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1 Definition

The rth order statistic X(r) of a sample of n random variables X1, . . . , Xn is equal to its rth
smallest value. Thus X(1) denotes min{X1, . . . , Xn} (the minimum of the Xi’s), X(2) denotes
min

(
{X1, . . . , Xn} \ {X(1)}

)
(the second minimum), and in general,

X(r) = min
(
{X1, . . . , Xn} \ {X(1), . . . , X(r−1)}

)
.

Thus X(n) = max{X1, . . . , Xn}.

2 Distribution and Density Functions

Fix x ∈ R and for any random variable X, designate the event X ≤ x a “success.” At the
crux of understanding order statistics is the following observation: X(r) is a success if and
only if at least r of X1, . . . , Xn are successes.

Suppose that the X1, . . . , Xn are independent and identically distributed with cumulative
distribution function F (x). The probability of success for each Xi is then given by F (x),
and the probability that X(r) is a success, i.e., the cumulative distribution function of X(r),
is given as the binomial probability

F(r)(x) =
n∑
k=r

(
n

k

)
(F (x))k(1− F (x))n−k = 1−

r−1∑
k=0

(
n

k

)
(F (x))k(1− F (x))n−k.

Thus, for example,

F(1)(x) = 1− (1− F (x))n and F(n)(x) = (F (x))n.

If F (x) has derivative f(x), then we can compute the probability density function for
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X(r) by differentiating F(r)(x). We get

f(r)(x) =
d

dx
F(r)(x)

=
d

dx

n∑
k=r

(
n

k

)
(F (x))k(1− F (x))n−k

(a)
=

d

dx

(
n−1∑
k=r

(
n

k

)
(F (x))k(1− F (x))n−k + (F (x))n

)

=
n−1∑
k=r

(
n

k

)
k(F (x))k−1f(x)(1− F (x))n−k + n(F (x))n−1

+
n−1∑
k=r

(
n

k

)
(F (x))k(n− k)(1− F (x))n−k−1(−f(x))

=
n∑
k=r

n!

(k − 1)!(n− k)!
(F (x))k−1(1− F (x))n−kf(x)

−
n−1∑
k=r

n!

k!(n− k − 1)!
(F (x))k(1− F (x))n−k−1f(x)

(b)
=

n∑
k=r

n!

(k − 1)!(n− k)!
(F (x))k−1(1− F (x))n−kf(x)

−
n∑

k′=r+1

n!

(k′ − 1)!(n− k′)!
(F (x))k

′−1(1− F (x))n−k
′
f(x)

(c)
=

n!

(r − 1)!(n− r)!
(F (x))r−1(1− F (x))n−rf(x)

= r

(
n

r

)
(F (x))r−1(1− F (x))n−rf(x).

In (a) we isolated the last term in the sum to avoid negative exponents when differentiating,
in (b) we re-indexed the second summation by substituting k′ = k + 1, and we get (c) by
observing the miraculous cancellation of all but one term of the first summation by the terms
of the second summation. This derivation is the centerpiece of this note. Thus, for example,

f(1)(x) = n(1− F (x))n−1f(x) and f(n)(x) = n(F (x))n−1f(x).

in agreement with the direct differentiation of their cumulative distribution functions.
To illustrate these formulas in action, suppose that X1, . . . , X5 are uniformly distributed

on the unit interval I = [0, 1], so that F (x) = x and f(x) = 1 for x ∈ I. Then, for x ∈ I, we
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have

f(1)(x) = 5(1− x)4

f(2)(x) = 20x(1− x)3

f(3)(x) = 30x2(1− x)2

f(4)(x) = 20x3(1− x)

f(5)(x) = 5x4,

all of them being examples of beta distributions. From these expressions we find (the intu-
itively plausible) expected values

E[X(1)] =
1

6
, E[X(2)] =

1

3
, E[X(3)] =

1

2
, E[X(4)] =

2

3
, E[X(5)] =

5

6

and variances

VAR[X(1)] =
5

252
≈ 0.0198,

VAR[X(2)] =
2

63
≈ 0.0317,

VAR[X(3)] =
1

28
≈ 0.0357,

VAR[X(4)] =
2

63
≈ 0.0317,

VAR[X(5)] =
5

252
≈ 0.0198.

Evidently, in this case, the extremal order statistics (minimum and maximum) have the least
variance, as their distributions become squeezed by the finite support over which the Xi’s
are defined.

When X1, . . . , X5 are normally distributed with zero mean and unit variance, we get

E[X(1)] ≈ −1.16, E[X(2)] ≈ −0.495, E[X(3)] = 0, E[X(4)] ≈ 0.495, E[X(5)] ≈ 1.16;

these values are called rankits and they are used for the abscissa of a so-called normal plot.
The variances are

VAR[X(1)] ≈ 0.448,

VAR[X(2)] ≈ 0.312,

VAR[X(3)] ≈ 0.287,

VAR[X(4)] ≈ 0.312,

VAR[X(5)] ≈ 0.448.

Now the extremal order statistics have the most variance.
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It is interesting to consider the limit distributions of the extremal order statistics as the
number of samples n becomes large. As n→∞, we get

lim
n→∞

F(1)(x) = lim
n→∞

1− (1− F (x))n =

{
0 if F (x) = 0,

1 if F (x) > 0;

lim
n→∞

F(n)(x) = lim
n→∞

(F (x))n =

{
1 if F (x) = 1,

0 if F (x) < 1.

