
11/20/2005 Security Architecture 5.1

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

CHAPTER 5 SECURITY ARCHITECTURE ...1

5.1 Overview .. 2

5.2 Security Levels ... 3

5.3 Trust Establishment... 4

5.4 Authentication.. 5

5.5 Key Management... 6

5.6 Data Confidentiality... 10

5.7 Data Integrity... 11

5.8 Configuring an Overlay Socket for Security... 13

5.9 Secure Protocol Messages .. 17

5.9.1 Message Format ... 18

5.9.2 Processing SecInfoExchange Messages ... 21

5.10 Secure Overlay Messages .. 23

5.11 Software Design ... 26

5.11.1 Key Vault... 27

5.11.2 Security Processor ... 28

5.12 Bibliography .. 33

This is an unfinished draft. If you have comments or corrections, please mark this
document up and send it to jorg@cs.virginia.edu. If you send your in plain text,
please include the date (see upper left corner), the page number and the
paragraph number. If you find discrepancies between this document and the most
recent version of the HyperCast software, please give a detailed description of
the problem.

Thank you,

Jörg Liebeherr

CHAPTER 5 Security Architecture

ABSTRACT
This document summarizes the design of the security
architecture in Hypercast3.0, including key management,
authentication, and integrity and confidentiality of messages.

 Security Architecture 5.2

5.1 OVERVIEW

The security architecture in HyperCast attempts to satisfy integrity and confidentiality
requirements of information processing in overlay networks. The architecture realizes
practical security solutions for potentially very large and very dynamic overlay networks
that do not require or assume permanent availability of a network infrastructure. The
security goals are an assurance of backward secrecy (a new member of the network
cannot access data transmitted before the member joined) and forward secrecy (a
member cannot access data that is transmitted after it left the network) for application
data. The building blocks of the architecture are as follows:

• Authentication: Authentication is managed through certificates signed by a trusted
third party or designated certificate authority. An exchange of certificates is required
when an overlay socket receives a protocol message from another overlay socket for
the first time. HyperCast assumes that certificates are formatted following the X.509
specification. In HyperCast, all authenticated overlay sockets are trusted.

• Key Management: This refers to creation and exchange of secret keys at overlay
sockets. HyperCast supports two key management. In one scheme, overlay sockets
share a single symmetric group key for encrypting and signing messages. This is
commonly done in secure group communications for overlay networks or network-
layer multicast. To ensure forward and backward secrecy, group keys must be
updated and distributed each time the group membership changes. This is referred to
as re-keying. HyperCast does not provide a protocol for re-keying and leaves this
task to the application. HyperCast has an alternative to group keys, called
neighborhood key method, where each overlay socket has its own secret key, called
the neighborhood key, which is shared only with authenticated neighbors in the
overlay network. The neighborhood key method avoids network wide re-keying
operations.

• Message Keys: In a scheme such as the neighborhood key method, where secrets
are exchanged only between neighbors of the overlay network, encrypted message
payloads cannot be deciphered by non-neighbors. This creates a problem when a
message is forwarded. Clearly, decrypting and re-encrypting a message at each hop is
very time-consuming and not practical in large networks. To reduce the overhead
incurred at each overlay socket HyperCast employs separate keys for each message.
Here, when an overlay socket wants to transmit a message, it generates a new
symmetric key for this message, called a message key, and encrypts or signs the
payload of the message with the message key. Then, the message key is encrypted
with the neighborhood key and appended to the message. When overlay sockets
share their neighborhood keys with their neighbors in the overlay network, only the
message key must be decrypted and re-encrypted at each hop, without modifying the
encrypted message payload.

• Integrity: Protection against unauthorized manipulation of protocol and overlay
messages is achieved by adding signed hashes to a message. There are three types of
signed hashes in HyperCast: one for a protocol message, one for the header of an
overlay message, and one for the payload of an overlay message.

