Useful Inequalities from Jensen to Young to Hölder to Minkowski

Frank R. Kschischang
Department of Electrical \& Computer Engineering
University of Toronto

September 25, 2019

Abstract

The aim of this note is to establish the triangle inequality for p-norms in \mathbb{C}^{n}, a result known as Minkowski's inequality. On the way to this result, we will establish a number of other famous inequalities.

1 The Triangle Inequality for Complex Numbers

We will start with a basic inequality for complex numbers. Throughout these notes, if $z=a+b \mathrm{i}$ is any complex number with $a, b \in \mathbb{R}$, we will write z^{*} to denote its complex conjugate $a-b \mathrm{i}$. Recall that for $z \in \mathbb{C}$, we have $\operatorname{Re}(z) \leq|z|$, with equality if and only if z is real-valued and non-negative.
Theorem 1 (Triangle Inequality for Complex Numbers). Every pair z_{1}, z_{2} of complex numbers satisfies

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|,
$$

with equality achieved if and only if $z_{1}=z_{2}=0$ or (if $z_{2} \neq 0$) if $z_{1}=a z_{2}$ for some nonnegative real number a or (if $z_{1} \neq 0$) if $z_{2}=a z_{1}$ for some non-negative real number a.

Proof. We write

$$
\begin{aligned}
\left|z_{1}+z_{2}\right|^{2} & =\left(z_{1}+z_{2}\right)\left(z_{1}+z_{2}\right)^{*} \\
& =z_{1} z_{1}^{*}+z_{1} z_{2}^{*}+z_{2} z_{1}^{*}+z_{2} z_{2}^{*} \\
& =\left|z_{1}\right|^{2}+2 \operatorname{Re}\left[z_{1} z_{2}^{*}\right]+\left|z_{2}\right|^{2} \\
& \leq\left|z_{1}\right|^{2}+2\left|z_{1} z_{2}^{*}\right|+\left|z_{2}\right|^{2} \\
& =\left|z_{1}\right|^{2}+2\left|z_{1}\right| \cdot\left|z_{2}\right|+\left|z_{2}\right|^{2} \\
& =\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2} .
\end{aligned}
$$

The result follows by taking the square-root of both sides, an operation that preserves the inequality since the square-root function is monotonically increasing. Equality is certainly achieved if $z_{1}=z_{2}=0$. Otherwise, we need $\operatorname{Re}\left[z_{1} z_{2}^{*}\right]=\left|z_{1} z_{2}^{*}\right|$, which arises if and only if $z_{1} z_{2}^{*}=b$ for some non-negative real value b. Assuming $z_{2} \neq 0$, and multiplying both sides by $z_{2} /\left|z_{2}\right|^{2}$, we find that equality is achieved if and only if $z_{1}=\frac{b}{\left|z_{2}\right|^{2}} z_{2}$, i.e., if and only if $z_{1}=a z_{2}$ for some non-negative real number a. The case when $z_{1} \neq 0$ is similar.

The condition for equality in this triangle inequality can be concisely expressed in terms of the phase or argument of the two complex numbers in question. Recall that any nonzero complex number z can be written in the form $r e^{\mathrm{i} \theta}$ where $r=|z|$ is the magnitude of z and $\theta \in[0,2 \pi)$ is the phase (or argument) of z. We have $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ if and only if $z_{1}=0$ or $z_{2}=0$ (or both), or if z_{1} and z_{2} are both nonzero and have the same phase.

The triangle inequality extends to any finite number of complex numbers. In general we have, for any $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{C}$, that

$$
\left|z_{1}+z_{2}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right|
$$

with equality achieved if and only if all nonzero z_{i} have the same phase or all z_{i} are zero.

2 Convex Functions and Convex Combinations

Let I be an interval of \mathbb{R}. A function $f: I \rightarrow \mathbb{R}$ is said to be convex over I if for every pair of elements $x_{1}, x_{2} \in I$, and every $a \in[0,1]$, we have

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right) \leq a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{1}
\end{equation*}
$$

In other words, a convex function lies below the line joining two points on its graph, as illustrated in the figure.

