
8/4/2006 Overlay Message Formats 5.1

University of Toronto HyperCast (Version 3)

CHAPTER 5 OVERLAY MESSAGE FORMATS 1

5.1 Overview 1

5.2 Overlay Message 2

5.3 Message Extensions 3

5.3.1 Format of Payload Extension Header 5

5.3.2 Finite State Machine (FSM) Extension 5

5.3.3 Route Record Extension 8

5.3.4 Security Extension 9

5.3.5 Jumbo Payload Extension 11

5.4 Appendix A: Implementation Information 12

updated: August 2006, v5

This is an unfinished draft. If you have comments or corrections, please mark this
document up and send it to jorg@comm.utoronto.ca. If you send your comments
in plain text, please include the date (see upper left corner), the page number and
the paragraph number. If you find discrepancies between this document and the
most recent version of the HyperCast software, please give a detailed description
of the problem.

Thank you,

Jörg Liebeherr

CHAPTER 5 Overlay Message Formats

5.1 OVERVIEW

Data between overlay sockets is exchanged as formatted messages. An overlay socket
provides two endpoints for communications. The node adapter exchanges Protocol
Messages with node adapters at other overlay sockets. The socket adapter exchanges
overlay messages with socket adapters at other overlay sockets. The handling of
protocol and overlay messages is completely separate. This chapter is about the format
of overlay messages.

• Protocol Messages: These are messages that are exchanged between overlay nodes.
Protocol messages are mostly sent to neighbors in the overlay network. Some
overlay protocols may define protocol messages that are broadcast to all nodes in the
overlay network (e.g., Beacon messages in the HC protocol). The format of protocol

 Overlay Message Formats 5.2

messages are specific to a given overlay protocol, and are completely defined by the
overlay node).

• Overlay Messages: These are messages that are exchanged between socket adapters
of overlay sockets that are neighbors in the overlay network, and are forwarded by
the forwarding engine. All application data is transmitted as overlay messages.
Overlay messages can be sent to all overlay sockets in an overlay network via
flooding or multicast, or unicast to one specific overlay socket. In addition to
transferring application data, overlay messages can be used for monitoring and
control functions, e.g., to perform functions similar to traceroute or provide error
reporting similar to ICMP.

The socket adapter of the overlay socket is responsible interfacing to the protocol used
in the underlay network. The address(es) used by the socket adapter to access the
underlay network are maintained at the overlay node as part of the physical address of
the socket and the socket adapter. For the Internet as underlay network, socket adapters
exist to transmit overlay messages using TCP, UDP unicast, or UDP multicast. It is
emphasized once more that using non-Internet protocols or new versions of the Internet
Protocol merely requires to upgrade the adapters.

The message formats of overlay messages are described in the sections, which contain
the overlay protocols.

5.2 OVERLAY MESSAGE

An overlay messages have a header and a sequence of extensions. The header of an
overlay message specifies, the version, the delivery mode, the source address, the logical
address, etc. All addresses in the overlay message header are logical addresses.

Payload
Overlay

message

header

Extension ... Extension

Figure 5.1. Types of Overlay Messages.

Figure 5.2 shows the structure of an overlay message. It consists of a common overlay
message header followed by a sequence of extension headers. Application payload is part
of an extension header. The concept of extension headers and the ability to concatenate
multiple extension headers in a single overlay message follows the design of the IPv6
packet format.

All overlay messages have a header that is at least 14 bytes long. Multiple payloads can
be concatenated by using extension headers, as indicated in the Next Header field.

8/4/2006 Overlay Message Formats 5.3

University of Toronto HyperCast (Version 3)

Figure 22. Overlay message header.

Version (4 bits): Version of the protocol. The current version is 0x3.

LA Size (8 bits): Size of the logical address field.

DMode (4 bits) Delivery mode. Currently defined delivery modes are:

 0x1 Multicast
 0x2 Flood
 0x3 Unicast

Traffic Class (8 bits): Specifies traffic class for service differentiation
 (ignored in 3.0).

Flow Label (16 bits) Specifies flow for service differentiation (ignored in
3.0).