• Confidentiality: When confidentiality is desired, the entire payload of the message is
encrypted with a group key or a message key. Headers of overlay messages and
protocol messages are never encrypted. When message keys are used, they are

11/20/2005 Security Architecture 5.3

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

encrypted with a neighborhood key. When an encrypted overlay message is received
by an overlay socket, it only decrypts the message if it is a destination of the
message. Messages are decrypted just before they are delivered to the application
program, and after they have been forwarded to the next hop other specified
receivers. When the confidentiality is selected, all signed hashes are computed as well
to ensure integrity.

5.2 SECURITY LEVELS

HyperCast has three security levels: plaintext, protocol integrity, integrity, and
confidentiality. Plaintext means that no security features are activated. Here protocol
messages and overlay messages are transmitted in plaintext and the sender of a message
is not authenticated. All other levels require an authentication before overlay sockets
exchange messages. With protocol integrity, all protocol messages are digitally signed
with a message authentication code (MAC), and application messages are transmitted as
plaintext messages without computing a MAC. With integrity, both protocol messages
and overlay messages are digitally signed. Signed hashes for headers of overlay messages
are verified and computed at each hop. Signed hashes for the payload of an overlay
message are computed only by the source of the message, and verified only at the
destination of the message. At the confidentiality level, the payload of each overlay
messages is encrypted. The encryption is done at the source of a message and the
decryption occurs at the destination(s) of the message. The confidentiality level also
computes the same hashes as is done in the integrity level.

Table 1 summarizes the security operations for overlay messages and protocol messages
that are performed at the available security levels.

Security Level Authentication Operations
applied to
protocol
messages

Operations applied to
overlay messages

Plaintext No None None

Protocol Integrity Yes Signed hash None

Integrity Yes Signed hash Signed hash for header
Signed hash for payload

Confidentiality Yes Signed hash Encrypted payload
Signed hash for header
Signed hash for payload

Table 1. Security levels.

Note: There is an orthogonal mechanism available to ensure security, where overlay
messages and protocol messages are transmitted over Secure Socket Layers (SSL)
connections. An SSL connection is a secure communication channel that provides
message confidentiality by encrypting all information exchanged using a session key, that
is negotiated with the public key of the requestor of the SSL tunnel. The configuration
of SSL security is different from the configuration of the previously discussed security
methods, and is done entirely by configuring adapters that transmit messages over SSL
tunnels. SLL tunnels for protocol messages and overlay messages are configured

 Security Architecture 5.4

independently. SSL security is established for overlay messages by selecting the socket
adapter in the configuration file to be of type SocketAdptSLL, and for protocol messages
by selecting the node adapter to be of type NodeAdptSSL. If an overlay socket transmits
data over one of these adapters, it first establishes an SSL tunnel and then transmits the
data over that tunnel.

5.3 TRUST ESTABLISHMENT

The establishment of trust is a key characteristic of a security architecture. Trust is the
enabling of confidence that something will or will not occur in a predictable or expected
manner, and is supported by mechanisms for identification, authentication, encryption,
authorization, and availability [Andert02]. A key characteristic of peer-to-peer systems is
that peer applications help with forwarding or storing information on behalf of other peer
applications. This makes the peer network vulnerable to malicious or non-cooperative
peers in several ways. A non-cooperative peer that receives an application message that
is destined to some other peer, may, instead of forwarding the message to a neighbor
drop the message. A malicious user may alter the content of messages, may disrupt the
overlay network topology by sending false protocol messages, or may stage a denial of
service attack. For these reasons, trust establishment in peer networks is probably more
important than in an infrastructure network.

Trust establishment in an infrastructure network such as the Internet can be obtained
through a PKI where a certificate authority (CA) initiates all trust relationships. Digital
certificates issued by a CA that authenticate identities can be passed to a key
management and encryption schemes, e.g., as described in the previous section. The
difficulty of building trust increases dramatically without access to trusted third parties
or intermediaries.