For example, if f is twice-differentiable on I and if $f^{\prime \prime}(x) \geq 0$ for all $x \in I$, then $f(x)$ is convex. A function is said to be strictly convex if the inequality (1) holds strictly (i.e.,
 without equality) whenever $x_{1} \neq x_{2}$ and $a \notin\{0,1\}$. Thus for a strictly convex function, equality in (1) can be achieved if and only if $x_{1}=x_{2}$ or $a \in\{0,1\}$.

A function f for which $-f$ is (strictly) convex is called (strictly) concave. For example, $\ln (x)$ is strictly concave over $(0, \infty)$, since $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \ln (x)=-1 / x^{2}<0$.

Note that if $0 \leq a \leq 1$, then $\min \left(x_{1}, x_{2}\right) \leq a x_{1}+(1-a) x_{2} \leq \max \left(x_{1}, x_{2}\right)$; thus the point $a x_{1}+(1-a) x_{2}$ is indeed an element of I (and between x_{1} and x_{2}). More generally, for any non-negative real numbers p_{1}, \ldots, p_{m} summing to one, i.e., satisfying $p_{1}+\cdots+p_{m}=1$, and
for any points $x_{1}, \ldots, x_{m} \in I$, the point $p_{1} x_{1}+\cdots+p_{m} x_{m}$ is called a convex combination of x_{1}, \ldots, x_{m}. Since

$$
\min \left(x_{1}, \ldots, x_{m}\right) \leq p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{m} x_{m} \leq \max \left(x_{1}, \ldots, x_{m}\right)
$$

every convex combination of any finite number of points of I is again a point of I.

3 Jensen's Inequality

Jensen's inequality, named after the Danish engineer Johan Jensen (1859-1925), can be stated as follows.

Theorem 2 (Jensen's Inequality). Let m be a positive integer and let $f: I \rightarrow \mathbb{R}$ be convex over the interval $I \subseteq \mathbb{R}$. For any (not necessarily distinct) points $x_{1}, \ldots, x_{m} \in I$ and any non-negative real numbers p_{1}, \ldots, p_{m} summing to one,

$$
f\left(p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{m} x_{m}\right) \leq p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right)+\cdots+p_{m} f\left(x_{m}\right)
$$

Proof. We proceed by induction on m, denoting the induction hypothesis as $P(m)$. The truth of $P(1)$ is a triviality, and $P(2)$ is true by definition of convexity. Suppose $P(m)$ is true for some $m \geq 2$, let x_{1}, \ldots, x_{m+1} be any $m+1$ points of I, and let p_{1}, \ldots, p_{m+1} be any $m+1$ non-negative real numbers summing to one. If $p_{1}=1$, then $p_{j}=0$ for all $j>1$, and it is trivially true that $f\left(p_{1} x_{1}+\cdots+p_{m+1} x_{m+1}\right) \leq p_{1} f\left(x_{1}\right)+\cdots+p_{m+1} f\left(x_{m+1}\right)$. Otherwise $p_{1}<1$, and we have

$$
p_{1} x_{1}+\cdots+p_{m+1} x_{m+1}=p_{1} x_{1}+\left(1-p_{1}\right) z
$$

where

$$
z=\frac{p_{2}}{1-p_{1}} x_{2}+\cdots+\frac{p_{m+1}}{1-p_{1}} x_{m+1} .
$$

Note that z is a convex combination of x_{2}, \ldots, x_{m+1}, and hence $z \in I$. We then have

$$
\begin{aligned}
f\left(p_{1} x_{1}+\left(1-p_{1}\right) z\right) & \leq p_{1} f\left(x_{1}\right)+\left(1-p_{1}\right) f(z) \\
& \leq p_{1} f\left(x_{1}\right)+\left(1-p_{1}\right)\left(\frac{p_{2}}{1-p_{1}} f\left(x_{2}\right)+\cdots+\frac{p_{m+1}}{1-p_{1}} f\left(x_{m+1}\right)\right) \\
& =p_{1} f\left(x_{1}\right)+\cdots+p_{m+1} f\left(x_{m+1}\right),
\end{aligned}
$$

where the first inequality follows from the convexity of f, and the second inequality follows from the induction hypothesis. Thus $P(m)$ implies $P(m+1)$. Since $P(1)$ and $P(2)$ are true, and $P(m)$ implies $P(m+1)$ for all $m \geq 2$, by induction it follows that $P(m)$ is true for all positive integers m.

