
6/24/2005 Lotos- Logical Topology Simulator 5.1

Copyright retained by authors. All rights reserved HyperCast 3.0

CHAPTER 11 LOTOS – THE LOGICAL TOPOLOGY SIMULATOR 1

11.1. Overview .. 1

11.2. Exercises with Lotos ... 3

11.3. Graphical Interface... 4

11.4. Lotos Customization ... 10

11.5. Appendix: Lotos Installation ... 14

This is an unfinished draft. If you have comments or corrections, please mark
this document up and send it to jorg@ieee.org. If you find discrepancies
between this document and the most recent version of the HyperCast software,
please send a description of the problem.
Thank you,
Jörg Liebeherr

CHAPTER 11 Lotos – The Logical Topology Simulator

ABSTRACT
The Lotos simulator has an interactive GUI for simulating the
overlay protocols of HyperCast. Lotos serves several goals: (1) It
illustrates the operations of available overlay protocols and
security schemes; and (2) It can be used to develop and debug
new overlay protocols. The latter is possible because Lotos
accesses the implementation of overlay protocols from the
HyperCast code distribution.
Based on LotosUserManual (June 2005).

11.1. OVERVIEW
Assuming that Lotos is installed and the environment variables are set accordingly (see
Appendix), Lotos is started with the command
 >java lotos.GUI
The command displays a graphical user interface as shown in Figure 1.

 Security Architecture 5.2

Display of
simulation

Main menu

Simulation controls

Node type selection

Mouse mode

Figure 1. User interface of Lotos.

Figure 1 displays a simulation in progress in the simulation window. Nodes and links of
the substrate network are shown as black points and lines. Nodes and links of the
overlay network are shown as yellow nodes and links. Packets in transmission are
shown as green squares. All nodes and packets are annotated with relevant information.
Additional information can be obtained by accessing the statistics of the overlay nodes.
Describe the window….

• It is possible to run multiple protocols at the same time. However, each node
can only run one node at the same time.

• Wireline link are full-duplex (propagation speed?)

• Wireless links use a simple media access control for transmission. Collisions
may occur.

• Only routing protocols are simulated. There is no simulation of transmission of
application messages.

• Propagation and transmission delays

• Unicast and multicast routing in the substrat network

• Broadcast in the substrate network

• Lotos can comfortably simulate twenty nodes. When the number is increased it
consumes a signifnicatn amount of computing rsources. The resource
consumption is increased when nodes are mobile and when security schemes are
enabled.

• Lotos is specific to the Java implementation of HyperCast

• Lotos assumes that all required files are available in the directory where Lotos is
started. If the file is not found, then Lotos accesses default files distributed with

6/24/2005 Lotos- Logical Topology Simulator 5.3

Copyright retained by authors. All rights reserved HyperCast 3.0

the lotos.jar archive.

11.2. EXERCISES WITH LOTOS
The following exercises provide an overview of the basic functions of the Lotos user
interface.

Exercise 1: Running a Demo simulation.

1. Click on the Demo button in the main menu and select one of the topologies.
Then push the Run/Pause button to stop and resume the simulations. Observe
the transmission of packets (shown in green).

2. Slow the rate of the simulation by setting the value of the simulation seconds
per real seconds to 0.02. The change takes effect when you hit Return.

3. Enable and disable the various display options in the View pull down menu.
4. Pause the simulation and advance by single steps by pushing the Next Event

button.
5. Restart the simulation by pushing the Restart button.

Exercise 2: Building a simulation with wireline nodes.

1. Reset Lotos to a base state by pushing the Reset button.
2. Select the node type static wired.
3. Select the Add nodes radio button. Click (with the left mouse button) in the blue

window and add a few nodes.
Note: When Lotos is started no protocol is selected. Thus, when creating new
nodes, only substrate network nodes are created without an overlay protocol.

4. Go to the Protocol pull down menu and select the SPT (Spanning Tree)
protocol.

5. Select the Add nodes radio button.
6. Click (with the left mouse button) in the blue window and add a few nodes.

Each node creates an underlay network node and a node of the SPT protocol.
Note: Now, each added node consists of a substrate node (shown in black) and
an overlay node (shown in yellow)

7. Select the Add links button.
8. Create substrate network links by clicking on one node and drag the mouse to

another node. Set enough links so that all nodes are connected by a path in the
substrate network.

