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Abstract

The aim of this note is to establish the triangle inequality for p-norms in Cn, a
result known as Minkowski’s inequality. On the way to this result, we will establish a
number of other famous inequalities.

1 The Triangle Inequality for Complex Numbers

We will start with a basic inequality for complex numbers. Throughout these notes, if
z = a + b i is any complex number with a, b ∈ R, we will write z∗ to denote its complex
conjugate a − b i. Recall that for z ∈ C, we have Re(z) ≤ |z|, with equality if and only if z
is real-valued and non-negative.

Theorem 1 (Triangle Inequality for Complex Numbers). Every pair z1, z2 of complex num-
bers satisfies

|z1 + z2| ≤ |z1|+ |z2|,
with equality achieved if and only if z1 = z2 = 0 or (if z2 6= 0) if z1 = az2 for some non-
negative real number a or (if z1 6= 0) if z2 = az1 for some non-negative real number a.

Proof. We write

|z1 + z2|2 = (z1 + z2)(z1 + z2)
∗

= z1z
∗
1 + z1z

∗
2 + z2z

∗
1 + z2z

∗
2

= |z1|2 + 2Re[z1z
∗
2 ] + |z2|2

≤ |z1|2 + 2|z1z∗2 |+ |z2|2

= |z1|2 + 2|z1| · |z2|+ |z2|2

= (|z1|+ |z2|)2 .
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The result follows by taking the square-root of both sides, an operation that preserves the
inequality since the square-root function is monotonically increasing. Equality is certainly
achieved if z1 = z2 = 0. Otherwise, we need Re[z1z

∗
2 ] = |z1z∗2 |, which arises if and only if

z1z
∗
2 = b for some non-negative real value b. Assuming z2 6= 0, and multiplying both sides

by z2/|z2|2, we find that equality is achieved if and only if z1 = b
|z2|2 z2, i.e., if and only if

z1 = az2 for some non-negative real number a. The case when z1 6= 0 is similar.

The condition for equality in this triangle inequality can be concisely expressed in terms of
the phase or argument of the two complex numbers in question. Recall that any nonzero
complex number z can be written in the form rei θ where r = |z| is the magnitude of z and
θ ∈ [0, 2π) is the phase (or argument) of z. We have |z1 +z2| = |z1|+ |z2| if and only if z1 = 0
or z2 = 0 (or both), or if z1 and z2 are both nonzero and have the same phase.

The triangle inequality extends to any finite number of complex numbers. In general we
have, for any z1, z2, . . . , zn ∈ C, that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|

with equality achieved if and only if all nonzero zi have the same phase or all zi are zero.

2 Convex Functions and Convex Combinations

x

f(x)

x1 x2

f(x1)

f(x2)

Let I be an interval of R. A function f : I → R is said to
be convex over I if for every pair of elements x1, x2 ∈ I, and
every a ∈ [0, 1], we have

f(ax1 + (1− a)x2) ≤ af(x1) + (1− a)f(x2). (1)

In other words, a convex function lies below the line joining
two points on its graph, as illustrated in the figure.

For example, if f is twice-differentiable on I and if f ′′(x) ≥ 0
for all x ∈ I, then f(x) is convex. A function is said to
be strictly convex if the inequality (1) holds strictly (i.e.,
without equality) whenever x1 6= x2 and a 6∈ {0, 1}. Thus
for a strictly convex function, equality in (1) can be achieved if and only if x1 = x2 or
a ∈ {0, 1}.

A function f for which −f is (strictly) convex is called (strictly) concave. For example, ln(x)

is strictly concave over (0,∞), since d2

dx2
ln(x) = −1/x2 < 0.