It can be shown that in the case when $f: I \rightarrow \mathbb{R}$ is strictly convex, equality in Jensen's inequality can be achieved for $x_{1}, \ldots, x_{m} \in I$ and $p_{1}, \ldots, p_{m} \geq 0$ summing to one if and only if, for some $x \in I, x_{i}=x$ for all i satisfying $p_{i}>0$. In other words, to achieve equality in

Jensen's inequality when f is strictly convex, all x_{i} 's contributing (with positive coefficient) to the convex combination must be equal. (Equality is also achieved when $f(x)$ is an affine function; however such a function is not strictly convex.)

When f is concave, the sense of Jensen's inequality is reversed, i.e.,

$$
p_{1} f\left(x_{1}\right)+\cdots+p_{m+1} f\left(x_{m+1}\right) \leq f\left(p_{1} x_{1}+\cdots+p_{m+1} x_{m+1}\right) .
$$

For example, taking $I=(0, \infty)$, and $f(x)=\ln (x)$, we have

$$
p_{1} \ln x_{1}+\cdots+p_{m} \ln x_{m} \leq \ln \left(p_{1} x_{1}+\cdots+p_{m} x_{m}\right)
$$

or

$$
\ln \left(x_{1}^{p_{1}}\right)+\cdots+\ln \left(x_{m}^{p_{m}}\right) \leq \ln \left(p_{1} x_{1}+\cdots+p_{m} x_{m}\right) .
$$

Exponentiating both sides, since $\exp (x)$ is monotonically increasing, we obtain the following theorem, which we term the "Generalized AM-GM Inequality," where AM stands for "arithmetic mean" and GM stands for "geometric mean." This terminology is not standard; however, see Theorem 4 below.

Theorem 3 (Generalized AM-GM Inequality). For every $x_{1}, \ldots, x_{m}>0$,

$$
x_{1}^{p_{1}} \cdots x_{m}^{p_{m}} \leq p_{1} x_{1}+\cdots+p_{m} x_{m}
$$

for any non-negative real numbers p_{1}, \ldots, p_{m} summing to one. Equality is achieved if and only if $x_{i}=c$ for all i satisfying $p_{i}>0$, for some positive constant c.

A special case of Theorem 3 is the following.
Theorem 4 (Inequality of Arithmetic and Geometric Means). For any positive real numbers x_{1}, \ldots, x_{m},

$$
\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m} \leq \frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

with equality achieved if and only if $x_{i}=c$ for some constant c, for all $i \in\{1, \ldots, m\}$.

Proof. This is Theorem 3 in the special case when $p_{1}=\cdots=p_{m}=1 / m$. The left-hand side is the geometric mean of the given set of numbers and the right-hand side is the arithmetic mean.

4 Young's Inequality

Young's inequality, named after the English mathematician William Henry Young (18631942), can be stated as follows.

Theorem 5 (Young's Inequality). For any non-negative real numbers a and b and any positive real numbers p and q such that $\frac{1}{p}+\frac{1}{q}=1$,

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

with equality achieved if and only if $a^{p}=b^{q}$.

Proof. When a and b are positive, this is Theorem 3 in the special case when $m=2, x_{1}=a^{p}$, $x_{2}=b^{q}, p_{1}=\frac{1}{p}$ and $p_{2}=\frac{1}{q}$. Indeed, we then have

$$
a b=x_{1}^{p_{1}} x_{2}^{p_{2}} \leq p_{1} x_{1}+p_{2} x_{2}=\frac{a^{p}}{p}+\frac{b^{q}}{q} .
$$

If one (or both) of a or b is zero, the inequality also holds.

5 Hölder's Inequality

We can use Young's inequality to prove Hölder's inequality, named after the German mathematician Otto Ludwig Hölder (1859-1937).