Overlay Message Length (16 bits)
Length of the overlay message, not including the
header.
If the field is set to zero, and the extension Type is set
to Jumbo Payload, then the length of the message is
contained in the Jumbo Payload extension header.

Extension Type (8 bits) Specifies the type of the first extension following this
header. The available extension types are explained in
the next section.

Hop Limit (16 bits): Number of logical links traversed before the message is
dropped. This corresponds to Time-to-Live field in the
IP (version 4) protocol.

Source Logical Address
(LA Size bytes) Logical address of the source of the overlay message.

Previous Hop Logical Address
(LA Size bytes) Logical address of the neighbor from which this
 message was received.

 Note: In version 2.0 this field only existed for the Flood
delivery mode. In 3.0 it is a required field.

Destination Logical Address
(LA Size bytes) Logical address of the destination of the overlay
 message. This field is present only in messages with
 delivery mode set to unicast. (Dmode = 0x2)

5.3 MESSAGE EXTENSIONS

Following the overlay message header is a set of extensions that carry control
information or application data. There can be any number of extensions, but there are
some restrictions regarding the occurrences and positions of some extensions. For

 Overlay Message Formats 5.4

example, there can be at most one extension with application data. The general structure
of an extension is shown in Figure 4.

Figure 2. Structure of an extension in an overlay message.

The Next Extension field (8 bits long) specifies the type of the following extension. If
there is no extension following, then the field is set to zero (0x00). The header length
field (16 bits long) specifies the total length of the extension, including the Next
Extension field. The remainder of the extension header is type specific.

With this organization, the type of the first extension header is determined by the next
header field in the overlay message header. The type of the following extension headers
is specified by the next header field of the previous extension headers. The next header
field of the last extension field is set to zero.

Figure 3. Organization of extensions in an overlay message.

Table 4 lists all defined values for the next header field of an overlay message. For each
type, with exception of type 0x00, there is a format specification. The payload header
contains application data. The finite state machine (FSM) header contains control
information for providing enhanced delivery services for application data. The security
extension headers are specified in the Chapter “Security Design”. Payload, Route
Record, and security headers may appear only once in an overlay message.

(What happens if there is a security header but no payload? Then, there should be a
digest on the message header.)

Table 2 is the list of possible values in the NextHeader field in the overlay message
header:

Extension
Types

Description

0x00 No Next Extension

0x01 Finite State Machine (FSM) Extension

0x02 Payload Extension

0x03 Route Record Extension

0x04 Jumbo Payload

0x21 Security Extension

Table 2. Extension Type Assignment.

8/4/2006 Overlay Message Formats 5.5

University of Toronto HyperCast (Version 3)

<<Additionally needed messages: Control headers, source routing headers>>

5.3.1 FORMAT OF PAYLOAD EXTENSION HEADER

Figure 4. Payload extension.

In addition to the common fields, the payload extension header only contains application
data. Some extension headers, e.g., FSM headers, can define control information for the
payload. In principle, the payload header does not need to be in a particular position. In
the HyperCast 3.0 implementation, the payload extension is the last extension header.

5.3.2 FINITE STATE MACHINE (FSM) EXTENSION

FSM headers carry control information for messages or message streams that are
processed by a Finite State Machine (FSM) in the overlay socket, that enhances the best
effort service. The extension contains a 2-byte long FSM Identifier, which specifies what
type of service is implemented for the message or message stream associated with this
extension. In addition to the FSM identifier, a type field defines the specific meaning for
each type. Each FSM extension has the structure as shown in Figure 7. The details of the
extension and the definitions of the files follow.

Figure 5.

The FSM Identifier (16 bits) identifies the type of finite state machine which processes a
message or message stream. The finite state machines are implemented in the message
store. Each finite state machine provides a certain service, which is defined by the FSM
Identifier.