A variety of approaches have been tried for the establishment of trust in peer networks.,
including advance dissemination of private keys for all overlay socket pairs, threshold
cryptography approaches, and many more, each offering a particular trade-off with
respect to overhead, scalability, availability, and the ability to perform trust revocation.
Some peer networks adopt a concept as introduced by PGP [Gar94], where a peer in the
network knows the public keys of some other peers (with which it has a trust
relationship) and relies on them to certify the public keys of other peers. By representing
all trust relationship as a graph, one obtains what is called a web-of-trust
[Datta03][Chen00]. A peer accepts a signed public key of a peer if it can find a path in
the web that leads to this peer. The drawback of the web-of-trust is that trustworthiness
is determined by the weakest trust relationship in the web. As a result, the trust
established between peers becomes weaker when the size of the web grows. Another set
of trust schemes in peer networks determines the trustworthiness of a peer by evaluation
of its past behavior, e.g., feedback from other peers [Aberer01][Cornelli02][Kamwar03]
Here, the different measures of trustworthiness are heuristically mapped into a cost
metric. In a completely different approach, some peer networks attempt to mitigate the
damage inflicted by malicious or non-cooperative peers that have joined an overlay
network [Castro02][Wallach02]. Measures against non-cooperative, malicious, or faulty
users are discussed in [Wallach02], and incentive systems that reward cooperative
behavior are discussed in [Buragohain03][Chun04][Feldman04][Kamvar03]. While
research in this area has provided many insights and continues to be important, the large
variety of non-cooperative or malicious behaviors may not yield a general solution that
detects and isolates undesirable behaviors after a peer has gained access to the peer
network. A promising approach for trust establishment in a peer network is a distributed
authentication scheme that is stronger than the web-of-trust. Distributed authentication

11/20/2005 Security Architecture 5.5

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

has been extensively studied in the context of distributed systems [Reiter96][Zhou??]
and ad-hoc networks [Asokan00][Hubaux03] [Luo05][Wang03] [Yi03][Yi02][Zhou99].
A distributed CA can be constructed using threshold cryptography
[Luo05][Yi03][Yi02][Zhou99]. In (K, N) threshold cryptography [Shamir79], a secret
number D is added to a randomly selected polynomial of degree K-1. The resulting
polynomial is evaluated at N positions. Then, D can be computed by obtaining K out of
N values. To build a distributed CA, the private key of the CA is distributed with (K, N)
threshold cryptography, yielding N partial CA’s. A new user is authenticated when K
out of N partial CA’s have signed the certificate of the new user. Possibly, authentication
scheme based on threshold cryptography will evolve into practical protocols that can be
adapted to unpredictable information needs and access to other peers.

HyperCast views non-cooperative and malicious peers as a matter of access control to
the overlay network. HyperCast provides authentication through the use of digital
certificates that relies on the exchange of certificates. Authentication is required for all
overlay sockets whenever the security requirements are set to a level stronger than
plaintext. Once a HyperCast overlay socket has passed the authentication by its peers,
the application is trusted to be cooperative and not malicious.

5.4 AUTHENTICATION

Before overlay sockets can establish a secure association, they must authenticate each
other. HyperCast employs an authentication method based on public key certificates.
Each overlay socket must have a certificate that has been previously signed by a trusted
third party, and certificates of trusted third parties. Without online access to certificate
authorities, trust revocation is not resolved by this method, unless it is enhanced by a
distributed authentication protocol. An exchange and verification of certificates between
neighbors in the overlay occurs only when needed in an on-demand fashion. Each
overlay socket accepts protocol and overlay messages only from authenticated overlay
sockets. When an overlay socket receives an overlay protocol message from another
overlay socket for the first time it requests a signed certificate from this overlay socket
and includes its own certificate in the request. With the neighborhood scheme method,
once certificates are exchanged, the overlay sockets send each other their neighborhood
which are used to encrypt or sign messages.

The exchange of certificates is illustrated in Figure 1 for two overlay sockets A and B.
When B receives a protocol message from A and the certificate of A is unknown (Step
1), overlay socket B discards the message, and sends a certificate request (CertRequest)
message to A (Step 2), which includes B's certificate. When A receives the request, it
verifies the signature of B's certificate and, if valid, stores the certificate. Verification of
the signature requires that the private key that signed the certificate in question be the
private counterpart of the public key known to belong to a trusted third party. Next, in
Step 3, A sends a certification reply (CertReply) message containing its own certificate.
In Figure 1, B's authentication at A is completed in Step 2, and A's authentication at B is
completed in Step 3. Once authenticated, the overlay sockets can process each others
protocol and overlay messages.

