The Theorems of Carathéodory, Radon, and Helly

Frank R. Kschischang

January 9, 2021

Lemma 1. Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$ be a finite set of points in d-dimensional space. If $n>d$ then we have, for some coefficients μ_{1}, \ldots, μ_{n},

$$
\begin{equation*}
\mathbf{0}=\sum_{i=1}^{n} \mu_{i} p_{i} \text { with } \mu_{1}, \ldots, \mu_{n} \text { not all zero } \tag{1}
\end{equation*}
$$

and if $n>d+1$ we can have (1) under the additional condition that

$$
\begin{equation*}
\sum_{i=1}^{n} \mu_{i}=0 \tag{2}
\end{equation*}
$$

In the latter case, some of μ_{1}, \ldots, μ_{n} are positive and some are negative.

Proof. The first part of the lemma follows from the fact that every set of $d+1$ or more points in a d-dimensional vector space is linearly dependent. The second part follows from the observation that $\left\{p_{2}-p_{1}, p_{3}-p_{1}, \ldots, p_{n}-p_{1}\right\}$ is linearly dependent, thus

$$
\mathbf{0}=\sum_{i=2}^{n} \mu_{i}\left(p_{i}-p_{1}\right) \text { with } \mu_{2}, \ldots, \mu_{n} \text { not all zero. }
$$

By defining $\mu_{1}=-\sum_{i=2}^{n} \mu_{i}$, both (1) and (2) then hold. The only way that (2) can hold with all non-positive or all non-negative terms would be if all terms are zero.

Now let P be any (not necessarily finite) set of points in \mathbb{R}^{d}. The convex hull of P, denoted $\operatorname{Conv}(P)$, is the set of all convex combinations of points of P. In other words, a point $x \in \mathbb{R}^{d}$ is in $\operatorname{Conv}(P)$ if and only if, for some positive integer n, and some set $\left\{p_{1}, \ldots, p_{n}\right\} \subseteq P$, and some set of coefficients $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with $\alpha_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} \alpha_{i}=1$, we have

$$
x=\sum_{i=1}^{n} \alpha_{i} p_{i}
$$

Theorem (Carathéodory). For $P \subseteq \mathbb{R}^{d}$, if $x \in \operatorname{Conv}(P)$ then $x \in \operatorname{Conv}\left(P^{\prime}\right)$ for some subset P^{\prime} of P of cardinality at most $d+1$.

Proof. Let x be a point of $\operatorname{Conv}(P)$, so that for some positive integer n

$$
x=\sum_{i=1}^{n} \alpha_{i} p_{i}
$$

with, for all $i \in\{1, \ldots, n\}, p_{i} \in P, \alpha_{i} \geq 0$, and $\sum_{i=1}^{n} \alpha_{i}=1$. If $n \leq d+1$ there is nothing to prove. Otherwise, $n>d+1$, so by Lemma 1 , we have for scalars μ_{1}, \ldots, μ_{n} (some of which are positive) that $\mathbf{0}=\sum_{i=1}^{n} \mu_{i} p_{i}$, with $\sum_{i=1}^{n} \mu_{i}=0$.

Now, for any real number λ, we have

$$
\begin{equation*}
x=\sum_{i=1}^{n} \alpha_{i} p_{i}-\lambda \sum_{i=1}^{n} \mu_{i} p_{i}=\sum_{i=1}^{n}\left(\alpha_{i}-\lambda \mu_{i}\right) p_{i} . \tag{3}
\end{equation*}
$$

Note that

$$
\sum_{i=1}^{n}\left(\alpha_{i}-\lambda \mu_{i}\right)=\sum_{i=1}^{n} \alpha_{i}-\lambda \sum_{i=1}^{n} \mu_{i}=\sum_{i=1}^{n} \alpha_{i}-\lambda \cdot 0=1
$$

i.e., the coefficients in the linear combination (3) sum to one. We will now select λ so that one of these coefficients becomes zero, while the remaining coefficients are positive, making (3) a convex combination of $n-1$ points of P.

Let $J=\left\{j \in\{1, \ldots, n\}: \mu_{j}>0\right\}$ (and note that J is not empty). Choose $j^{*} \in J$ so that $\alpha_{j^{*}} / \mu_{j^{*}} \leq \alpha_{j} / \mu_{j}$ for all $j \in J$, and let $\lambda=\alpha_{j^{*}} / \mu_{j^{*}}$. With this choice of λ, we have

$$
\alpha_{i}-\lambda \mu_{i} \geq 0
$$

for all $i \in\{1, \ldots, n\}$. Indeed if $i \in J$, then $\mu_{i}>0$ and

$$
\alpha_{i}-\lambda \mu_{i}=\mu_{i}\left(\alpha_{i} / \mu_{i}-\lambda\right) \geq 0
$$

while if $i \notin J$ then $\mu_{i} \leq 0$, and since $\lambda \geq 0$, we have

$$
\alpha_{i}-\lambda \mu_{i} \geq \alpha_{i} \geq 0
$$

Finally observe that $\alpha_{j^{*}}-\lambda \mu_{j^{*}}=0$, so

$$
x=\sum_{i=1}^{j^{*}-1}\left(\alpha_{i}-\lambda \mu_{i}\right) p_{i}+\sum_{i=j^{*}+1}^{n}\left(\alpha_{i}-\lambda \mu_{i}\right) p_{i},
$$

which expresses x as a convex combination of the $n-1$ elements of the set $\left\{p_{1}, \ldots, p_{n}\right\} \backslash\left\{p_{j^{*}}\right\}$. This process can be repeated as long as $n>d+1$, until x is represented as a convex combination of $d+1$ elements of P.