• 0x01: Hop-by-hop acknowledgement (H2HACK)

• 0x02: End-to-end acknowledgement (E2EACK)

• 0x03: Duplicate Elimination (DELDUPS)

• 0x04: Neighbor synchronization (SYNC)

• 0x05: Incast (INCAST)

• 0x06: Best-effort ordering (INORDER)

• 0x07: Naming (See Documentation on Naming Service)

A finite state machine may not support delivery of payloads with all delivery modes. If a
finite state machine type does not support a delivery mode that is specified for a payload
extension, the message may be dropped.

 Overlay Message Formats 5.6

The Type field (8 bits) specifies a message type that is dependent on the FSM identifier.
The following types are defined for all finite state machines:

• Payload Data (Type = 0x80): This message has an extension with application
payload. Retransmission (Type = 0x81): This message has an extension with
application payload that constitutes a retransmission.

• Mergeable Payload (Type = 0x82): This message has an extension with
application payload and the payload is “mergeable” data.

In addition to the payload, there may be numerous control messages for each finite state
machine. Most of the time, an overlay socket sends such a control messages to one of its
immediate neighbors. The control messages are defined in the following table.

Table 5.1. Type fields for control messages for various FSM identifiers.

Service FSM ID Definition and Interpretation of Type field

0x00 No Service None defined

0x01: H2HNACK
 Request for retransmission

0x02: H2HACK
 Acknowledgement

0x03: Request H2HACK
 Request for a H2HACK

0x01: H2HACK
 Hop-by-hop
 acknowledgement

0x04: Local_Reset
 Resets state machine for this message

0x05: H2HNACK
 Requests for Retransmission

0x06: FULL_E2E_ACK
 Sends a full acknowledgement
0x07: FINAL_PARTIAL_E2E_ACK
 Sends a partial acknowledgement.

0x08: E2E_REQUEST
 Requests an E2EACK.

0x02: E2EACK
 End-to-end
 acknowledgement

0x09: E2E_RESET
 Resets a message.

0x03: DELDUPS
 Duplicate Elimination

Uses types with payload only.

0x04: SYNC
 Synchronization

0x0a: QUERY_SYNC_ALL
 Requests information about messages
 stored from a neighbor.

Comment: How is this defined?

Comment: ????? Is this used?

8/4/2006 Overlay Message Formats 5.7

University of Toronto HyperCast (Version 3)

0x0b: QUERY_MSG_SYNC
 Requests State Information for a specific list of
 messages.

0x0c: HAVEIT
 Sent in response to a QUERY_SYNC_ALL,
 QUERY_MSG_SYNC message or sent without
 any request.

0x0d: DONT_HAVE_IT
 Sent in response to a QUERY_SYNC_ALL,
 QUERY_MSG_SYNC, or sent without any
 request.

0x0e: NACK_SYNC
 Requests the transmission/retransmission of a
 single message.

0x05: INCAST
 Incast

0x0f: INCAST_REQUEST
 Request for an Incast transmission.

0x06: INORDER
 Best-effort ordering

Uses types with payload only.

The finite state machines with identifiers FSM ID H2HACK, E2EACK, DELDUPS,
SYNC, or INCAST implement services for a single individual application payload. These
finite state machines are message-oriented. These extension headers contain a message
identifier that is created at the source of the message when the application payload is
sent for the first time in a payload extension of an overlay message.

Figure 6. Format of an message-oriented FSM extension.

JL (7/30/04): The description of the message format for the FSM state machines is
incomplete. It seems that the format needs to be documented.

Comment: This should no longer exist.

 Overlay Message Formats 5.8

 1 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

Only if Type ==0x0B

+--+

|Digest Size|/////////////////////Digest///////////////////////|

+--+

Figure 5.7. Message Header of ADF Message.

The message identifier (8 bytes) should uniquely identify a message among all messages
currently processed by all overlay sockets of the overlay network. Uniqueness is not
enforced and a finite state machine processes different payloads with identical message
identifier as the same message. In our implementation, the message identifier is
composed of a 4-byte hash over the physical address of the overlay socket and a 4-byte
random number.

The source logical address is the logical address of the overlay socket which
originally generated this message. This field is used for control data (such as
acknowledgments) which are sent to the source of a payload message. The source
logical address is needed to calculate the next hop (parent) in the tree with the source as
root. The size of the address is known from the LAS field in the overlay message header.
The source logical address field is not present in message types that contain payload
(Type= 0x80, 0x81, 0x82), since these messages already carry the source logical address
in the overlay message header.