Theorem 6 (Hölder's Inequality). For any pair of vectors x and y in \mathbb{C}^{n}, and for any positive real numbers p and q satisfying $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\|x\|_{p} \cdot\|y\|_{q}
$$

where

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad\|y\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

are the p - and q-norms of x and y, respectively. If one (or both) of x or y is zero, then equality is achieved. If both x and y are nonzero, equality is achieved if and only for each $i \in\{1, \ldots, n\}$ we have

$$
\left(\frac{\left|x_{i}\right|}{\|x\|_{p}}\right)^{p}=\left(\frac{\left|y_{i}\right|}{\|y\|_{q}}\right)^{q} .
$$

Proof. If one (or both) of x or y is zero, the inequality certainly holds with equality. Otherwise, assume x and y are both nonzero, and let $u=\frac{x}{\|x\|_{p}}$ and let $v=\frac{y}{\|y\|_{q}}$, and note that
$\|u\|_{p}=\|v\|_{q}=1$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left|u_{i} v_{i}\right| & =\sum_{i=1}^{n}\left|u_{i}\right|\left|v_{i}\right| \\
& \leq \sum_{i=1}^{n}\left(\frac{\left|u_{i}\right|^{p}}{p}+\frac{\left|v_{i}\right|^{q}}{q}\right) \quad \text { (by Young's inequality) } \\
& =\frac{\left(\|u\|_{p}\right)^{p}}{p}+\frac{\left(\|v\|_{q}\right)^{q}}{q} \\
& =\frac{1}{p}+\frac{1}{q} \\
& =1
\end{aligned}
$$

Now multiply both sides by the positive quantity $\|x\|_{p} \cdot\|y\|_{q}$ to obtain the statement of the theorem. To achieve equality, each term in the sum must achieve equality in Young's inequality, i.e., for all $i \in\{1, \ldots, n\},\left|u_{i}\right|^{p}=\left|v_{i}\right|^{q}$, which translates to the statement in the theorem since $\left|u_{i}\right|=\left|x_{i}\right| /\|x\|_{p}$ and $\left|v_{i}\right|=\left|y_{i}\right| /\|y\|_{q}$.

The Cauchy-Schwarz inequality, named after the French mathematician, engineer, and physicist Augustin-Louis Cauchy (1789-1857) and the German mathematician Karl Hermann Amandus Schwarz ${ }^{1}$ (1843-1921), is closely related to Hölder's inequality in the case $p=q=2$.

Theorem 7 (Cauchy-Schwarz Inequality). For any pair of vectors x and y in \mathbb{C}^{n},

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}^{*}\right| \leq\|x\|_{2} \cdot\|y\|_{2},
$$

where equality is achieved if and only $y=\lambda x$ for some scalar $\lambda \in \mathbb{C}$.

Proof. We write

$$
\begin{aligned}
\left|\sum_{i=1}^{n} x_{i} y_{i}^{*}\right| & \leq \sum_{i=1}^{n}\left|x_{i} y_{i}^{*}\right| \\
& =\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \\
& \leq\|x\|_{2} \cdot\|y\|_{2}
\end{aligned}
$$

where the first inequality is the triangle inequality for complex numbers and the second inequality is Hölder's inequality in the case $p=q=2$. For equality to hold, it must hold in both inequalities, which certainly occurs if one (or both) of x or y is zero. If both are nonzero, the first equality holds with equality if and only if every nonzero $x_{i} y_{i}^{*}$ has the same

[^0]phase, i.e., $x_{i} y_{i}^{*}=r_{i} e^{\mathrm{i} \theta}$ for some fixed θ. The second inequality holds with equality if and only if
$$
\frac{\left|x_{i}\right|}{\|x\|_{2}}=\frac{\left|y_{i}\right|}{\|y\|_{2}}
$$
for every i, which implies that $\left|y_{i}\right|=c\left|x_{i}\right|$ for some positive constant c. Putting these two conditions together, if $x_{i}=a_{i} e^{\mathrm{i} \phi_{i}}$, then $y_{i}=c a_{i} e^{\mathrm{i}\left(\phi_{i}-\theta\right)}$, or, in other words, $y=\lambda x$ for $\lambda=c e^{-\mathrm{i} \theta}$.

6 Minkowski's Inequality

We can use Hölder's inequality to prove Minkowski's inequality, named after the German mathematician Hermann Minkowski (1864-1909). Minkowski's inequality is the triangle inequality for p-norms.