9. Start the simulation.
10. Select the Select/Move button. Click in the upper left corner of the blue window

and drag the mouse to the lower right corner of the window. Nodes that are
selected have a red circle around them. Select all nodes.

11. Change the overlay protocol by selecting the DTBuddyList protocol from the
Protocol pull down menu.

12. Add new nodes and links while the simulation is running.
13. Deactivate an overlay node by selecting the Join/Leave Overlay button and

 Security Architecture 5.4

clicking on the button.

Exercise 3: Building a simulation with wireless nodes.

1. Reset Lotos to a base state by pushing the Reset button.
2. Go to the Protocol pull down menu and select the SPT (Spanning Tree)

protocol.
3. Select the node type static wireless.
4. Start the simulation.
5. Select the Add nodes radio button and add a few nodes. The wireless

communication range is indicated by circles.
6. Select the node type mobile wireless and leave the Add nodes radio button and

add a few mobile nodes.

Exercise 4: Saving and loading topologies.

1. Pause an ongoing simulation from Exercise 1-3.

2. Select File→Save All in the toolbar. Provide a file name and save the file.
This saves the substrate network topology, the overlay topology and type of
overlay network as an XML file.

3. Push the Reset button to delete the network and reset the simulation.

4. Select File→Open All in the toolbar. Open the XML file that was saved in Step
2.

5. Click on Start to continue the simulation.

Exercise 5: Accessing information about a node.

1. Start with an ongoing simulation from Exercises 1-4.
2. With the mouse, right-click on an overlay node in the simulation window, and

select Node History. This displays recent events at this node, such as timeouts,
and the transmission and reception of message. Close the window.

3. With the mouse, right-click on an overlay node in the simulation window, and
select Node Statistics. In the top window type the string /Node/ and push the
getStats button. This displays the current value of statistics of the node (see
Chapter “Monitor and Control”). Close the window.

11.3. GRAPHICAL INTERFACE
We next provide a description of the graphical user interface.

Toolbar
The toolbar is shown in Figure 2.

Figure 2. Toolbar.

The toolbar includes a series of buttons, that each display a pull down menu when
selected. The Speed field sets the speed of all mobile nodes in terms of meters per
second. The Multicast Hop Limit field sets the range of broadcast messages in the

6/24/2005 Lotos- Logical Topology Simulator 5.5

Copyright retained by authors. All rights reserved HyperCast 3.0

underlay network, in terms of number of hops traversed in the underlay network before
a message is dropped. The buttons function as follows.

Demo: Displays a list of pre-configured network topologies. The demo button gives the
ability to quickly run simulations. A simulation is run by selection a topology from the
pull down menu and then selecting Start. See Section 2 for customizing the pull down
menu menu.
File: Deals with saving and loading the substrate and logical network setting displayed
in the simulation window. The user can choose to save/load only the substrate or logical
network, or both. The network is saved to an XML file with a user specified name. The
button is not displayed when the program is run as an Applet.

View: Sets display options of the overlay network. A user can choose to zoom in,
zoom out or scale the network to the size of the simulation window. Also, it is possible
to select the displayed items in the simulation menu, by toggling checkboxes.
Protocol: Displays a list of available overlay protocols that can be simulated. When a
protocol on this menu is checked, the next node that is created or activated will run the
selected protocol. If some nodes are selected using the Select/Move button, the selected
nodes (indicated by a red circle) change to the selected protocol. See Section 2.1 for
information to customize this menu.
Note: Initially, when Lotos is started, no protocol is selected.

Security: Displays security modes that can be simulated by Lotos. When a security
setting on this menu is checked, the next node that is created or activated will run the
selected security setting. If some nodes are selected using the Select/Move button, the
selected nodes (indicated by a red circle) change to the selected security setting See
Section 2.1 for customizing this menu.

Mobility Mode: Chooses the mobility mode of mobile wireless nodes added to the
network. Currently there is only one mobility mode, the Linear Motion mode. Here, a
node randomly selects a position on the border of the simulation window and moves to
the position at a constant speed. If the border is reached a new position is selected.