Theorem (Radon). Every set of $d+2$ points in \mathbb{R}^{d} can be partitioned into two sets P_{1} and P_{2} such that $\operatorname{Conv}\left(P_{1}\right) \cap \operatorname{Conv}\left(P_{2}\right) \neq \emptyset$.

Proof. Let $n=d+2$ and let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$. By Lemma 1 we have for scalars μ_{1}, \ldots, μ_{n} (some of which are positive and some of which are nonpositive) $\mathbf{0}=\sum_{i=1}^{n} \mu_{i} p_{i}$ with $\sum_{i=1}^{n} \mu_{i}=0$.

Let $J=\left\{j \in\{1, \ldots, n\}: \mu_{j}>0\right\}$ and let $I=\{1, \ldots, n\} \backslash J$. Neither J nor I is empty. Let $A=\sum_{j \in J} \mu_{j}$ and note that $A>0$. Then $\sum_{i \in I} \mu_{i}=-A$. Finally, let $P_{1}=\left\{p_{j}: j \in J\right\}$ and $P_{2}=\left\{p_{i}: i \in I\right\}$.

The convex hulls $\operatorname{Conv}\left(P_{1}\right)$ and $\operatorname{Conv}\left(P_{2}\right)$ contain the point

$$
p=\sum_{j \in J} \frac{\mu_{j}}{A} x_{j}=\sum_{I \in I} \frac{-\mu_{i}}{A} x_{i}
$$

as the first sum is a convex combination of points from P_{1} and the second sum is a convex combination of points from P_{2}. Thus $\operatorname{Conv}\left(P_{1}\right) \cap \operatorname{Conv}\left(P_{2}\right) \neq \emptyset$.

If $P=\left\{p_{1}, \ldots, p_{d+2}\right\} \subset \mathbb{R}^{d}$ is partitioned into subsets P_{1} and P_{2} then a point $p \in \operatorname{Conv}\left(P_{1}\right) \cap \operatorname{Conv}\left(P_{2}\right)$ is called a Radon point of P. For example, the (only) Radon point of $P=\left\{p_{1}, p_{2}, p_{3}\right\} \subset \mathbb{R}$ is the median of P.

Recall that a subset X of \mathbb{R}^{d} is convex if it contains the convex hull of its subsets, i.e., X is convex if $\operatorname{Conv}(Y) \subseteq X$ for every $Y \subseteq X$. Also recall that the intersection of two convex sets is again convex.

Theorem (Helly). Let X_{1}, \ldots, X_{n} be a collection of convex subsets of \mathbb{R}^{d}, with $n>d+1$. If the intersection of every $d+1$ of these sets is nonempty, then these subsets have a point in common, i.e.,

$$
\bigcap_{i=1}^{n} X_{i} \neq \emptyset
$$

Proof. We proceed by induction on n.
Consider the base case, $n=d+2$. Then the intersection of any $n-1$ of the subsets is nonempty. For each $i \in\{1, \ldots, n\}$, let x_{i} be a point in common to all the subsets except (possibly) X_{i}. If x_{1}, \ldots, x_{n} are not all distinct, then a repeated element is a point in common to all subsets. Otherwise, according to Radon's Theorem, the set $\left\{x_{1}, \ldots, x_{n}\right\}$ can be partitioned into two subsets P_{1} and P_{2} such that $\operatorname{Conv}\left(P_{1}\right)$ and $\operatorname{Conv}\left(P_{2}\right)$ have a point p in common. For each $i \in\{1, \ldots, n\}$, either $P_{1} \subset X_{i}$ or $P_{2} \subset X_{i}$, thus, since X_{i} is convex, either $\operatorname{Conv}\left(P_{1}\right) \subset X_{i}$ or $\operatorname{Conv}\left(P_{2}\right) \subset X_{i}$. In either case $p \in X_{i}$, which establishes that p is a point in common to all subsets, and therefore the theorem is true in the base case.

Suppose the induction hypothesis is true for some $n \geq d+2$, and let X_{1}, \ldots, X_{n+1} be a collection of convex subsets of \mathbb{R}^{d} with the property that the intersection of every $d+1$ of them is nonempty. Note that $X_{n} \cap X_{n+1}$ is a convex subset of \mathbb{R}^{d}. Consider the collection $X_{1}, \ldots, X_{n-1}, X_{n} \cap X_{n+1}$ of n convex subsets of \mathbb{R}^{d}. Take any $d+1$ of the sets $\left\{X_{1}, \ldots, X_{n-1}\right\}$; then, by assumption they have a point in common. Otherwise, take d of the sets $\left\{X_{1}, \ldots, X_{n-1}\right\}$ together with X_{n} and X_{n+1}. This is a collection of $d+2$ convex subsets of \mathbb{R}^{d} to which the base case case applies, so they also must have a point in common. Thus the intersection of every $d+1$ of $X_{1}, \ldots, X_{n-1}, X_{n} \cap X_{n+1}$ is nonempty. By the induction hypothesis, these sets have a point p in common, i.e., $X_{1} \cap \cdots \cap X_{n} \cap X_{n+1}$ is nonempty, which shows that the induction hypothesis is true for $n+1$.

Since the induction hypothesis is true for $n=d+2$, and the truth of the induction hypothesis for $n \geq d+2$ implies its truth for $n+1$, by induction the hypothesis is true for all $n \geq d+2$.