Theorem 8 (Minkowski's Inequality). For any pair of vectors u and v in \mathbb{C}^{n}, and for any $p>1$, we have

$$
\|u+v\|_{p} \leq\|u\|_{p}+\|v\|_{p} .
$$

Equality holds if and only if $a u=b v$ for some non-negative real constants a and b, not both zero.

Proof. The theorem is clearly true if u and v are both zero, and it holds if $u+v$ is zero. Otherwise, we write

$$
\begin{aligned}
\left(\|u+v\|_{p}\right)^{p}= & \sum_{i=1}^{n}\left|u_{i}+v_{i}\right|^{p} \\
= & \sum_{i=1}^{n}\left|u_{i}+v_{i}\right| \cdot\left|u_{i}+v_{i}\right|^{p-1} \\
\leq & \sum_{i=1}^{n}\left(\left|u_{i}\right|+\left|v_{i}\right|\right) \cdot\left|u_{i}+v_{i}\right|^{p-1} \\
= & \sum_{i=1}^{n}\left|u_{i}\right|\left|u_{i}+v_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|v_{i}\right|\left|u_{i}+v_{i}\right|^{p-1} \\
\leq & \left(\sum_{i=1}^{n}\left|u_{i}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left(\left|u_{i}+v_{i}\right|^{p-1}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \\
& +\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left(\left|u_{i}+v_{i}\right|^{p-1}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \\
= & \left(\|u\|_{p}+\|v\|_{p}\right) \cdot\left(\|u+v\|_{p}\right)^{p-1} .
\end{aligned}
$$

The first inequality is an application of the triangle inequality for complex numbers, and the second inequality is two applications of Hölder's inequality, taking $q=p /(p-1)$ so that
$\frac{1}{p}+\frac{1}{q}=1$. The theorem follows by dividing both sides by the positive quantity $\left(\|u+v\|_{p}\right)^{p-1}$. To achieve equality it is necessary that the triangle inequality for complex numbers holds with equality for each term, i.e., that u_{i} and v_{i}, if nonzero, have the same phase. We also require equality in each application of Hölder's inequality. Let $w=\left(w_{1}, \ldots, w_{n}\right)$ where $w_{i}=\left|u_{i}+v_{i}\right|^{p-1}$. For equality to hold in the first application of Hölder's inequality, we need, for each $i \in\{1, \ldots, n\}$, that

$$
\left(\frac{\left|u_{i}\right|}{\|u\|_{p}}\right)^{p}=\left(\frac{w_{i}}{\|w\|_{q}}\right)^{q}
$$

and similarly for the second application of Hölder's inequality. Now

$$
\begin{aligned}
\|w\|_{q} & =\left(\sum_{i=1}^{n} w_{i}^{q}\right)^{1 / q} \\
& =\left(\sum_{i=1}^{n}\left(\left|u_{i}+v_{i}\right|^{p-1}\right)^{p /(p-1)}\right)^{(p-1) / p} \\
& =\left(\sum_{i=1}^{n}\left(\left|u_{i}+v_{i}\right|\right)^{p}\right)^{(p-1) / p} \\
& =\|u+v\|_{p}^{p-1}
\end{aligned}
$$

thus $\|w\|_{q}^{q}=\|u+v\|_{p}^{p}$. Also $w_{i}^{q}=\left|u_{i}+v_{i}\right|^{p}$. Thus, taking p th roots, the conditions for equality in Hölder's inequality become

$$
\frac{\left|u_{i}\right|}{\|u\|_{p}}=\frac{\left|u_{i}+v_{i}\right|}{\|u+v\|_{p}}=\frac{\left|v_{i}\right|}{\|v\|_{p}} .
$$

Thus we need $\left|u_{i}\right|$ and $\left|v_{i}\right|$ to be proportional. Summarizing, we find that equality in Minkowski's inequality is achieved if and only if $a u=b v$ for some non-negative real scalars a and b, not both zero.

The alert reader will note that Minkowski's inequality also holds in the case $p=1$. This must be proved separately, and is left as an exercise.

Acknowledgement

The author is grateful for useful comments and suggestions from Dr. Qun Zhang.

[^0]: ${ }^{1}$ Caution: some authors are tempted to misspell this as Schwartz!