Until the authentication is completed for a remote overly socket, all protocol messages
(and also overlay message) received from that socket are dropped. If the authentication
of the certificate fails, the certificate received from the remote socket is dropped and no
further action is taken.

 Security Architecture 5.6

Figure 1. Authentication.

5.5 KEY MANAGEMENT

The purpose of key management in HyperCast is usage of secret keys and the
distribution of keys to other overlay sockets. Encryption of data and the signing of
hashes are done with symmetric keys. HyperCast offers two methods for managing keys:
group keys and neighborhood keys, where the neighborhood key method has three
variants.

In the group key methods, there is a single symmetric key, called the group key, that is
shared by all overlay sockets, and which is used for signing and encrypting methods. The
session key can be dynamically modified while the socket is running. With shared group
key security, all tasks that require a key, such as MAC computation and message
encryption, are performed with the specified group key. To ensure forward and
backward secrecy, group keys must be updated each time the group membership
changes. The update of group keys, also known as re-keying, is not handled by the
overlay socket and must be implemented by the application programs.

The remainder of this section describes the neighborhood key method, which has been
developed in the context of the HyperCast project. The neighborhood key method
avoids network wide re-keying operations, without requiring that message payloads be
re-encrypted at each hop. Each overlay socket maintains a single symmetric key with all
authenticated overlay sockets. We call this key a neighborhood key. An overlay socket
authenticates each overlay socket from which it receives a protocol message. This
includes the current neighbors in the overlay topology, but potentially also many other
overlay sockets. For example, overlay sockets that play a role in the rendezvous process
(rendezvous server, buddy list member), overlay sockets that are probed to become
potential neighbors, or the receivers of a broadcast overlay message, etc. Whenever the
set of (current or potential) authenticated overlay sockets changes, i.e., a new neighbor
appears or an existing neighbor disappears, the overlay socket computes a new
neighborhood key and sends this new key to all authenticated overlay sockets. In
compassion to shared group keys where all overlay sockets in the overlay network must
update (re-key) the shared key whenever the membership in the overlay network
changes, updating keys in the neighborhood method is a local operations, i.e., each
overlay socket updates keys only with current neighbors in the overlay network.

11/20/2005 Security Architecture 5.7

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Neighborhood keys are securely exchanged in a KeyUpdate message, by encrypting the
key with the public key of the receiver using the RSA algorithm. The public key is
obtained from the certificate that was exchanged during the authentication. Whenever an
overlay socket receives a KeyUpdate for an overlay socket for which a key value already
exists, it merely replaces the key entry to the new value. The transmission of a
KeyUpdate message to authenticated neighbors is triggered when (1) a new
authenticated neighbor has appeared; (2) an authenticated neighbor leaves the
neighborhood or has not sent a message for a long time; (3) an authenticated neighbor
requests the neighborhood key; (4) the overlay socket has reached the maximum
sequence number; or (5) the current neighborhood key has exceeded a specified
maximum lifetime. We discuss these situations now in more detail.

1. New authenticated overlay socket has appeared: To ensure backward secrecy, an
overlay socket must generate and disseminate a new key. In Figure 1, the Key
Update messages with the new keys are sent immediately after the authentication is
completed. A sends a KeyUpdate immediately following the CertReply message, and
A sends a KeyUpdate after it has verified the certificate contained in the CertReply.

2. Neighbor leaves the neighborhood or authenticated socket is quiescent: When an
authenticated neighbor leaves the neighborhood or has not sent a message for a long
time, an overlay socket must generate a new key and transmit it in a KeyUpdate
message. Overlay sockets that are not neighbors in the overlay topology also trigger
the creation and dissemination of a new key if no communication has been received
from these sockets for a longer time.

3. Authenticated overlay socket requests the neighborhood key: A KeyRequest
message is transmitted when an integrity check fails on a message. Here, the overlay
socket assumes that it does not have an updated neighborhood key. The receiver of a
KeyRequest checks if the requestor is authenticated and then sends a KeyUpdate
message with the current value of the neighborhood key. No new key is generated in
this situation. To prevent a malicious adversary from staging a DoS attack by
sending forged messages that never pass an integrity test, the frequency of
transmitted KeyRequest messages is limited.

