The Theorems of Carathéodory, Radon, and Helly

Frank R. Kschischang

January 9, 2021

Lemma 1. Let $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$ be a finite set of points in d-dimensional space. If n > d then we have, for some coefficients μ_1, \ldots, μ_n ,

$$\mathbf{0} = \sum_{i=1}^{n} \mu_i p_i \text{ with } \mu_1, \dots, \mu_n \text{ not all zero,}$$
(1)

and if n > d + 1 we can have (1) under the additional condition that

$$\sum_{i=1}^{n} \mu_i = 0.$$
 (2)

In the latter case, some of μ_1, \ldots, μ_n are positive and some are negative.

Proof. The first part of the lemma follows from the fact that every set of d+1 or more points in a d-dimensional vector space is linearly dependent. The second part follows from the observation that $\{p_2 - p_1, p_3 - p_1, \ldots, p_n - p_1\}$ is linearly dependent, thus

$$\mathbf{0} = \sum_{i=2}^{n} \mu_i (p_i - p_1) \text{ with } \mu_2, \dots, \mu_n \text{ not all zero.}$$

By defining $\mu_1 = -\sum_{i=2}^n \mu_i$, both (1) and (2) then hold. The only way that (2) can hold with all non-positive or all non-negative terms would be if all terms are zero.

Now let P be any (not necessarily finite) set of points in \mathbb{R}^d . The *convex* hull of P, denoted $\mathsf{Conv}(P)$, is the set of all convex combinations of points of P. In other words, a point $x \in \mathbb{R}^d$ is in $\mathsf{Conv}(P)$ if and only if, for some positive integer n, and some set $\{p_1, \ldots, p_n\} \subseteq P$, and some set of coefficients $\{\alpha_1, \ldots, \alpha_n\}$ with $\alpha_i \geq 0$ for all $i \in \{1, \ldots, n\}$ and $\sum_{i=1}^n \alpha_i = 1$, we have

$$x = \sum_{i=1}^{n} \alpha_i p_i.$$

Theorem (Carathéodory). For $P \subseteq \mathbb{R}^d$, if $x \in \text{Conv}(P)$ then $x \in \text{Conv}(P')$ for some subset P' of P of cardinality at most d + 1.

Proof. Let x be a point of Conv(P), so that for some positive integer n

$$x = \sum_{i=1}^{n} \alpha_i p_i$$

with, for all $i \in \{1, ..., n\}$, $p_i \in P$, $\alpha_i \ge 0$, and $\sum_{i=1}^n \alpha_i = 1$. If $n \le d+1$ there is nothing to prove. Otherwise, n > d+1, so by Lemma 1, we have for scalars μ_1, \ldots, μ_n (some of which are positive) that $\mathbf{0} = \sum_{i=1}^n \mu_i p_i$, with $\sum_{i=1}^n \mu_i = 0$.

Now, for any real number λ , we have

$$x = \sum_{i=1}^{n} \alpha_{i} p_{i} - \lambda \sum_{i=1}^{n} \mu_{i} p_{i} = \sum_{i=1}^{n} (\alpha_{i} - \lambda \mu_{i}) p_{i}.$$
 (3)

Note that

$$\sum_{i=1}^{n} (\alpha_i - \lambda \mu_i) = \sum_{i=1}^{n} \alpha_i - \lambda \sum_{i=1}^{n} \mu_i = \sum_{i=1}^{n} \alpha_i - \lambda \cdot 0 = 1,$$

i.e., the coefficients in the linear combination (3) sum to one. We will now select λ so that one of these coefficients becomes zero, while the remaining coefficients are positive, making (3) a convex combination of n-1 points of P.

Let $J = \{j \in \{1, \ldots, n\} : \mu_j > 0\}$ (and note that J is not empty). Choose $j^* \in J$ so that $\alpha_{j^*}/\mu_{j^*} \leq \alpha_j/\mu_j$ for all $j \in J$, and let $\lambda = \alpha_{j^*}/\mu_{j^*}$. With this choice of λ , we have

$$\alpha_i - \lambda \mu_i \ge 0$$

for all $i \in \{1, \ldots, n\}$. Indeed if $i \in J$, then $\mu_i > 0$ and

$$\alpha_i - \lambda \mu_i = \mu_i (\alpha_i / \mu_i - \lambda) \ge 0,$$

while if $i \notin J$ then $\mu_i \leq 0$, and since $\lambda \geq 0$, we have

$$\alpha_i - \lambda \mu_i \ge \alpha_i \ge 0.$$

Finally observe that $\alpha_{j^*} - \lambda \mu_{j^*} = 0$, so

$$x = \sum_{i=1}^{j^*-1} (\alpha_i - \lambda \mu_i) p_i + \sum_{i=j^*+1}^n (\alpha_i - \lambda \mu_i) p_i,$$

which expresses x as a convex combination of the n-1 elements of the set $\{p_1, \ldots, p_n\} \setminus \{p_{j^*}\}$. This process can be repeated as long as n > d+1, until x is represented as a convex combination of d+1 elements of P.