The message format for messages with FSM ID INORDER are as follows:

Figure 8. Figure 9. Format of a stream-oriented FSM extension.

Stream identifier (8 bytes): A number that identifies the stream.

Type (1 byte) The only type that is provided is 0x80 (Payload). There are no control
messages for this FSM identifier.

Sequence number: A number that indicates the offset of the payload within a stream.
The sequence number is set by the source of the message. The initial sequence number is
0. The sequence number for this FSM is incremented by one for each a message.

5.3.3 ROUTE RECORD EXTENSION

The route record extensions contains the list of logical addresses of those overlay
sockets that this message has passed through. The route record message can be used to
avoid forwarding loops in delivery of overlay message (Some overlay protocols may be
susceptible to loops). An attributed in the configuration file (RouteRecordSize)
determines if and how many logical addresses are recorded. For example, when the value

Comment: The format is not clear, even with the following
information fro.
“The length of the message digest used in
QUERY_SYNC_ALL message is 16
bytes long and the algorithm used can be refercenced to:
A. Rousskov and D. Wessels, "Cache Digest", In 3rd
International WWW Caching Workshop, June 1998.”
I have no information, if our code is actually from the paper,
or if the reference is mentioned for citation purposes. It
seems possible that Weisheng has provided the code. We may
have to re-think and re-implement this part.

Comment: Checked with code. This should no longer be
zero per discussion. The initial value should be a random
number and the sequence number should be the modulo.
We need to check if the sequence number is calculated
correctly in overflow cases.

8/4/2006 Overlay Message Formats 5.9

University of Toronto HyperCast (Version 3)

of attribute RouteRecordSize is set to two each overlay message has a route record
extension containing the logical addresses of the last two overlay sockets that this
message has passed through. When the value is not set or set to zero or if the value is
not set, then the route record extension is not used. When routes are recorded, then,
whenever an overlay socket forwards a message, it appends its own logical address to
the list. When the route record of an overlay message has reached the limit and a new
logical address needs to be added, the address at the beginning of list is removed to
make a room.

Figure 10. Format of Route Record Extension.

The Route Record is composed of a list of between one and RouteRecordSize logical
addresses. The size of the logical address is determined by the LA Size field in the
overlay message header.

5.3.4 SECURITY EXTENSIONi

All overlay messages in an overlay socket with the security level set to protocol
integrity, integrity, or confidentiality contain a security extension, also called security
header. Overlay messages with a security extension header are also called secure overlay
messages. The security extension is specified in the preceding header by a next header
field with value 0x21. The security extension contains, among others, the MACs for the
header and the payload and, if the neighborhood key method is enable, an encrypted
message key. The format of a security header is shown in the Figure 12. The contents of
the fields is as follows:

i This is duplicated in the Chapter on Security Architecture.

 Overlay Message Formats 5.10

Figure 11. Format of the security extension.

Next Header (1 byte):
Specifies the type of extension following this header.

Length (4 bytes):
The length of the security header in bytes following the Length field, i.e.,
not include the Next Header and Length fields.

Sequence Number (4 bytes):
Specifies the sequence number of the message. The field is used in the
same was as described for the SecInfoExchange header. The sender of a
message increments the sequence number before each message
transmission. With the neighborhood method, when the number of
messages, both protocol and overlay messages, exceeds the maximum
allowed number, then a new neighborhood key is generated and
transmitted in a KeyUpdate message, and the sequence number is set to
zero.

Encrypted Message Key (0-32 bytes):
Contains the encrypted message key. This field is not used when the
group key method is executed, i.e., the length of the field is zero. The
length of the encryption key is determined from the configuration
attributes.

SPI (4 bytes):
The field SPI (Security Parameter Index) can contain a security
association identifier, which is a random value identifying the security
association for this message. The field is currently not used.

LA length (1 byte):
The length of the logical address of the overlay socket.