Simulation controls

Figure 3. Simulation controls

The buttons control the progress of the simulation are shown in Figure 3, and perform
the following functions:

Run/Pause: Starts or pauses the simulation.
Simulation speed: Sets the speed of the simulation in terms of simulated second per
second of wall clock time.

Go To Next Event: Runs the simulation until the next event, e.g., until a message is
sent or received.

 Security Architecture 5.6

Go To Next Frame: Moves the simulation ahead by one displayed frame.

Restart: Resets the simulation clock to 0, and resets all protocol nodes. The substrate
network is not modified.

Reset: Resets simulation clock to 0 and clears the substrate network and overlay nodes
in the simulation window.

Node type selection

Figure 4. Node type selection

The checkboxes to select the type of substrate node added to the network are shown in
Figure 4. When a new node is created (with the Add Nodes) function, selected node
type is created. The following settings are available:

Static Wired: Selects a wireline node. A wireline node must be connected to other
wireline nodes by a link (as is done with the Add Link function).

Static Wireless: Selects a non-mobile node that uses wireless transmissions. The range
of transmissions is graphically indicated by circles.

Static Both: A node that transmits and receives over a wireless interface as well as
over wireline links. A node of this type can act as a bridge between wireless and
wireline nodes.
Mobile Wireless: A node that transmits over a wireless interface and is mobile
following the mobility mode and speed specified in the toolbar.

Mouse mode

Figure 5. Mouse mode.

The mouse mode determines the operations performed when clicking the left mouse
button in the blue simulation window. The available mouse modes are shown in Figure
5 and with the following results:

Select/Move: Clicking on a node selects a node. A selected node is indicated by a red
circle. By holding the Control key multiple nodes can be selected. All nodes in a
rectangular area can be selected by clicking in the upper left corner of the area and
dragging the mouse to the lower right corner of the area. Selected nodes can be moved
in the simulation window by clicking on one of the selected nodes and dragging the
mouse to the new position. The protocol and security settings of selected nodes is
changed by selecting a protocol and a security mode from the toolbar.

6/24/2005 Lotos- Logical Topology Simulator 5.7

Copyright retained by authors. All rights reserved HyperCast 3.0

Add Nodes: When a user clicks in the simulation window, a new substrate node will be
added at that position. If a protocol has been selected in the protocol menu, a protocol
node is activated on the created substrate node.

Delete Nodes: Clicking on a node in the simulation node removes the substrate node
and, if activated, the protocol node.

Add Links: A substrate network link between two nodes is created by clicking on one
node and dragging the mouse to the other node. Both nodes must have a wired
interface, that is, they must be either of type Static Wired or Static Both.

Delete Links: Clicking on a substrate network link removes the link.

Join/Leave Overlay: Clicking on a node toggles the activation and deactivation of the
overlay protocol. This is equivalent to joining and leaving the overlay network. If an
overlay protocol is running on the substrate node, the node is deactivated. If no overlay
protocol is running on the substrate node, the overlay protocol selected in the toolbar is
activated on this node.

Multicast Tree: Clicking on an activated node displays the multicast distribution tree
that has the selected node as the root of the tree. The displayed tree illustrates how
multicast application messages from the selected node will be forwarded in the overlay
network.

Select Src: Clicking on a protocol node to choose the source of a unicast path. If both
source and destination is selected, a unicast route between them is displayed if it is
available.

Select Dst: Click on a protocol node to choose the destination of a unicast path. If both
source and destination is selected, a unicast route between them is displayed if it is
available.

Popup menu of nodes

Figure 6. Popup menu.

Whenever user clicks with the right mouse button on a node in the simulation window,
a popup menu as shown in Figure 6 is displayed. The selections are as follows:

Activate: If there is no protocol running, selecting this item adds (activates) a protocol
node on the substrate node using the protocol selected in the protocol menu.

Deactivate: Removes (deactivates) a protocol node if an overlay node is activated.

