Turán’s Theorem and Coding Theory

Frank R. Kschischang
Dept. of Electrical and Computer Engineering
University of Toronto

May 16, 2012

1 Turán’s Theorem

Let G be a simple graph with n vertices and e edges. If e is large, one would expect that G should contain many cliques, i.e., collections of mutually neighbouring vertices. A natural question arises: if G does not contain a $(k+1)$-clique (i.e., a clique of $k+1$ vertices), what is the largest possible value for e? Let us denote by $T(n,k)$ the largest possible number of edges in a $(k+1)$-clique-free simple graph with n vertices, and let us refer to any $(k+1)$-clique-free simple graph with n vertices having $T(n,k)$ edges as extremal. Clearly $T(n,1) = 0$, and $T(n,k)$ must be a non-decreasing function of k.

Turán’s theorem, a fundamental result in extremal graph theory, provides an exact formula for $T(n,k)$, and a characterization of the extremal graphs.

Theorem 1 (Turán) Let $n = qk + r$, where q and r are integers and $0 \leq r < k$. Then

$$T(n,k) = \frac{k-1}{2k}n^2 - \frac{r}{2}\left(1 - \frac{r}{k}\right),$$

achieved, uniquely, by the complete multipartite graph $K_{q,\ldots,q,q+1,\ldots,q+1}$ having k vertex classes, r of them with $q+1$ vertices and the rest with q vertices.

A complete multipartite graph in which the number of elements in different vertex classes differs by at most one is known as a Turán graph, in connection with this theorem. For example, the graphs achieving $T(9,3) = 27$ and $T(9,4) = 30$ are shown below.

![Turán graphs](image-url)
Before proving this theorem, let \(G = (V, E) \). Let us write \(\partial(v) \) for the degree of a vertex \(v \in V \), i.e., for the number of edges of \(E \) incident on \(v \). If \(E \) contains an edge incident on vertices \(u \) and \(v \), let us write \(uv \in E \), and call \(u \) and \(v \) neighbours in \(G \). Let us write \(u \sim v \) if \(uv \not\in E \), i.e., if \(u \) and \(v \) are not neighbours in \(G \).

Clearly \(v \sim v \) for all vertices \(v \), and if \(v \sim w \) then \(w \sim v \) for all pairs of vertices \(v, w \); thus the relation \(\sim \) is reflexive and symmetric. However, in a general graph \(G \), it is not true that if \(u \sim v \) and \(v \sim w \) then \(u \sim w \), i.e., \(\sim \) is not transitive in general.

Now let \(G = (V, E) \) be any simple graph. If we have a pair \(u, v \in V \) with \(u \sim v \) and with \(\partial(u) > \partial(v) \), then \(G \) can be modified to have more edges, without introducing a clique larger than any of the cliques in \(G \). Simply delete vertex \(v \) (and all edges incident on \(v \)) and clone \(u \), i.e., create a copy of \(u' \) of \(u \), and include a new edge \(u'w \) in \(E \) whenever \(uw \) is in \(E \). Call the resulting graph \(G' = (V', E') \), and note that \(|V'| = |V| \). Since a clique cannot contain both \(u \) and \(u' \), any clique containing \(u' \) cannot be larger than a clique containing \(u \). The number of edges in \(G' \) is given by

\[
|E'| = |E| - \partial(v) + \partial(u) > |E|.
\]

Thus in an extremal graph, non-neighbouring vertices must have equal degree.

A similar argument applies when a non-neighbour has the same degree as a pair of neighbouring vertices of that same degree. Suppose we have \(G = (V, E) \) without a \(k \)-clique and a triple \(u, v, w \in V \) with \(u \sim v, u \sim w, vw \in E \) and \(\partial(u) = \partial(v) = \partial(w) \). Again \(G \) can be modified to have more edges, without introducing any cliques larger than those present in \(G \). Simply delete vertices \(v \) and \(w \) and clone \(u \) twice. By the same reasoning as in the previous paragraph, no large cliques are introduced by this procedure. In the resulting graph \(G'' = (V', E') \), we have \(|V'| = |V| \) and

\[
|E'| = |E| - (\partial(v) + \partial(w) - 1) + 2\partial(u) = |E| + 1.
\]

The previous two paragraphs imply that, in an extremal graph (a) one cannot find a pair \(u, v \) with \(u \sim v \) and \(\partial(u) \neq \partial(v) \) and (b) if \(u \sim v \) and \(v \sim w \), then \(u \sim w \), i.e., the relation \(\sim \) is transitive, and hence is an equivalence relation.