LA of Sender (variable):
The logical address of the neighbor that forwarded this message. The
field is used to look up certificates and keys for the neighbor.

Header MAC Length (1 byte):
Length of the MAC for the header of the overlay message in bytes.

8/4/2006 Overlay Message Formats 5.11

University of Toronto HyperCast (Version 3)

Header MAC (≥ 16 bytes):
Contains the MAC for the overlay headers. Precisely, the MAC is
computed over the byte array of the entire message, with the Header
MAC field and the payload field removed.

Payload MAC Length (1 byte):
Indicates the length of Payload MAC field in bytes.

Payload MAC (≥ 16 bytes):
Contains the MAC for the payload. If the payload is encrypted, this is the
MAC of the encrypted payload. (What happens to the field if there is
no payload?)

An overlay socket must compute the extension header in the following order: (1)
Encrypt the payload field of the payload header; (2) Compute the payload MAC; and (3)
Compute the Header MAC. When encryption is required, the payload MAC is computed
over the encrypted payload field. The header MAC is computed over the entire message,
with exception of the MAC header field and the payload field in the payload extension
header.

With the group key method the group key is used for the payload encryption and the
computation of both MACs. Here, the message key field is not used. With neighborhood
keys, the message key is used for payload encryption and the payload MAC. The
neighborhood key is used to encrypt the message key and to compute the header MAC.

For an incoming secure overlay message, an overlay socket verifies the sequence number
and the header MAC. If either of these checks fails, the message is dropped without
further processing. Otherwise, with the neighborhood key scheme, the message key is
decrypted. When an overlay socket forwards a secure overlay message, it recomputes
the header MAC and the sequence number, re-encrypts the message key in the security
header (if present), and updates the LA Sender field with its own logical address. The
header MAC is recomputed either with the group key or the neighborhood key of the
local overlay socket. The encrypted message payload, the payload MAC, and the
message key are not modified when the message is forwarded. The forwarding of
messages with security headers can be viewed as an operation that replaces a security
header.

When a secure message arrives at an overlay socket that is a destination of the message,
a message is processed like any incoming message. Then the payload MAC is verified
either with the group key or the message key. If not successful, the message is dropped.
Otherwise, the payload is decrypted with the group key or the message, and delivered to
the application. Incoming multicast and flood messages are delivered to the application,
but may also be forwarded to other overlay sockets. Here, it is advisable that the
message is forwarded before the payload is decrypted, otherwise the processing time for
decrypting the payload at intermediate hops increases the latency of a packet.

When messages are transmitted with an enhanced delivery semantics (see Chapter
MessageStore) they may be stored in the message store of the overlay socket, and may
be forwarded at a later time, e.g., to retransmit a message when no acknowledgment has
been received. When a message is stored in the message key, it is important that the
decrypted message key is stored together with the message.

5.3.5 JUMBO PAYLOAD EXTENSION

 Overlay Message Formats 5.12

Figure 12. Jumbo Payload extension.

This extension is used for messages where the payload exceeds 2^16 -1.The operations
are following the design of the IPv6 Jumbogram [RFC2675]. The Jumbo payload
extension, if present, must be the first extension and must follow the overlay message
header. If this extension is present, then the field of the overlay message length in the
header must be zero.

Extension Length Size (1 byte) Number of bytes of the Extension Length field

Extension Length (variable): Length of the payload field in bytes.

5.4 APPENDIX A: IMPLEMENTATION INFORMATION

a. Security Processor

Extension is an abstract class. It defines the following methods that must be implemented
by a concrete class, such as PayloadExtension, which extends class Extension.

byte getExtensionType() //return the type of the extension

byte[] toByteArray() //return the byte array converted from the extension

int getSize() //return the length of byte array converted from the
extension

PayloadExtension also defines the following method for getting the payload.

byte[] getPayload() //return the payload byte array in this extension

All extensions are recognized as Extension instances in the OL_Message class. The
OL_Message class is not aware of EncryptedPayloadExtension, and the encryption and
decryption of the payload is hidden to the OL_Message and application. The process of
encryption and decryption is discussed in Section 7.15.