Node Statistics: Displays a dialog box that accesses the statistics of the protocol node.
Statistics in HyperCast are organized as XML documents and are accessed with XPath
expressions. Refer to Chapter “Monitor and Control” for a discussion of the statistics in
HyperCast. Figure 7 illustrates the dialog box. The user types in an XPath expression in
the top line (e.g., /Node/NodeAdapter in Figure 7), and then selects one of the buttons
at the bottom of the box. The results of the access to statistics are displayed in the
center of the dialogue box. The buttons perform the following functions:

• getStats – Reads a statistic indicated by the provided XPath expression and
displays the result as an XML document. The center box in Figure 7 shows the

 Security Architecture 5.8

results of the getStats for the XPath expression /Node/NodeAdapter. These are
the statistics of the node adapter of the selected node.

• setStats – Changes values of a statistic. This command assumes that there is an
XPath indicating the value to be changed and an XML element that indicates the
new value. For example, the string
 /Node/LogicalAddress <LogicalAddress>1234<LogicalAddress>
changes the logical address to 1234.

• getReadSchema – Displays an XML schema that shows the structure and the
format of statistics that can be read by a getStats invocation.

• getReadSchema – Displays an XML schema that shows the structure and the
format of statistics that can be changed by a setStats invocation.

• close – Closes the dialogue box.

Event History: Displays a window that shows the recent event history of the selected
protocol node. The events recorded include timer events, messages sent, and messages
received. The window displays the 100 most recent events of the node. The event
history window of a node is shown in Figure 8. The figure displays three smaller
windows. The window on the left shows a summary of the recorded events, including
the time of the event and a description of the event type. Selecting one of these events
displays the details of the event in the upper box on the right, including the source and
destination address and the message, as well as a hex dump of the complete message.
The lower window on the right displays log messages generated by this node.

Figure 7. Dialog box for node statistics.

6/24/2005 Lotos- Logical Topology Simulator 5.9

Copyright retained by authors. All rights reserved HyperCast 3.0

Figure 8. Event history.

11.4. CONFIGURATION FILES
Lotos uses three XML configuration file. The main configuration file is
SimHypercast.xml which contains all HyperCast configuration attributes for overlay
protocols and security protocols. The other files are DemoMenuConfig.xml and
demo1.xml, which set up the network configurations available through the Demo button
in the toolbar.
The structure of the file SimHypercast.xml is shown below. The file contains a list of
SecuritySetting and HyperCastProtocol elements. The SecuritySetting elements each
specify a security scheme. The value of the name attribute is identical to the element
name of the corresponding property in the configuration file for overlay sockets, and
the content of the Security element is valid with respect to the XML schema file
hypercast.xsd for overlay sockets. In other words, the content of the Security element is
compatible with the Security element in configuration files for overlay sockets. The
elements PrivateProperty declares the content of the private properties needed by the
security schemes (e.g., passwords). In the overlay socket configurations, private
properties contain secret information which is never stored in a configuration file or
transmitted to other overlay socket. Instead, private properties must be set by the
application program. In the Lotos simulation, the private properties are obtained for a
file.
The HyperCastProtocol elements specify overlay protocols. The name attribute
contains the name of the protocol that is used in the Protocol button to identify the
protocol. The element AgentClass specifies the name of a Lotos class that is responsible
for displaying entities and events related to an overlay protocol in the simulation
window. This class knows the type of I_Node class that implements protocol. The Node
element specifies the properties of the overlay protocol. The element is identical to the
node element of the same protocol in the configuration file for overlay sockets.
<SimHypercast xmlns=http://www.cs.virginia.edu/hypercast

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.cs.virginia.edu/lotos.xsd">

<SecuritySetting name="NeighborhoodKey1">

 Security Architecture 5.10

 <Properties>

 <Public>

 <Security>

 <!-- public properties of NeighborhoodKey1 scheme -->

 ...

 </Security>

 </Public>

 </Properties>

 <PrivateProperty XPath="/Private/KeyStorePassword" value="..." />

 <!—- private properties for NeighborhoodKey1 scheme -->

 ...

</SecuritySetting>

<SecuritySetting name="...">

 <!-- properties of additional security scheme -->

 ...

</SecuritySetting>

<HypercastProtocol name="SPT">

<AgentClass>SPTAgent</AgentClass>

 <Properties>

 <Public>

 <Node>

 <SPT>

 <!-- public properties for the SPT protocol -->

 ...

