Lemma 1. Let $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$ be a finite set of points in d-dimensional space. If $n > d$ then we have, for some coefficients μ_1, \ldots, μ_n,

$$0 = \sum_{i=1}^{n} \mu_i p_i \text{ with } \mu_1, \ldots, \mu_n \text{ not all zero}, \quad (1)$$

and if $n > d + 1$ we can have (1) under the additional condition that

$$\sum_{i=1}^{n} \mu_i = 0. \quad (2)$$

In the latter case, some of μ_1, \ldots, μ_n are positive and some are negative.

Proof. The first part of the lemma follows from the fact that every set of $d + 1$ or more points in a d-dimensional vector space is linearly dependent. The second part follows from the observation that $\{p_2 - p_1, p_3 - p_1, \ldots, p_n - p_1\}$ is linearly dependent, thus

$$0 = \sum_{i=2}^{n} \mu_i (p_i - p_1) \text{ with } \mu_2, \ldots, \mu_n \text{ not all zero.}$$

By defining $\mu_1 = -\sum_{i=2}^{n} \mu_i$, both (1) and (2) then hold. The only way that (2) can hold with all non-positive or all non-negative terms would be if all terms are zero.

\[\square\]
Now let P be any (not necessarily finite) set of points in \mathbb{R}^d. The **convex hull** of P, denoted $\text{Conv}(P)$, is the set of all convex combinations of points of P. In other words, a point $x \in \mathbb{R}^d$ is in $\text{Conv}(P)$ if and only if, for some positive integer n, and some set $\{p_1, \ldots, p_n\} \subseteq P$, and some set of coefficients $\{\alpha_1, \ldots, \alpha_n\}$ with $\alpha_i \geq 0$ for all $i \in \{1, \ldots, n\}$ and $\sum_{i=1}^n \alpha_i = 1$, we have

$$x = \sum_{i=1}^n \alpha_i p_i.$$

Theorem (Carathéodory). For $P \subseteq \mathbb{R}^d$, if $x \in \text{Conv}(P)$ then $x \in \text{Conv}(P')$ for some subset P' of P of cardinality at most $d + 1$.

Proof. Let x be a point of $\text{Conv}(P)$, so that for some positive integer n

$$x = \sum_{i=1}^n \alpha_i p_i$$

with, for all $i \in \{1, \ldots, n\}$, $p_i \in P$, $\alpha_i \geq 0$, and $\sum_{i=1}^n \alpha_i = 1$. If $n \leq d + 1$ there is nothing to prove. Otherwise, $n > d + 1$, so by Lemma 1, we have for scalars μ_1, \ldots, μ_n (some of which are positive) that $0 = \sum_{i=1}^n \mu_i p_i$, with $\sum_{i=1}^n \mu_i = 0$.

Now, for any real number λ, we have

$$x = \sum_{i=1}^n \alpha_i p_i - \lambda \sum_{i=1}^n \mu_i p_i = \sum_{i=1}^n (\alpha_i - \lambda \mu_i)p_i. \quad (3)$$

Note that

$$\sum_{i=1}^n (\alpha_i - \lambda \mu_i) = \sum_{i=1}^n \alpha_i - \lambda \sum_{i=1}^n \mu_i = \sum_{i=1}^n \alpha_i - \lambda \cdot 0 = 1,$$

i.e., the coefficients in the linear combination (3) sum to one. We will now select λ so that one of these coefficients becomes zero, while the remaining coefficients are positive, making (3) a convex combination of $n - 1$ points of P.

Let $J = \{j \in \{1, \ldots, n\} : \mu_j > 0\}$ (and note that J is not empty). Choose $j^* \in J$ so that $\alpha_{j^*} / \mu_{j^*} \leq \alpha_j / \mu_j$ for all $j \in J$, and let $\lambda = \alpha_{j^*} / \mu_{j^*}$. With this choice of λ, we have

$$\alpha_i - \lambda \mu_i \geq 0$$
for all \(i \in \{1, \ldots, n\} \). Indeed if \(i \in J \), then \(\mu_i > 0 \) and
\[
\alpha_i - \lambda \mu_i = \mu_i (\alpha_i/\mu_i - \lambda) \geq 0,
\]
while if \(i \not\in J \) then \(\mu_i \leq 0 \), and since \(\lambda \geq 0 \), we have
\[
\alpha_i - \lambda \mu_i \geq \alpha_i \geq 0.
\]
Finally observe that \(\alpha_{j^*} - \lambda \mu_{j^*} = 0 \), so
\[
x = \sum_{i=1}^{j^*-1} (\alpha_i - \lambda \mu_i) p_i + \sum_{i=j^*+1}^{n} (\alpha_i - \lambda \mu_i) p_i,
\]
which expresses \(x \) as a convex combination of the \(n - 1 \) elements of the set \(\{p_1, \ldots, p_n\} \setminus \{p_{j^*}\} \). This process can be repeated as long as \(n > d + 1 \), until \(x \) is represented as a convex combination of \(d + 1 \) elements of \(P \).