In case F (x) = 0 is not achieved by any x, the minimum X(1) does not approach a valid
distribution as n→∞ (in effect the density approaches a Dirac delta at −∞). Likewise, in
case F (x) = 1 is not achieved by any x, the maximum X(n) also does not approach a valid
distribution as n→∞ (in effect the density approaches a Dirac delta at +∞).

3 Joint Distributions

A remarkable result, from which all joint densities (including all marginal densities) of the
order statistics can in principle be derived via marginalization, is the following. Again
assuming that X1, . . . , Xn are independent and identically distributed with density f(x), the
joint density of the order statistics is given by

fX(1),...,X(n)
(x1, . . . , xn) =

{
n!f(x1)f(x2) . . . f(xn) if x1 < x2 < · · · < xn;

0 otherwise.

To see this, recall the well known result that if g smoothly transforms the random vector
X = (X1, . . . , Xn) to the vector Y = (Y1, . . . , Yn) = g(X), then the probability density at a
point (y1, . . . , yn) in the range of g is given by

fY1,...,Yn(y1, . . . , yn) =
∑

(x1,...,xn)∈g−1(y1,...,yn)

fX1,...,Xn(x1, . . . , xn)

|J(x1, . . . , xn)|
,

where
g−1(y1, . . . , yn) = {(x1, . . . , xn) : g(x1, . . . , xn) = (y1, . . . , yn)}

is the set of points in the domain of g that map to (y1, . . . , yn) and the Jacobian J(x1, . . . , xn)
is given as

det


∂y1
∂x1

· · · ∂yn
∂x1

...
. . .

...
∂y1
∂xn

· · · ∂yn
∂xn

 ,
where (y1, . . . , yn) = g(x1, . . . , xn). Intuitively, a point (x1, . . . , xn) in the domain of g con-
tributes an inverse-Jacobian-scaled version of the density fX1,...,Xn(x1, . . . , xn) to the density
at g(x1, . . . , xn) in the range of g.

From now on, let g be the mapping that takes a vector x = (x1, . . . , xn) ∈ Rn to g(x) =
(x(1), . . . , x(n)). This function is certainly not one-to-one (or smooth). However, it is piecewise
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one-to-one and smooth when restricted to certain regions of Rn defined as follows. For every
fixed permutation π on {1, 2, . . . , n} define the region

Rπ = {x ∈ Rn : xπ(1) < xπ(2) < · · · < xπ(n)}.

For example, if n = 2, there are two possible permutations on {1, 2}. If π = id is the
identity permutation, then Rid = {(x1, x2) : x1 < x2}, a half-plane. On the other hand, if π
is the permutation such that π(1) = 2, then Rπ = {(x1, x2) : x2 < x1}, the complementary
half-plane (neglecting the zero-measure boundary set {(x1, x2) : x1 = x2}).

In general, the different Rπ regions partition Rn into n! disjoint regions (neglecting zero-
measure boundary sets in which one or more of the coordinates are equal).

Now let Tπ : Rπ → Rid denote the map that takes (x1, . . . , xn) ∈ Rπ to (xπ(1), . . . , xπ(n)) ∈
Rid. This map is linear and one-to-one, and the corresponding Jacobian (being the absolute
value of the determinant of a permutation matrix) has unit magnitude.

Returning now to the map g, observe that g can be written as

g(x) = Tπ(x) if x ∈ Rπ

for any x ∈
⋃
πRπ. Every point y = (y1, . . . , yn) ∈ Rid has exactly n! inverse images under

g, one in each region Rπ. The joint probability density of X1, . . . , Xn at each such point is
identical, given by f(y1)f(y2) · · · f(yn). Since the Jacobian corresponding to g at each such
point has unit magnitude, the Jacobian transformation rule gives us

f(y1, . . . , yn) =
∑
π

f(y1)f(y2) · · · f(yn) = n!f(y1)f(y2) · · · f(yn), y1 < y2 < · · · < yn.

For example, when n = 3, we have

fX(1),X(2)
(x1, x2) =

∫ ∞
x2

6f(x1)f(x2)f(x3) dx3 = 6f(x1)f(x2)(1− F (x2)),

fX(1),X(3)
(x1, x3) =

∫ x3

x1

6f(x1)f(x2)f(x3) dx2 = 6f(x1)f(x3)(F (x3)− F (x1)),

fX(2),X(3)
(x2, x3) =

∫ x2

−∞
6f(x1)f(x2)f(x3) dx1 = 6f(x2)f(x3)F (x2).

We can marginalize these further, for example recovering

fX(1)(x1) =

∫ ∞
x1

6f(x1)f(x2)(1− F (x2)) dx2

= 6f(x1)(1− F (x1)−
1

2
(1− (F (x1))

2))

= 3(1− F (x1))
2f(x1),

in agreement with

fX(1)(x1) =

∫ ∞
x1

6f(x1)f(x3)(F (x3)− F (x1)) dx3

= 6f(x1)

(
1

2
(1− (F (x1))

2)− F (x1)(1− F (x1))

)
= 3(1− F (x1))

2f(x1).
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