 </SPT>

 </Node>

 </Public>

 </Properties>

 </HypercastProtocol>

 <HypercastProtocol name="...">

 <!-- properties of additional protocols -->

 </HypercastProtocol>

All nodes that are created with a selected overlay protocol and security scheme use the
same configuration parameter. For overlay protocols it is possible to have multiple
instantiations of the same protocol with different configuration parameters. This is done
by declaring multiple HyperCastProtocol elements with identical AgentClass values (so
that they instantiate the same type of protocol) but different name attributes (so that
they appear as different choices in the Protocol pull down menu). However, different
protocol settings need to be given different names in order to be distinguishable in the
Protocol menu.

11.5. LOTOS CUSTOMIZATION
Lotos can be customized to add new overlay protocols and new security schemes that
were programmed for HyperCast. It is also possible to add network configurations to
the Demo menu in the toolbar. The customizations are done without changing existing
Lotos or HyperCast source files.

6/24/2005 Lotos- Logical Topology Simulator 5.11

Copyright retained by authors. All rights reserved HyperCast 3.0

Adding a new protocol
All overlay protocols simulated by Lotos must implement the I_Node interface. Thus, a
each overlay protocol has the same requirements as a protocol running in an overlay
socket. In addition, there are a few rules that the protocol implementation must obey to
be correctly simulated by Lotos:

1. The finite state machine which executes the protocol must be initialized and
started, only after the joinOverlay() method is called. Particularly, the
constructor of the I_Node protocol node should not initialize.

2. After the leaveOverlay() method is called, the protocol node must stop
processing handling timers and messages. Also, pending timer events must be
cleaned up (removed) after this method is called.

3. The protocol node should not assume that there are separate threads for timers
and messages. As a result, using wait() or notify() functions to perform
synchronization between processing of messages and timers is inappropriate.

4. All protocol messages that are processed by the I_Node object should
implement the toString() method to return a short label for a message, which is
displayed in the simulation window when the message is transmitted.

If an I_Node protocol implementation adheres to these, running the protocol in Lotos
requires to write one class, referred to as agent class, and edit one of the configuration
files.

Create Agent class

The first step of adding a new protocol to the simulator is to create a class
implementing I_SimHyperCastAgent interface. This class works as a bridge between a
HyperCast protocol node (of type I_Node) and the simulation. The definition and
description of this interface are shown below.
An agent class deals with creating new I_Node objects to be simulated in Lotos. The
servers that need to be run to support the protocol should also be implemented as an
I_Node class, and the server objects should be created before any other normal protocol
I_Node is created (see createNode() and needServer() methods). An agent class should
store the server objects that was created in order to check if they are removed in the
implementation of nodeRemoved() method.
An agent class also tells the GUI interface how a protocol node is displayed on the GUI
window using getColorForNode(), getShapeForNode() and getLabelForNode()
methods. The getInfoForNode() method generates a text string that is saved with a
protocol node to a file for later restoration. The info string should contain all
information necessary to restore the protocol node later in the same agent object.
The following is a discussion of the methods in the I_SimHyperCastAgent interface:

public String getName()
Returns the name of this protocol (Is this the name of the class?). This name will
work as an identifier of the protocol. However, the name is not the text that is
shown in the protocol menu since several protocol menu items might share the same
agent class.

public void setNetwork(simHCNetwork network)
Makes the simulated network available to the agent class. This is needed for

 Security Architecture 5.12

accessing global information about the information, e.g., provide access to tall
nodes in the network.

public I_Node createNode(XYAddress coords, HyperCastConfig config,
I_UnicastAdapter adapter, String info)
This function creates a new overlay protocol node of type I_Node and adds it to the
simulated network. The created I_Node object is put on an existing physical node
on the simulator GUI interface. >>>> If needServers() is true, then this function
creates a server node that is needed to run the protocol. ????