4. Wrapping of sequence numbers: Every overlay socket maintains a sequence number
for outgoing protocol and overlay messages, which is recorded at the receiver of a
message. A receiver only accepts messages with increasing sequence numbers. The
sequence number is reset when a new key is generated. When the sequence number
wraps around, a new key must be generated. In this event, the overlay socket resets
its sequence numbers to 0 (the first message sent will have value 1) if it updates its
neighborhood key and sends out a new KeyUpdate message to all of its neighbors.

5. Expiration of neighborhood keys: An overlay socket must update its neighborhood
key if the key as exceeded its specified maximum lifetime.

Other situations when messages are sent:

• The timestamp permits the receiver of the message to determine if it has a
current key. When the timestamp does not match the timestamp that is locally
stored, the overlay socket knows that it does not have a current key. Then,
the overlay socket sends a KeyRequest message, to request a more recent
key. In a secure protocol message, the DST header field is set to zeros.

 Security Architecture 5.8

We have seen that, whenever the set of authenticated neighbors changes, an overlay
socket updates its neighborhood key. If messages are encrypted or signed with
neighborhood keys, only authenticated overlay sockets in the overlay network can
decrypt or verify transmitted messages. Since the neighborhood key is updated each time
the neighborhood in the overlay topology changes, a newly joined overlay socket is
unable to read messages sent before the overlay socket joined, and a departing overlay
socket cannot read messages that are transmitted after it leaves. In this fashion, the
neighborhood key method realizes backward and forward secrecy.

The workload due to updating neighborhood keys can be high. For example, when a new
overlay socket joins the overlay network it may contact many other overlay sockets
before it converges to its final position in the overlay network. Since each change to the
neighborhood requires that the sockets generates and distributes a new neighborhood
key, the security features may delay the convergence of the overlay protocol. The
problem is exacerbated during failures in the substrate network when the overlay
topology must be reconstructed and many sockets join and leave the overlay network at
the same time. When the time interval between changes to the neighborhood is smaller
than the time required updating a neighborhood key, the overlay protocol may no longer
converge to a stable topology. HyperCast provides several variations of the
Neighborhood scheme method that attempt to reduce the overhead due to key updates in
the neighborhood key method. These variations are discussed below. It is also possible
to relax the requirement of generating new keys each time the neighborhood of a sockets
changes the overlay topology is unstable, at the cost of weakening forward and
backward secrecy.

Figure 3. Scenarios with frequent updates of neighborhood keys.

In Figure 3, we illustrate two scenarios that will incur frequent key exchange operations
in the neighborhood key method. In Figure 3(a) we depict an overlay network with three
nodes the neighborhood in the overlay topology is indicated by thick lines, and a
rendezvous server. We assume that all nodes in the network periodically contact the
rendezvous server, indicated by arrows, to verify that the network is not partitioned
(Having all nodes in an overlay network contact the same rendezvous server is not
practical for large networks. The depicted scenario is shown to illustrate the problem,
and not derived from an actual protocol solution.) In the neighborhood key method, the
rendezvous server exchanges messages with all nodes in the overlay network. Thus,
whenever the node membership changes, the rendezvous server needs to update and
distribute its neighborhood key to all current members in the overlay network. This not
only leads to a prohibitively high load at the rendezvous server. Also, each node in the

11/20/2005 Security Architecture 5.9

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

overlay network must perform protocol operations when the membership of the overlay
network changes.

In Figure 3(b) we show a problem that may appear in overlay networks in a mobile ad
hoc environment. The figure depicts a mobile node (the path is indicated by a thick line)
that broadcasts protocol messages (indicated by circles around the transmitting node)
that announce the presence of the mobile node to other nodes in its vicinity. With the
neighborhood key method, whenever a node receives broadcast messages from a mobile
node for the first time it must update its neighborhood key. When the number of mobile
nodes is large and the mobility of nodes is high, the load due to updating keys in terms of
traffic and computations may be significant.