Theorem (Radon). Every set of \(d + 2 \) points in \(\mathbb{R}^d \) can be partitioned into two sets \(P_1 \) and \(P_2 \) such that \(\text{Conv}(P_1) \cap \text{Conv}(P_2) \neq \emptyset \).

Proof. Let \(n = d + 2 \) and let \(P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d \). By Lemma 1 we have for scalars \(\mu_1, \ldots, \mu_n \) (some of which are positive and some of which are non-positive) \(0 = \sum_{i=1}^{n} \mu_i p_i \) with \(\sum_{i=1}^{n} \mu_i = 0 \).

Let \(J = \{j \in \{1, \ldots, n\} : \mu_j > 0\} \) and let \(I = \{1, \ldots, n\} \setminus J \). Neither \(J \) nor \(I \) is empty. Let \(A = \sum_{j \in J} \mu_j \) and note that \(A > 0 \). Then \(\sum_{i \in I} \mu_i = -A \). Finally, let \(P_1 = \{p_j : j \in J\} \) and \(P_2 = \{p_i : i \in I\} \).

The convex hulls \(\text{Conv}(P_1) \) and \(\text{Conv}(P_2) \) contain the point
\[
p = \sum_{j \in J} \frac{\mu_j}{A} x_j = \sum_{i \in I} \frac{-\mu_i}{A} x_i
\]
as the first sum is a convex combination of points from \(P_1 \) and the second sum is a convex combination of points from \(P_2 \). Thus \(\text{Conv}(P_1) \cap \text{Conv}(P_2) \neq \emptyset \). \(\square \)

If \(P = \{p_1, \ldots, p_{d+2}\} \subseteq \mathbb{R}^d \) is partitioned into subsets \(P_1 \) and \(P_2 \) then a point \(p \in \text{Conv}(P_1) \cap \text{Conv}(P_2) \) is called a Radon point of \(P \). For example, the (only) Radon point of \(P = \{p_1, p_2, p_3\} \subseteq \mathbb{R} \) is the median of \(P \).

Recall that a subset \(X \) of \(\mathbb{R}^d \) is convex if it contains the convex hull of its subsets, i.e., \(X \) is convex if \(\text{Conv}(Y) \subseteq X \) for every \(Y \subseteq X \). Also recall that the intersection of two convex sets is again convex.

3
Theorem (Helly). Let X_1, \ldots, X_n be a collection of convex subsets of \mathbb{R}^d, with $n > d + 1$. If the intersection of every $d + 1$ of these sets is nonempty, then these subsets have a point in common, i.e.,

$$\bigcap_{i=1}^n X_i \neq \emptyset.$$

Proof. We proceed by induction on n.

Consider the base case, $n = d + 2$. Then the intersection of any $n - 1$ of the subsets is nonempty. For each $i \in \{1, \ldots, n\}$, let x_i be a point in common to all the subsets except (possibly) X_i. If x_1, \ldots, x_n are not all distinct, then a repeated element is a point in common to all subsets. Otherwise, according to Radon’s Theorem, the set $\{x_1, \ldots, x_n\}$ can be partitioned into two subsets P_1 and P_2 such that $\text{Conv}(P_1)$ and $\text{Conv}(P_2)$ have a point p in common. For each $i \in \{1, \ldots, n\}$, either $P_1 \subset X_i$ or $P_2 \subset X_i$, thus, since X_i is convex, either $\text{Conv}(P_1) \subset X_i$ or $\text{Conv}(P_2) \subset X_i$. In either case $p \in X_i$, which establishes that p is a point in common to all subsets, and therefore the theorem is true in the base case.

Suppose the induction hypothesis is true for some $n \geq d + 2$, and let X_1, \ldots, X_{n+1} be a collection of convex subsets of \mathbb{R}^d with the property that the intersection of every $d + 1$ of them is nonempty. Note that $X_n \cap X_{n+1}$ is a convex subset of \mathbb{R}^d. Consider the collection $X_1, \ldots, X_{n-1}, X_n \cap X_{n+1}$ of n convex subsets of \mathbb{R}^d. Take any $d + 1$ of the sets $\{X_1, \ldots, X_n\}$; then, by assumption they have a point in common. Otherwise, take d of the sets $\{X_1, \ldots, X_n\}$ together with X_n and X_{n+1}. This is a collection of $d + 2$ convex subsets of \mathbb{R}^d to which the base case case applies, so they also must have a point in common. Thus the intersection of every $d + 1$ of $X_1, \ldots, X_{n-1}, X_n \cap X_{n+1}$ is nonempty. By the induction hypothesis, these sets have a point p in common, i.e., $X_1 \cap \cdots \cap X_n \cap X_{n+1}$ is nonempty, which shows that the induction hypothesis is true for $n + 1$.

Since the induction hypothesis is true for $n = d + 2$, and the truth of the induction hypothesis for $n \geq d + 2$ implies its truth for $n + 1$, by induction the hypothesis is true for all $n \geq d + 2$. \qed