The arguments are as follows: coords is the position for this node in the
simulation window; info is used to restore a saved protocol node from a file. This
argument can eb null. The value of info was originally obtained by calling the
getInfoforNode() method; adapter is the node adapter to be used by the new
node.

public boolean needServers(HyperCastConfig config)
This function should return true if the protocol requires a rendezvous server (which
is not serving as protocol node). In this case, the rendezvous server must be created
before any other protocol node. The servers will be created one by one by calling
the createNode() method. An example of a protocol that needs a server is the
DTServer protocol.

public String getInfoForNode(I_Node node)
The string is used to restore a saved protocol node from a file. What is the
content?

public String [] getMenuItems()
Returns a list of menu item labels for this protocol if it has need to define protocol
dependent operations for protocol nodes created by this agent class. There should
not be duplicate menu names in this list. . Give an example.

public void menuFired(String menu)
This method defines the operations associated with the popup menu items defined
by getMenuItems(). The method fires the menu item using the label name of the
item.

public Color getColorForNode(I_Node node)
Returns the color for an I_Node object. The returned color should depend on the
current state of the overlay protocol node.

public int getShapeForNode(I_Node node)
Returns the shape of an I_Node object. The resulting shape should depends on the
type of the node.

public String getLabelForNode(I_Node node)
Displays the label associated with an I_Node. Get the display label for a node.

public void nodeRemoved(I_Node node)
The method is called when a protocol node is removed in Lotos, e.g., by deleting a
node. The method tells the agent when a protocol node is removed from the overlay
network so that the agent can perform necessary cleanup functions. For example, in
the DTServer protocol, when the DT server is removed, the agent is informed by
this function and will create another DT Server the next time the createNode()
method is called.

Modify configuration files

After an agent class is created, the next step of adding a protocol into Lotos is the
addition of a HyperCastProtocol element to the configuration file SimHypercast.xml.

6/24/2005 Lotos- Logical Topology Simulator 5.13

Copyright retained by authors. All rights reserved HyperCast 3.0

Suppose we written a new protocol in terms of an I_Node class with name MyProtocol.
For Lotos, we create an agent class with name MyProtocolAgent, with the following
structure:
<SimHypercast>

 <!-- the name attribute will appear in the protocol menu -->

 <HypercastProtocol name="MyOwnProtocol">

 <!-- the name of the agent class -->

 <AgentClass>MyProtocolAgent</AgentClass>

 <Properties>

 <Public>

 <Node>

 <MyProtocol>

 <!-- the properties of the MyProtocol node -->

 </Protocol>

 </Node>

 </Public>

 </Properties>

 </HypercastProtocol>

</SimHypercast>

The name attribute in the HypercastProtocol element is the name of the item in the
Protocol pull down menu. The AgentClass specifies the name of the agent class that
mediates between Lotos and the protocol node objects. The configuration attributes for
the protocol nodes are provided in the Properties element.

Adding a new security scheme
Security settings can be added by adding a SecuritySetting element to the
SimHypercast.xml file. Again, the name attribute declares how the scheme is presented
in the pull down menu of Lotos. The implementation of the security scheme is
determined by the selection of the KeyModeMethod. Below is an example for adding a
new security scheme with name MySecurityScheme uses a (fictitious) key mode method
with name NewKeyMode:
<SimHypercast>

 <!-- the name field will appear in the toolbar menu -->

 <SecuritySetting name="MySecurityScheme">

 <Properties>

 <Public>

 <Security>

 <!-- below are the public properties for the scheme -->

 <KeyModeMethod>NewKeyMode</KeyModeMethod>

 <SecurityLevel>privacy</SecurityLevel>

 <CertificateLocation>testcert.cer</CertificateLocation>

 </Security>

 Security Architecture 5.14

 </Public>

 </Properties>

 <!-- below are the private properties for the scheme-->

 <PrivateProperty XPath="/Private/KeyStorePassword"

 value="password"/>

 <PrivateProperty XPath="/Private/PrivateKeyAlias"

 value="testpair"/>

 <PrivateProperty XPath="/Private/PrivateKeyPassword"

 value="password"/>

 <PrivateProperty XPath="/Private/GroupKey"

 value="1234567812345678"/>

 </SecuritySetting>

</SimHypercast>

Adding a new demo network
Adding a new network to the Demo button in the toolbar is done in two steps. First,
manually draw a new network with substrate nodes and overlay nodes in the simulation
window, save the network by selecting File Save All from the toolbar menu, and type
a file name, e.g., mynewdemo.xml. In the second step, edit the file
DemoMenuConfig.xml and add the following item:
<DemoMenu>

 <!-- the name field will become a item in the Demo menu -->

 <Demo name="MyDemo">

 <FileName>mynewdemo.xml</FileName>

 </Demo>

</DemoMenu>

If Lotos is restarted, the new network is available from the Demo pull down menu
under the name MyDemo.