Common to both examples above is that nodes may spent a lot of effort to update keys
with its neighbors due to nodes that are not neighbors in the overlay network topology,
e.g., a rendezvous server or nodes receiving broadcast messages. Since the primary role
of the neighborhood key is the encryption or protection of application data, and only
neighbors in the overlay network exchange application data, the effort spent with
updating neighborhood keys may be reduced by distinguishing that are neighbors in the
overlay network from those that are not neighbors in the overlay topology and have
separate key management for neighbors and non-neighbors. This leads to the following
variations of the neighborhood key method.

1. Separate Neighborhood Keys for each Non-neighbor: Here, each overlay socket
has a neighborhood key for all neighbors in the overlay topology, and a separate key
for each non-neighbor with which it communicates. The advantage of this method
becomes evident in the scenario in Figure 3(a). An overlay socket does not need to
communicate with the rendezvous server when its neighborhood changes in the
overlay topology. The rendezvous server would need a separate key for each overlay
socket in the overlay network. However, when an overlay socket joins or leaves, the
rendezvous server need not update keys with any other node in the network. The
drawback of this variation is that maintaining separate security associations with
single overlay sockets precludes the use of broadcast operations in the substrate
network.

2. Shared Key for all Non-neighbor (Double-check: It is also possible to send *all*
protocol messages with a shared key): In this method, each overlay socket has a
neighborhood key for all neighbors in the overlay topology, and a single shared key
for protocol messages sent to non-neighbors in the overlay topology. The shared key
must be known to all overlay sockets in the overlay network. This method addresses
the scenario of Figure 3(b) when protocol messages are transmitted in the substrate
network with a broadcast transmission. When the broadcast message is signed with
the shared key, the authenticity of the broadcast message can be verified without
requiring the neighborhood key from the mobile node. The drawback of this method
is that it has the same re-keying requirements as the shared group key scheme. With
this variation of the neighborhood scheme, however, the shared key scheme is only
extended to (some) protocol messages. Application payload is still protected with a
neighborhood key, that is exchanged whenever the set of neighbors in the overlay
network changes. In other words, forward and backward secrecy is maintained for
application data.

The above schemes do not relax the requirement of a mutual authentication. Overlay
sockets always drop messages received from unauthenticated sockets and initiate a
certificate exchange. Also, the variations do not affect the transmission of overlay

 Security Architecture 5.10

messages, since only neighbors exchange overlay messages and the variations do not
change the security scheme for overlay messages.

5.6 DATA CONFIDENTIALITY

In HyperCast, confidentiality is provided only for application data, i.e., the payload field
in overlay message. Encryption of the payload is performed at the source of a message
and decryption is performed at the destination(s) of the message. Data is encrypted using
a symmetric key algorithm (AES, Blowfish, DES, DESede) with a specified key length
(between 0 and 1024 bits). With shared group keys, encryption and decryption is
straightforward using the shared group key. Payload encryption with the neighborhood
key method is more complex and discussed in the remainder of this section.

With the neighborhood key method, when an encrypted message is forwarded in the
overlay network, the message must be decrypted and re-encrypted at each hop. Clearly,
this is very time-consuming and not practical in large networks. To reduce the overhead
incurred at each overlay socket, we employ separate keys for each message. Here, when
an overlay socket wants to transmit a message, it generates a new symmetric key for this
message, called a message key, and encrypts the payload of the message with the
message key. Then, the message key is encrypted with the neighborhood key and
appended to the message. When an overlay socket receives an encrypted message it first
decrypts the message key. (Recall that each overlay socket has the neighborhood keys of
all authenticated neighbors.) If the message must be forwarded to another overlay
socket, it re-encrypts the message key with its own neighborhood key.

Figure 4. Processing an encrypted application message (M is the message, MKey(M) is the message key
for message M, NKey(A) and NKey(B) are the neighborhood keys of overlay sockets A and B,
EMKey(M)(M) is the message encrypted with the message key, ENKey(B) (MKey(M)) is the message key
encrypted with the neighborhood key of B.

