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1 Notation

The field of complex numbers is denoted as C. The complex conjugate of z € C is denoted
as z*. The set of natural numbers is N = {0,1,2,...}. For any positive integer a, let

la] ={1,2,...,a}.

Throughout this note, matrices are, for some positive integers a and b and some field F',
elements of F*?  the set of matrices with a rows and b columns having entries from F. For
any i € [a] and any j € [b], the entry in row ¢ and column j of M € F**? is denoted as M, ;,
ie., M =[M,;:ié€lal,je b

The transpose of M, denoted M7, is the matrix M* = [M,;: j € [b],i € [a]] obtained by
writing the rows of M as the columns of MT. When F' = C, the conjugate transpose (or
Hermitian transpose) of M, denote M, is the matrix M" = [M;;: j € [b],i € [a]] obtained
by writing the complex conjugates of the rows of M as the columns of M. If M € Foxb,
then M7 € F® likewise if M € C***, then MH ¢ CP*.

The ith row of M € F*® ie., the matrix [M;,..., M), is denoted as M;.. Clearly
M;. € F'* The jth column of M, i.e., the matrix [M,..., M, |7, is denoted as M. ;.
Clearly M.; € F**'. For any i € [a] we have that (M;.)T, the transpose of the ith row of
M, is equal to (M7).;, the ith column of MT. Similarly (M. ;)" = (M7);. for any j € [b].
The notation MZT must be avoided, since it is not clear whether this denotes the ith row of
MT™ or the transpose of the ith row of M.

The a x a identity matrix is denoted as I,,.

For any positive integer n, denote by F™ the vector space of n-tuples over the field F'. We
may identify F™ either with F''*™ (the “vectors are rows” convention) or with F™*! (the
“vectors are columns” convention). The former convention is common in coding theory,
while the latter convention is common in most other disciplines. Under the vectors are
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rows convention, we will assume that the vector (vy,...,v,) € F™ is equal to (or is another

notation for) the matrix [v; --- v,] € F*". Under the vectors are columns convention, we
will assume that the vector (vy,...,v,) € F™ is equal to (or is another notation for) the
matrix [v; -+ v,]T € F™1. The two conventions agree when n = 1; i.e., we may identify

elements of F'! (scalars) with 1 x 1 matrices.

2 Kronecker Product

The Kronecker product M @ N of matrices M = [M; ;] € F**®* and N € F*? (in that order)
is the ac x bd matrix given (in block form) as

My N MN oo My,N
MeN - MleN nggN - szbN
Ma,lN Ma,QN U Ma,bN

For a € F, for [a] ® M we write a ® M and for M ® [a] we write M ® a. The following
proposition follows immediately from the definition of Kronecker product.

Proposition 1. Let A, B, and C be matrices with entries from the field F', let v and w
be vectors with components in F', and let a,b € F' be scalars. In the following, expressions
mvolving a matriz sum, a matrix product, or a matrix inverse are well defined only when the
matrices are conformable for addition or multiplication, or are invertible, respectively. The
following properties then hold:

1. (associativity) A® (B C)=(A® B)® C,

(the distributive laws) A® (B+C) = (A® B)+(A®C) and (A+B)®(C = (A®
C)+(Bw0),

(interaction with scalars) a @ A = A® a = aA, aA®bB = ab(A ® B),
(mized product) for conforming matrices, (A ® B)(C ® D) = AC ® BD,
(transposition) (A ® B)T = AT @ BT, (A® B)¥ = A% @ B¥,

o

T

S v

(outer products) when vectors are rows, vw = vl @ w = w @ vT; when vectors are

columns, vw’ =v@w!’ =w’ ®wv,
(partitioned matrices) [A | Bl@C = [A®C | BeC|, but AQ[B | C|# [A®B | A®C],
8. (invertible matrices) (A® B)™' = A~'®@ B!,
9. (determinants) if A € F™ ™ and B € F™" then det(A ® B) = (det(A))"(det(B))™,
10. (trace) tr(A ® B) = tr(A) tr(B),
11. (rank) rank(A ® B) = rank(A) rank(B).
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A consequence of the mixed product property is obtained by taking B and C' to be identity
matrices. Let matrix A have a columns, let B = I,, let matrix D have d rows, and let C =
I;. Then

A D=Al, @ I;D=(A®I,)(I;® D).