Theorem (Radon). Every set of d + 2 points in \mathbb{R}^d can be partitioned into two sets P_1 and P_2 such that $\mathsf{Conv}(P_1) \cap \mathsf{Conv}(P_2) \neq \emptyset$.

Proof. Let n = d + 2 and let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$. By Lemma 1 we have for scalars μ_1, \ldots, μ_n (some of which are positive and some of which are non-positive) $\mathbf{0} = \sum_{i=1}^n \mu_i p_i$ with $\sum_{i=1}^n \mu_i = 0$.

Let $J = \{j \in \{1, \ldots, n\} : \mu_j > 0\}$ and let $I = \{1, \ldots, n\} \setminus J$. Neither J nor I is empty. Let $A = \sum_{j \in J} \mu_j$ and note that A > 0. Then $\sum_{i \in I} \mu_i = -A$. Finally, let $P_1 = \{p_j : j \in J\}$ and $P_2 = \{p_i : i \in I\}$.

The convex hulls $Conv(P_1)$ and $Conv(P_2)$ contain the point

$$p = \sum_{j \in J} \frac{\mu_j}{A} x_j = \sum_{I \in I} \frac{-\mu_i}{A} x_i$$

as the first sum is a convex combination of points from P_1 and the second sum is a convex combination of points from P_2 . Thus $\mathsf{Conv}(P_1) \cap \mathsf{Conv}(P_2) \neq \emptyset$. \Box

If $P = \{p_1, \ldots, p_{d+2}\} \subset \mathbb{R}^d$ is partitioned into subsets P_1 and P_2 then a point $p \in \mathsf{Conv}(P_1) \cap \mathsf{Conv}(P_2)$ is called a *Radon point* of P. For example, the (only) Radon point of $P = \{p_1, p_2, p_3\} \subset \mathbb{R}$ is the median of P.

Recall that a subset X of \mathbb{R}^d is *convex* if it contains the convex hull of its subsets, i.e., X is convex if $Conv(Y) \subseteq X$ for every $Y \subseteq X$. Also recall that the intersection of two convex sets is again convex.

Theorem (Helly). Let X_1, \ldots, X_n be a collection of convex subsets of \mathbb{R}^d , with n > d + 1. If the intersection of every d + 1 of these sets is nonempty, then these subsets have a point in common, i.e.,

$$\bigcap_{i=1}^{n} X_i \neq \emptyset.$$

Proof. We proceed by induction on n.

Consider the base case, n = d + 2. Then the intersection of any n - 1 of the subsets is nonempty. For each $i \in \{1, \ldots, n\}$, let x_i be a point in common to all the subsets except (possibly) X_i . If x_1, \ldots, x_n are not all distinct, then a repeated element is a point in common to all subsets. Otherwise, according to Radon's Theorem, the set $\{x_1, \ldots, x_n\}$ can be partitioned into two subsets P_1 and P_2 such that $\mathsf{Conv}(P_1)$ and $\mathsf{Conv}(P_2)$ have a point p in common. For each $i \in \{1, \ldots, n\}$, either $P_1 \subset X_i$ or $P_2 \subset X_i$, thus, since X_i is convex, either $\mathsf{Conv}(P_1) \subset X_i$ or $\mathsf{Conv}(P_2) \subset X_i$. In either case $p \in X_i$, which establishes that p is a point in common to all subsets, and therefore the theorem is true in the base case.

Suppose the induction hypothesis is true for some $n \ge d+2$, and let X_1, \ldots, X_{n+1} be a collection of convex subsets of \mathbb{R}^d with the property that the intersection of every d + 1 of them is nonempty. Note that $X_n \cap X_{n+1}$ is a convex subset of \mathbb{R}^d . Consider the collection $X_1, \ldots, X_{n-1}, X_n \cap X_{n+1}$ of n convex subsets of \mathbb{R}^d . Take any d+1 of the sets $\{X_1, \ldots, X_{n-1}\}$; then, by assumption they have a point in common. Otherwise, take d of the sets $\{X_1, \ldots, X_{n-1}\}$ together with X_n and X_{n+1} . This is a collection of d+2 convex subsets of \mathbb{R}^d to which the base case case applies, so they also must have a point in common. Thus the intersection of every d+1 of $X_1, \ldots, X_{n-1}, X_n \cap X_{n+1}$ is nonempty. By the induction hypothesis, these sets have a point p in common, i.e., $X_1 \cap \cdots \cap X_n \cap X_{n+1}$ is nonempty, which shows that the induction hypothesis is true for n+1.

Since the induction hypothesis is true for n = d + 2, and the truth of the induction hypothesis for $n \ge d+2$ implies its truth for n+1, by induction the hypothesis is true for all $n \ge d+2$.