Note that if 0 ≤ a ≤ 1, then min(x1, x2) ≤ ax1 + (1 − a)x2 ≤ max(x1, x2); thus the point
ax1 + (1− a)x2 is indeed an element of I (and between x1 and x2). More generally, for any
non-negative real numbers p1, . . . , pm summing to one, i.e., satisfying p1 + · · ·+ pm = 1, and
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for any points x1, . . . , xm ∈ I, the point p1x1 + · · ·+ pmxm is called a convex combination of
x1, . . . , xm. Since

min(x1, . . . , xm) ≤ p1x1 + p2x2 + · · ·+ pmxm ≤ max(x1, . . . , xm),

every convex combination of any finite number of points of I is again a point of I.

3 Jensen’s Inequality

Jensen’s inequality, named after the Danish engineer Johan Jensen (1859–1925), can be stated
as follows.

Theorem 2 (Jensen’s Inequality). Let m be a positive integer and let f : I → R be convex
over the interval I ⊆ R. For any (not necessarily distinct) points x1, . . . , xm ∈ I and any
non-negative real numbers p1, . . . , pm summing to one,

f(p1x1 + p2x2 + · · ·+ pmxm) ≤ p1f(x1) + p2f(x2) + · · ·+ pmf(xm).

Proof. We proceed by induction on m, denoting the induction hypothesis as P (m). The
truth of P (1) is a triviality, and P (2) is true by definition of convexity. Suppose P (m) is
true for some m ≥ 2, let x1, . . . , xm+1 be any m+ 1 points of I, and let p1, . . . , pm+1 be any
m + 1 non-negative real numbers summing to one. If p1 = 1, then pj = 0 for all j > 1, and
it is trivially true that f(p1x1 + · · ·+ pm+1xm+1) ≤ p1f(x1) + · · ·+ pm+1f(xm+1). Otherwise
p1 < 1, and we have

p1x1 + · · ·+ pm+1xm+1 = p1x1 + (1− p1)z

where
z =

p2
1− p1

x2 + · · ·+ pm+1

1− p1
xm+1.

Note that z is a convex combination of x2, . . . , xm+1, and hence z ∈ I. We then have

f(p1x1 + (1− p1)z) ≤ p1f(x1) + (1− p1)f(z)

≤ p1f(x1) + (1− p1)
(

p2
1− p1

f(x2) + · · ·+ pm+1

1− p1
f(xm+1)

)
= p1f(x1) + · · ·+ pm+1f(xm+1),

where the first inequality follows from the convexity of f , and the second inequality follows
from the induction hypothesis. Thus P (m) implies P (m+ 1). Since P (1) and P (2) are true,
and P (m) implies P (m + 1) for all m ≥ 2, by induction it follows that P (m) is true for all
positive integers m.

It can be shown that in the case when f : I → R is strictly convex, equality in Jensen’s
inequality can be achieved for x1, . . . , xm ∈ I and p1, . . . , pm ≥ 0 summing to one if and only
if, for some x ∈ I, xi = x for all i satisfying pi > 0. In other words, to achieve equality in
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Jensen’s inequality when f is strictly convex, all xi’s contributing (with positive coefficient)
to the convex combination must be equal. (Equality is also achieved when f(x) is an affine
function; however such a function is not strictly convex.)

When f is concave, the sense of Jensen’s inequality is reversed, i.e.,

p1f(x1) + · · ·+ pm+1f(xm+1) ≤ f(p1x1 + · · ·+ pm+1xm+1).

For example, taking I = (0,∞), and f(x) = ln(x), we have

p1 lnx1 + · · ·+ pm lnxm ≤ ln(p1x1 + · · ·+ pmxm)

or
ln(xp11 ) + · · ·+ ln(xpmm ) ≤ ln(p1x1 + · · ·+ pmxm).

Exponentiating both sides, since exp(x) is monotonically increasing, we obtain the follow-
ing theorem, which we term the “Generalized AM-GM Inequality,” where AM stands for
“arithmetic mean” and GM stands for “geometric mean.” This terminology is not standard;
however, see Theorem 4 below.

Theorem 3 (Generalized AM-GM Inequality). For every x1, . . . , xm > 0,

xp11 · · · xpmm ≤ p1x1 + · · ·+ pmxm

for any non-negative real numbers p1, . . . , pm summing to one. Equality is achieved if and
only if xi = c for all i satisfying pi > 0, for some positive constant c.

