] G.R. Moreira, G.J. Lahr, T. Boaventura, J.O. Savazzi, G.A. Caurin, Online prediction of threading task failure using convolutional neural networks, in:

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018, pp. 2056–2061.
[19] J. Rojas, S. Luo, D. Zhu, Y. Du, H. Lin, Z. Huang, W. Kuang, K. Harada, Online robot introspection via wrench-based action grammars, in: IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, 2017, pp. 5429–5436.
[20] H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao, D. Li, Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment,

IEEE Trans. Ind. Inform. 14 (9) (2018) 4224–4231.
[21] A. Saxena, A. Saad, Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems, Appl. Soft Comput. 7 (1)

(2007) 441–454.
[22] S.S. Roy, S. Dey, S. Chatterjee, Autocorrelation aided random forest classifier-based bearing fault detection framework, IEEE Sens. J. 20 (18) (2020)

10792–10800.
[23] V. Jackins, S. Vimal, M. Kaliappan, M.Y. Lee, AI-based smart prediction of clinical disease using random forest classifier and naive Bayes, J. Supercomput.

77 (5) (2021) 5198–5219.
[24] S. Ross, N. Melik-Barkhudarov, K.S. Shankar, A. Wendel, D. Dey, J.A. Bagnell, M. Hebert, Learning monocular reactive uav control in cluttered natural

environments, in: 2013 IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 1765–1772.
[25] The MAt, Imitate nonlinear mpc controller for flying robot, [Online]. Available: https://www.mathworks.com/help/reinforcement--learning/ug/imitate--

nonlinear--mpc--controller--for--flying--robot.html.
[26] J. Zhang, K. Cho, Query-efficient imitation learning for end-to-end autonomous driving, 2016, arXiv preprint arXiv:1605.06450.
[27] M. Kelly, C. Sidrane, K. Driggs-Campbell, M.J. Kochenderfer, Hg-dagger: Interactive imitation learning with human experts, in: 2019 International Conference

on Robotics and Automation, ICRA, IEEE, 2019, pp. 8077–8083.
[28] Y. Jiang, S. Yin, J. Dong, O. Kaynak, A review on soft sensors for monitoring, control and optimization of industrial processes, IEEE Sens. J. 21 (2020)

12868–12881.
[29] X. He, E. Hashemi, K.H. Johansson, Distributed control under compromised measurements: Resilient estimation, attack detection, and vehicle platooning,

2020, arXiv preprint arXiv:2010.09661.
[30] Y. Hu, S. Zhang, Y. Yan, L. Wang, X. Qian, L. Yang, A smart electrostatic sensor for online condition monitoring of power transmission belts, IEEE Trans.

Ind. Electron. 64 (9) (2017) 7313–7322.
[31] W. Yan, D. Tang, Y. Lin, A data-driven soft sensor modeling method based on deep learning and its application, IEEE Trans. Ind. Electron. 64 (5) (2016)

4237–4245.
[32] Z. Gao, X. Liu, M.Z. Chen, Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances, IEEE Trans.

Ind. Electron. 63 (4) (2015) 2537–2547.
[33] R. Rajamani, Vehicle Dynamics and Control, Springer Science & Business Media, 2011.
[34] B. Wang, M. Xu, L. Yang, Study on the economic and environmental benefits of different EV powertrain topologies, Energy Convers. Manage. 86 (2014)

916–926.
[35] D.C. Karnopp, D.L. Margolis, R.C. Rosenberg, System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, John Wiley & Sons, 2012.
[36] A. Khalil, M. Al Janaideh, K.F. Aljanaideh, D. Kundur, Output-only fault detection and mitigation of networks of autonomous vehicles, in: IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, pp. 2257–2264, 2020.
[37] G. Zhang, H. Zhang, X. Huang, J. Wang, H. Yu, R. Graaf, Active fault-tolerant control for electric vehicles with independently driven rear in-wheel motors

against certain actuator faults, IEEE Trans. Control Syst. Technol. 24 (5) (2015) 1557–1572.
[38] W. Jeon, A. Zemouche, R. Rajamani, Resilient control under cyber-attacks in connected ACC vehicles, in: ASME 2019 Dynamic Systems and Control

Conference, American Society of Mechanical Engineers Digital Collection, 2019.
15

http://refhub.elsevier.com/S0888-3270(23)00006-7/sb10
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb10
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb10
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb11
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb12
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb12
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb12
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb13
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb13
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb13
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb14
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb15
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb15
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb15
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb16
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb16
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb16
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb17
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb17
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb17
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb18
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb18
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb18
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb19
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb19
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb19
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb20
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb20
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb20
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb21
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb21
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb21
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb22
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb22
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb22
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb23
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb23
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb23
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb24
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb24
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb24
https://www.mathworks.com/help/reinforcement--learning/ug/imitate--nonlinear--mpc--controller--for--flying--robot.html
https://www.mathworks.com/help/reinforcement--learning/ug/imitate--nonlinear--mpc--controller--for--flying--robot.html
https://www.mathworks.com/help/reinforcement--learning/ug/imitate--nonlinear--mpc--controller--for--flying--robot.html
http://arxiv.org/abs/1605.06450
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb27
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb27
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb27
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb28
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb28
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb28
http://arxiv.org/abs/2010.09661
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb30
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb30
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb30
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb31
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb31
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb31
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb32
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb32
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb32
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb33
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb34
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb34
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb34
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb35
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb36
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb36
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb36
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb37
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb37
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb37
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb38
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb38
http://refhub.elsevier.com/S0888-3270(23)00006-7/sb38

	Online fault classification in Connected Autonomous Vehicles using output-only measurements
	Introduction
	Related Work
	Heterogeneous CAV Platoon Modeling
	CAV Dynamics
	First CAV Model
	Second CAV Model
	Third CAV Model

	Cruise Control

	Faulty Platoon Modeling
	Fault Scenarios
	Actuator Disturbances
	False Data Injection (FDI)
	Communication Delay (Denial-of-Service)

	Faulty Platoon Model

	Expert Classification Policy using Transmissibility Operators
	Transmissibility Identification

	Novice Classification Policy Training using Imitation Learning
	Data Collection and Neural Networks Structure
	Faults Emulation
	Models Training
	Fault Classification

	Simulation Example
	Experimental Testing Results
	Qbot Internal Noise Emulation
	FDI Emulation
	Communication Time Delay Emulation
	Fault Classification

	Results Comparisons
	Conclusions
	Declaration of Competing Interest
	Data availability
	References


