Notes on the Vasil'ev Construction

Frank R. Kschischang

September 25, 2016

As usual, let \mathbb{F}_{2} denote the field of two elements and for any positive integer n, let \mathbb{F}_{2}^{n} denote the vector space of n-tuples over \mathbb{F}_{2}.

For any integer $m>2$, let H_{m} be the binary $\left(2^{m}-1,2^{m}-m-1\right)$ Hamming code, and let U_{m} be the whole vector space $\mathbb{F}_{2}^{2^{m}-1}$, i.e., U_{m} is the binary $\left(2^{m}-1,2^{m}-1\right)$ code.

For any binary vector $x \in \mathbb{F}_{2}^{n}$, let $\pi(x)=x_{1}+\cdots+x_{n}$ denote the parity of x. Note that π is linear, i.e., $\pi(x+y)=\pi(x)+\pi(y)$. Finally, let $\lambda: H_{m} \rightarrow \mathbb{F}_{2}$ be any function (possibly nonlinear) satisfying $\lambda(0)=0$.

Now form the code

$$
\mathcal{C}_{m+1}=\left\{(u, u+v, \pi(u)+\lambda(v)): u \in U_{m}, v \in H_{m}\right\} .
$$

Clearly \mathcal{C}_{m+1} has length $2\left(2^{m}-1\right)+1=2^{m+1}-1$ and, since each different choice of (u, v) gives a different codeword,

$$
\left|\mathcal{C}_{m+1}\right|=2^{2^{m}-1} \cdot 2^{2^{m}-m-1}=2^{2^{m+1}-(m+1)-1}=\left|H_{m+1}\right| .
$$

Thus \mathcal{C}_{m+1} has the same length and number of codewords as H_{m+1}. Let us now show that \mathcal{C}_{m+1} also has minimum distance 3 .

Let

$$
\begin{aligned}
& c_{1}=\left(u_{1}, u_{1}+v_{1}, \pi\left(u_{1}\right)+\lambda\left(v_{1}\right)\right) \\
& c_{2}=\left(u_{2}, u_{2}+v_{2}, \pi\left(u_{2}\right)+\lambda\left(v_{2}\right)\right)
\end{aligned}
$$

be two arbitrary codewords of \mathcal{C}_{m+1}. These two words are separated by Hamming distance $d\left(c_{1}, c_{2}\right)$ given by

$$
d\left(c_{1}, c_{2}\right)=\mathrm{wt}\left(u_{1}+u_{2}\right)+\mathrm{wt}\left(u_{1}+v_{1}+u_{2}+v_{2}\right)+\mathrm{wt}\left(\pi\left(u_{1}+u_{2}\right)+\lambda\left(v_{1}\right)+\lambda\left(v_{2}\right)\right),
$$

where $\mathrm{wt}(\cdot)$ denotes Hamming weight, and we have used the fact that $\pi\left(u_{1}\right)+\pi\left(u_{2}\right)=$ $\pi\left(u_{1}+u_{2}\right)$.

We consider several cases.
Case 0: $u_{1}=u_{2}, v_{1}=v_{2}$.

This is the trivial case where $c_{1}=c_{2}$ and $d\left(c_{1}, c_{2}\right)=0$.

Case 1: $u_{1} \neq u_{2}, v_{1}=v_{2}$.

In this case,

$$
d\left(c_{1}, c_{2}\right)=2 \operatorname{wt}\left(u_{1}+u_{2}\right)+\operatorname{wt}\left(\pi\left(u_{1}+u_{2}\right)\right) .
$$

If $\operatorname{wt}\left(u_{1}+u_{2}\right)=1$, then $\operatorname{wt}\left(\pi\left(u_{1}+u_{2}\right)\right)=1$, so $d\left(c_{1}, c_{2}\right)=3$. If $\operatorname{wt}\left(u_{1}+u_{2}\right) \geq 2$, then $d\left(c_{1}, c_{2}\right) \geq 4$.

Case 2: $u_{1}=u_{2}, v_{1} \neq v_{2}$.

In this case,

$$
d\left(c_{1}, c_{2}\right)=\mathrm{wt}\left(v_{1}+v_{2}\right)+\mathrm{wt}\left(\lambda\left(v_{1}\right)+\lambda\left(v_{2}\right)\right) \geq 3
$$

since v_{1} and v_{2} are Hamming codewords, and $\operatorname{wt}\left(v_{1}+v_{2}\right)=d\left(v_{1}, v_{2}\right) \geq 3$.

Case 3: $u_{1} \neq u_{2}, v_{1} \neq v_{2}$.
Note that in this case, since v_{1} and v_{2} are Hamming codewords, $\mathrm{wt}\left(v_{1}+v_{2}\right)=$ $d\left(v_{1}, v_{2}\right) \geq 3$. Adding a word of weight one (or two) to $v_{1}+v_{2}$ can change its weight by at most one (or two). Thus, if $\operatorname{wt}\left(u_{1}+u_{2}\right)=1$, then $\operatorname{wt}\left(u_{1}+u_{2}+v_{1}+v_{2}\right) \geq 2$, and so $d\left(c_{1}, c_{2}\right) \geq 3$. If $\operatorname{wt}\left(u_{1}+u_{2}\right)=2$, then $\mathrm{wt}\left(u_{1}+u_{2}+v_{1}+v_{2}\right) \geq 1$, and so $d\left(c_{1}, c_{2}\right) \geq 3$. Finally if $\operatorname{wt}\left(u_{1}+u_{2}\right) \geq 3$, then $d\left(c_{1}, c_{2}\right) \geq 3$.

In all cases when $c_{1} \neq c_{2}$, we have $d\left(c_{1}, c_{2}\right) \geq 3$. In fact, in Case 1 we can easily construct c_{1} and c_{2} with $d\left(c_{1}, c_{2}\right)=3$. It follows from this (or from the Hamming bound) that \mathcal{C}_{m+1} has minimum Hamming distance exactly 3 .

As an example, consider the special case when $\lambda(x)=0$. In this case \mathcal{C}_{m+1} is linear with generator matrix

$$
G_{m+1}=\left[\begin{array}{c|c|c}
I & I & 1 \\
& & \vdots \\
\hline & & 0 \\
0 & G_{m} & \vdots \\
& & 0
\end{array}\right],
$$

where G_{m} is a generator matrix for the Hamming code H_{m}.

References

[1] Ju. L. Vasil'ev, "On nongroup close-packed codes," Probl. Cybernet. vol. 8, pp. 337-339, 1962.