A special case of Theorem 3 is the following.

Theorem 4 (Inequality of Arithmetic and Geometric Means). For any positive real numbers
x1, . . . , xm, (

m∏
i=1

xi

)1/m

≤ 1

m

m∑
i=1

xi,

with equality achieved if and only if xi = c for some constant c, for all i ∈ {1, . . . ,m}.

Proof. This is Theorem 3 in the special case when p1 = · · · = pm = 1/m. The left-hand side
is the geometric mean of the given set of numbers and the right-hand side is the arithmetic
mean.

4 Young’s Inequality

Young’s inequality, named after the English mathematician William Henry Young (1863–
1942), can be stated as follows.
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Theorem 5 (Young’s Inequality). For any non-negative real numbers a and b and any pos-
itive real numbers p and q such that 1

p
+ 1

q
= 1,

ab ≤ ap

p
+
bq

q
,

with equality achieved if and only if ap = bq.

Proof. When a and b are positive, this is Theorem 3 in the special case when m = 2, x1 = ap,
x2 = bq, p1 = 1

p
and p2 = 1

q
. Indeed, we then have

ab = xp11 x
p2
2 ≤ p1x1 + p2x2 =

ap

p
+
bq

q
.

If one (or both) of a or b is zero, the inequality also holds.

5 Hölder’s Inequality

We can use Young’s inequality to prove Hölder’s inequality, named after the German math-
ematician Otto Ludwig Hölder (1859–1937).

Theorem 6 (Hölder’s Inequality). For any pair of vectors x and y in Cn, and for any positive
real numbers p and q satisfying 1

p
+ 1

q
= 1, we have

n∑
i=1

|xiyi| ≤ ‖x‖p · ‖y‖q,

where

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

, ‖y‖q =

(
n∑
i=1

|xi|q
) 1

q

are the p- and q-norms of x and y, respectively. If one (or both) of x or y is zero, then
equality is achieved. If both x and y are nonzero, equality is achieved if and only for each
i ∈ {1, . . . , n} we have (

|xi|
‖x‖p

)p
=

(
|yi|
‖y‖q

)q
.

Proof. If one (or both) of x or y is zero, the inequality certainly holds with equality. Oth-
erwise, assume x and y are both nonzero, and let u = x

‖x‖p and let v = y
‖y‖q , and note that
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‖u‖p = ‖v‖q = 1. Then

n∑
i=1

|uivi| =
n∑
i=1

|ui||vi|

≤
n∑
i=1

(
|ui|p

p
+
|vi|q

q

)
(by Young’s inequality)

=
(‖u‖p)p

p
+

(‖v‖q)q

q

=
1

p
+

1

q

= 1.

Now multiply both sides by the positive quantity ‖x‖p · ‖y‖q to obtain the statement of
the theorem. To achieve equality, each term in the sum must achieve equality in Young’s
inequality, i.e., for all i ∈ {1, . . . , n}, |ui|p = |vi|q, which translates to the statement in the
theorem since |ui| = |xi|/‖x‖p and |vi| = |yi|/‖y‖q.

The Cauchy-Schwarz inequality, named after the French mathematician, engineer, and physi-
cist Augustin-Louis Cauchy (1789–1857) and the German mathematician Karl Hermann
Amandus Schwarz1 (1843–1921), is closely related to Hölder’s inequality in the case p = q = 2.

Theorem 7 (Cauchy-Schwarz Inequality). For any pair of vectors x and y in Cn,∣∣∣∣∣
n∑
i=1

xiy
∗
i

∣∣∣∣∣ ≤ ‖x‖2 · ‖y‖2,
where equality is achieved if and only y = λx for some scalar λ ∈ C.