An extremal graph is thus multipartite and complete: the vertices can be partitioned into the equivalence classes of \(\sim \), and each vertex in a given class must be a neighbour of every vertex not in that class. (This automatically ensures that the degree of each vertex within a given class is the same.) Note that a complete multipartite graph with \(k \) vertex classes contains a \(k \)-clique (simply take \(k \) vertices from distinct classes), but no \((k + 1)\)-clique (since every set of \(k + 1 \) vertices must, by the pigeonhole principle, contain at least two vertices from the same class).

Now, of the complete multi-partite graphs on \(n \) vertices not having a \((k + 1)\)-clique, which have the most edges? Note that an extremal \((k + 1)\)-clique-free graph must contain a \(k \)-clique, otherwise adding an edge would not create \((k + 1)\)-clique. Thus we can restrict our attention to complete multipartite graphs with exactly \(k \) vertex classes \(V_1, \ldots, V_k \).

By definition \(\sum_{i=1}^{k} |V_i| = n \). The degree of each vertex in \(V_i \) is given by \(n - |V_i| \), and hence the
total number of edges in the graph is given by

\[|E| = \frac{1}{2} \sum_{i=1}^{k} |V_i| (n - |V_i|) = \frac{1}{2} \left(n^2 - \sum_{i=1}^{k} |V_i|^2 \right). \]

To maximize \(|E|\), we must solve the following optimization problem: we must choose positive integers \(|V_1|, \ldots, |V_k|\) so as to minimize \(\sum_{i=1}^{k} |V_i|^2\), subject to \(\sum_{i=1}^{k} |V_i| = n\). Without the integer constraint, a Lagrange multipliers approach would easily show that the optimal solution is to make all of the \(|V_i|\)'s equal. The actual solution makes them as equal as possible, while still satisfying the integer constraint.

Suppose for some \(i, j\), we have \(|V_i| \geq |V_j| + 2\). Modify \(G\) to \(G'\) by deleting a vertex from \(V_i\) and adding one to \(V_j\); and let \(|V'_i| = |V_i| - 1\), \(|V'_j| = |V_j| + 1\), and \(|V'_k| = |V_k|\) when \(k \neq i, j\). Then

\[
\sum_{i=1}^{k} |V_i|^2 - \sum_{i=1}^{k} |V'_i|^2 = |V_i|^2 + |V_j|^2 - (|V_i| - 1)^2 - (|V_j| + 1)^2
= 2(|V_i| - |V_j| - 1)
> 0.
\]

Thus \(G'\) would have more edges than \(G\). It follows that, in an extremal configuration, the \(|V_i|\)'s must be nearly equal: any \(|V_i|\) can differ from any \(|V_j|\) by at most one.

The extremal graph for a given \(n\) and \(k\) is now completely determined: it is a complete \(k\)-partite graph with vertices partitioned into nearly equally sized classes. Let \(q\) and \(r\) be integers so that \(n = kq + r\) and \(0 \leq r < k\). Then \(k - r\) classes contain \(q\) vertices and \(r\) classes contain \(q + 1\) vertices. It is now easy to count the number of edges; we find

\[|E| = \frac{1}{2} \left(n^2 - (k - r)q^2 - r(q + 1)^2 \right), \]

which simplifies (after substituting \(q = (n - r)/k\)) to the expression given in Theorem 1.

Theorem 1 is often used in a slightly weaker form by observing that \(T(n, k) \leq (k - 1)n^2/(2k)\) for any choice of \(n\) and \(k\). From this, the following Lemma immediately follows.