Similarly, if B has b rows and C has ¢ columns,

B®C=1,B®CI = (I,® B)(C®1L).

3 Vectorization

The vectorization map vec: F** — F takes a matrix M = [M;;: i € [a], j € [b]] to a
vector. Depending on the convention followed—vectors are rows or vectors are columns—it
is natural to define two different maps.

When vectors are rows: When vectors are columns:
vec(M) = (M., Ms., ..., M,.) vec(M) = (M.1,M.o,...,M.,)
:(Ml,la"'7M1,ba :(Ml,la"'7Ma,17
M2,17-"JM2,b7 M1,27-"7Ma,27
o Mo, May), o My, oo My ),

i.e., the rows of the matrix are appended (in | i.e., the columns of the matrix are appended
order) to form the vector. For example, (in order) to form the vector. For example,
vec aboc = (a,b,c,d,e, f) vec aboc = (a,d,b,e,c, f)

d e f - ) Y ? 9 * d e f - 9 7 Y} *

Note that vectorization is a linear transformation, so in particular vec(M + N) = vec(M) +
vec(N) for any matrices M and N commensurate for addition.

Proposition 2. Let L € F*° M € F"°¢ and N € F*? be three matrices commensurate
for multiplication in that order. Then,

when vectors are rows: when vectors are columns:
vec(LMN) = vec(M)(LT @ N). vec(LMN) = (N* @ L) vec(M).
Consequently, Consequently,
vec(MN) = vec(M)(I, ® N), vec(MN) = (NT @ I,) vec(M),
vec(LM) = vec(M)(L" ® I.). vec(LM) = (I. ® L) vec(M).

Proof. For i € [a], the ith row of LM N is given as (LMN);. = L;; My . N +---+ L; ,M, . N,
while for j € [d], the jth column of LM N is given as (LM N).; = LM.1Ny j+---+LM. N, ;.
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Thus,

when vectors are rows: when vectors are columns:
VeC(LMN) = (Ll,lMl,:N + .. —'— Ll,be,:N, VeC<LMN) = (LM:,lNl,l + ce + LM;7CNC,1,
- Lot My N + -+ + Loy M,.N) oo LM i Ny g+ -+ LM..N.q)
LN --- L,N LNy -+ LNc M.,
=[My.,...,M] : . : = : i : :
LiyN - LgyN LNy4 -+ LNcg M. .
= vec(M)(L* @ N). = (NT ® L) vec(M).
The two consequences follow by setting L = I, and N = I., respectively. O

The vectorization of a matrix and that of its transpose are related by a permutation. Let

K@ denote the ab x ab commutation matriz, that satisfies,
when vectors are rows: when vectors are columns:

vec(M)K@ = vec(MT). K@Y vec(M) = vec(MT).

Note that (K@?)T = K®4) and furthermore, K" K®%) = [, i.e., the inverse of K is
its own transpose.

For example,

K(273) —

O = O OO
[l el )
_ o O O O
SO O = OO
_ o O O O O

S OO o O

0000

and indeed [a, b, ¢, d, e, f{]K?3) = [a,d, b, e, c, f] while K?%[a,d, b, e,c, | = [a,b,c,d,e, f]T.

w

The terminology “commutation matrix” arises from the following proposition.
Proposition 3. For any matrices L € F*** and N € F*4,
KeNL@NYK®) = N L

Proof. Choose an arbitrary M € F°** and note by Proposition 2—using the vectors are
rows convention—that

vec(M)K @Y (L @ N) = vee(MT)(L @ N) = vec(LT MTN) = vec(NT ML) K (*?
= vec(M)(N ® L)K@

which shows that K¢ (L® N) = (N® L)K@ since M was chosen arbitrarily. Multiplying
on the right by K®9 recovers the statement of the proposition. O

A special case arises when b = d = 1, in which case L € F**! and N € F**! are column
vectors and K(9(L ® N) = N ® L.