Proof. We write ∣∣∣∣∣
n∑
i=1

xiy
∗
i

∣∣∣∣∣ ≤
n∑
i=1

|xiy∗i |

=
n∑
i=1

|xiyi|

≤ ‖x‖2 · ‖y‖2,

where the first inequality is the triangle inequality for complex numbers and the second
inequality is Hölder’s inequality in the case p = q = 2. For equality to hold, it must hold
in both inequalities, which certainly occurs if one (or both) of x or y is zero. If both are
nonzero, the first equality holds with equality if and only if every nonzero xiy

∗
i has the same

1Caution: some authors are tempted to misspell this as Schwartz!
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phase, i.e., xiy
∗
i = rie

i θ for some fixed θ. The second inequality holds with equality if and
only if

|xi|
‖x‖2

=
|yi|
‖y‖2

for every i, which implies that |yi| = c|xi| for some positive constant c. Putting these two
conditions together, if xi = aie

iφi , then yi = caie
i(φi−θ), or, in other words, y = λx for

λ = ce− i θ.

6 Minkowski’s Inequality

We can use Hölder’s inequality to prove Minkowski’s inequality, named after the German
mathematician Hermann Minkowski (1864–1909). Minkowski’s inequality is the triangle
inequality for p-norms.

Theorem 8 (Minkowski’s Inequality). For any pair of vectors u and v in Cn, and for any
p > 1, we have

‖u+ v‖p ≤ ‖u‖p + ‖v‖p.
Equality holds if and only if au = bv for some non-negative real constants a and b, not both
zero.

Proof. The theorem is clearly true if u and v are both zero, and it holds if u + v is zero.
Otherwise, we write

(‖u+ v‖p)p =
n∑
i=1

|ui + vi|p

=
n∑
i=1

|ui + vi| · |ui + vi|p−1

≤
n∑
i=1

(|ui|+ |vi|) · |ui + vi|p−1

=
n∑
i=1

|ui||ui + vi|p−1 +
n∑
i=1

|vi||ui + vi|p−1

≤

(
n∑
i=1

|ui|p
) 1

p

·

(
n∑
i=1

(
|ui + vi|p−1

) p
p−1

) p−1
p

+

(
n∑
i=1

|vi|p
) 1

p

·

(
n∑
i=1

(
|ui + vi|p−1

) p
p−1

) p−1
p

= (‖u‖p + ‖v‖p) · (‖u+ v‖p)p−1 .

The first inequality is an application of the triangle inequality for complex numbers, and
the second inequality is two applications of Hölder’s inequality, taking q = p/(p− 1) so that
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1
p

+ 1
q

= 1. The theorem follows by dividing both sides by the positive quantity (‖u+ v‖p)p−1.
To achieve equality it is necessary that the triangle inequality for complex numbers holds
with equality for each term, i.e., that ui and vi, if nonzero, have the same phase. We also
require equality in each application of Hölder’s inequality. Let w = (w1, . . . , wn) where
wi = |ui + vi|p−1. For equality to hold in the first application of Hölder’s inequality, we need,
for each i ∈ {1, . . . , n}, that (

|ui|
‖u‖p

)p
=

(
wi
‖w‖q

)q
,

and similarly for the second application of Hölder’s inequality. Now

‖w‖q =

(
n∑
i=1

wqi

)1/q

=

(
n∑
i=1

(|ui + vi|p−1)p/(p−1)
)(p−1)/p

=

(
n∑
i=1

(|ui + vi|)p
)(p−1)/p

= ‖u+ v‖p−1p ;

thus ‖w‖qq = ‖u + v‖pp. Also wqi = |ui + vi|p. Thus, taking pth roots, the conditions for
equality in Hölder’s inequality become

|ui|
‖u‖p

=
|ui + vi|
‖u+ v‖p

=
|vi|
‖v‖p

.

Thus we need |ui| and |vi| to be proportional. Summarizing, we find that equality in
Minkowski’s inequality is achieved if and only if au = bv for some non-negative real scalars
a and b, not both zero.

The alert reader will note that Minkowski’s inequality also holds in the case p = 1. This
must be proved separately, and is left as an exercise.
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