11.6. APPENDIX: LOTOS INSTALLATION

System requirements
 The HyperCast Simulator requires Java version 1.4.x or higher. The system
must have at least 30MB free memory and support graphic display.

Installing ZIP archive with binaries
Download a ZIP archive with name
 lotos-xxx-yyyymmdd.zip
where xxx is a tag that identifies where the archive was created, and yyyymmdd denote
the year, month, and day when the archive was created. Copy the file to a directory
where you want to run Lotos. Extract ('unzip') the archive with a utility such as WinZip
(on Windows) or the unzip command (on Unix or Cygwin).

The content of the archive
The contents of the ZIP archive is shown in Table 1.

Table 1.

6/24/2005 Lotos- Logical Topology Simulator 5.15

Copyright retained by authors. All rights reserved HyperCast 3.0

Libraries

lib/lotos.jar HyperCast Lotos simulation software

lib/hypercast.jar HyperCast software

lib/hypercast-pastry.jar

HyperCast wrapper of FreePastry.

lib/bcprov-jdk14-122.jar Free Java implementation of cryptographic algorithms
(www.bouncycastle.org)

lib/xalan.jar XSLT processor for processing XML documents

lib/lotos.html HTML file that starts the Lotos Applet

XML files

SimHypercast.xml Configuration file for LoToS

DemoMenuConfig.xml Configuration file for Lotos (configures the Demo
button).

demo1.xml Configuration file for Lotos (topology associated with a
Demo button).

Security files:

testcert.cer Certificate

.keystore Keystore file that contains the private key contained in
the certification file

Scripts:

bin/lotos.sh,
bin/lotos.bat

starts the Lotos application

bin/version.sh,
bin/lotos.bat

displays the version of Lotos

Information:

Readme-ZIP Readme file in ASCII format

LotosUserManual User manual in Word format (this file).

NOTE: If hypercast.jar or hypercast-pastry.jar is not in the ZIP archive, you need to
copy them from the HyperCast ZIP archive or the HyperCast-Pastry ZIP archive,
respectively.

NOTE: Lotos assumes that these files are in the directory where Lotos is started. If
the files are not found, Lotos gets the files from the lotos.jar archive.

Configuration files
There is no need to edit the configuration files.

Starting a Simulation
Lotos assumes that the *.xml files, the *.cer file, and the .keystore files are in the
directory where Lotos is started. If the files are not found, Lotos gets the files from
the lotos.jar archive.

 Security Architecture 5.16

From the command prompt

a) The commands are different in Unix shells and the DOS shell.
 In Unix:
 >export CLASSPATH=$CLASSPATH:lib/lotos.jar:lib/hypercast.jar:
 lib/hypercast-pastry.jar:lib/bcprov-jdk14-
122.jar:lib/xalan.jar

 In DOS:
>CLASSPATH=%CLASSPATH%;lib/lotos.jar;lib/hypercast.jar;

 lib/hypercast-pastry.jar;lib/bcprov-jdk14-
122.jar;lib/xalan.jar

b) Display the version of Lotos with:
 >java lotos.Version

c) Run the simulator with the command:
 >java lotos.GUI

As Applet

Open the file /lib/lotos.html from a web browser. All jar files must be in the same
directory as the lotos.html.
The Internet browser must use a JVM with Java version 1.4.x or higher, or the
simulator will not load. To check the JVM version of your browser, open this URL with
your browser http://javatester.org/version.html

Using Scripts

There is a set of Unix scripts (*.sh) and DOS scripts (*.bat) that can help with starting
the above applications.

a) Set the directory /bin into your PATH environment variable:
 In Unix:
 >export PATH=$PATH:bin/

 In DOS:
 >PATH=%PATH%;bin/

b) Then run
 >lotos.sh

 >version.sh

Under Windows, you can go to the /bin directory and click on the *.bat files.