Lemma 1 A simple graph with \(n\) vertices and \(e\) edges must contain a \((k + 1)\)-clique if

\[e > \left(1 - \frac{1}{k} \right) \frac{n^2}{2}. \]

This guarantee—that a clique of a certain size must exist under some conditions—is very useful for proving the existence of certain error-correcting codes, as we shall see next.

2 Codes are Cliques

As a warm-up, let \(d_H\) denote Hamming distance in the vector space \(F_q^n\). Consider the graph \(G = (V, E)\) with \(q^N\) vertices in which \(V = F_q^N\). Allow \(uv \in E\) if and only if \(d_H(u, v) \geq d\), i.e., if
the Hamming distance between the corresponding vectors is at least \(d \). A clique in \(G \) is therefore a set of vectors whose pairwise Hamming distance is at least \(d \), i.e., a code of length \(N \) over \(\mathbb{F}_q \) of minimum Hamming distance at least \(d \).

Note that \(G \) is regular: the degree of each vertex is

\[
\partial(v) = \sum_{i=d}^{N} \binom{N}{i} (q-1)^i = q^N - \sum_{i=0}^{d-1} \binom{N}{i} (q-1)^i = q^N - V_{d-1},
\]

where \(V_{d-1} \) denotes the volume of a Hamming ball of radius \(d-1 \) in \(\mathbb{F}_q^N \). It follows that the number of edges \(|E|\) is given by

\[
|E| = \frac{1}{2} q^N \partial(v) = \frac{1}{2} (q^{2N} - q^N V_{d-1}).
\]

According to Lemma 1, a clique of size \(K+1 \) in \(G \) (equivalently, a code with \(K+1 \) codewords of length \(N \) and minimum Hamming distance \(d \)) certainly exists if

\[
\frac{1}{2} (q^{2N} - q^N V_{d-1}) > \frac{1}{2} \left(1 - \frac{1}{K} \right) q^{2N}
\]

or

\[
1 - \frac{V_{d-1}}{q^N} > 1 - \frac{1}{K}
\]

or

\[
K < \frac{q^N}{V_{d-1}},
\]

which is a statement of the Gilbert-Varshamov bound.

Now consider a set \(X \) and a distance function \(\rho : X \times X \to \mathbb{Z}_{\geq 0} \). Let \(V_r(x) \) denote the volume of the ball of “radius” \(r \) centered at \(x \), i.e.,

\[
V_r(x) = |\{x' \in X : \rho(x, x') \leq r\}|.
\]

As above, consider the graph \(G = (V, E) \) with \(V = X \), and \(uv \in E \) if and only if \(\rho(u, v) \geq d \). The degree of a vertex \(x \) is given by \(|X| - V_{d-1}(x)\), and hence the total number of edges in the graph is given by

\[
|E| = \frac{1}{2} \sum_{x \in X} (|X| - V_{d-1}(x)) = \frac{|X|}{2} (|X| - V_{d-1}),
\]

where

\[
V_{d-1} = \frac{1}{|X|} \sum_{x \in X} V_{d-1}(x)
\]

denotes the average volume of a \((d-1)\)-ball.
According to Lemma 1, a clique of size $K + 1$ in G (equivalently, a code with $K + 1$ codewords from X and minimum $
ho$-distance d) certainly exists if $|E| > (1 - 1/(K))|X|/2$, i.e., if
\[
\frac{|X|}{2} \left(|X| - \frac{|X|}{V_{d-1}} \right) > \frac{|X|}{2} \left(1 - \frac{1}{K} \right) |X|
\]
or
\[
1 - \frac{V_{d-1}}{|X|} > 1 - \frac{1}{K}
\]
or
\[
K < \frac{|X|}{V_{d-1}},
\]
which is a statement of the so-called generalized Gilbert-Varshamov bound.

3 Notes

The content of this article is based on the work of Tolhuizen [1]. Turán’s paper [2] was published in 1941 and is regarded as the starting-point of extremal graph theory. Many proofs of Turán’s theorem are known; for example, the award-winning paper of Aigner [3] gives six proofs. A particularly short proof appears in [4, Ch. 4].

References