11/20/2005 Security Architecture 5.11

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

In Figure 2(a) we show the encryption of a message that is transmitted by a node A with
neighborhood key NKey(A). The node generates a message key MKey(M) for a message
M, encrypts the message with the message key, encrypts the message key with its
neighborhood key, appends the encrypted message key to the message, and, finally
forwards the message to a neighbor. In Figure 2(b), we show how node A forwards an
encrypted message received from a neighbor B. First, A decrypts the message with B's
neighborhood key, re-encrypts the message key with its own neighborhood key, and then
forwards the message. Note that the encrypted message payload is not modified in this
process. Merely, the encrypted message key must be processed. Since a message key is
short (128 bits with current best practices), the delay incurred by decrypting and re-
encrypting the message key is limited.

5.7 DATA INTEGRITY

Integrity is provided by requiring the sender of a message to include a signed checksum
in the message, called message authentication code (MACs)1. The receiver verifies the
MAC of the message by computes a checksum over the message and comparing it to the
checksum that was included in the message. If the checksums are identical the receiver
assumes that there has not been an unauthorized manipulation of the message. If
checksums are not identical, i.e., the integrity test fails, the message is assume do be
compromised and the message is dropped.

Figure 5. MAC computation. (When the security level is stronger than plaintext, each
overlay message has a security extension header and each protocol message has an

SecInfoExchange header.)

As illustrated in Figure 5, HyperCasts uses three types of MACs: one for protocol
messages, one for headers of an overlay message, and one for the payload of an overlay
message. The MACs play the following role:

1. Protocol message MAC: The role of the protocol message MAC is to protect
against protocol messages that are sent or manipulated by unauthorized users. With
the protocol message MAC only authenticated overlay sockets can transmit overlay
message and participate in an overlay topology. The sender of a protocol message
computes a MAC over the entire protocol message, and adds it to the message. The
MAC is verified by the receiver of the message.2 3

1 Precisely, we use a keyed-hash message authentication code (HMAC), which involves a cryptographic

hash function in combination with a secret key.
2 Even with a plaintext security level, most protocol messages have an overlay hash field that is

computed over specified attributes in the configuration files. The overlay has provides a weak
integrity check since it can be used to distinguish protocol messages from different overlay networks.

 Security Architecture 5.12

2. Overlay message MAC: The overlay MAC protects, among others, against
unauthorized changes of the route of a packet and the destination address of a
message. When an overlay socket sends or forwards an overlay message, it computes
a MAC for the header of the message, including all extension headers, but with
exception of the payload. The header MAC is verified and recomputed at each hop
of the message.

3. Payload MAC: The payload MAC permits to verify the origin of an overlay
message and can detect unauthorized changes of application data while a message is
transmitted in the overlay network. The payload MAC is computed at the source of
an overlay message over the payload field in the message. The MAC is verified at the
destination(s) of the message, and is neither inspected nor modified at intermediate
hops that forward the message. This protects against unauthorized changes of
application data while a message is transmitted in the overlay network.

The algorithms employed for the hash algorithms are specified in the configuration file
(HmacMD5, HmacSHA1). The steps for computing and verifying signed hashes are
similar to the encryption and decryption of a message, and vary dependent on the choice
of the key management method. With group keys, all MACs are computed with the
shared group key. We next describe the computation of MACs with the neighborhood
key method.

With (all variations of) the neighborhood method, neighborhood keys and message keys
are used to sign and verify a message. The source of a message first builds a message
key and computes a MAC of the message payload with the message key. When the
payload is encrypted, the same message key is used for encryption and for the payload
MAC. The message key is encrypted with the neighborhood key, and then added to the
message. When a message is forwarded at an intermediate hop, the message key is
decrypted and re-encrypted (as shown in Figure 4), but the payload MAC is not
modified. The overlay message MAC is computed over the entire message with
exception of the payload field and the field that stores the overlay message MAC. The
MAC is computed with the neighborhood key, and is verified and recomputed at each
hop that forwards the message. Both MACs, together with the encrypted message key,
are transmitted as an extension header of the overlay message. The computation of the
MAC for protocol messages depends on the version of the neighborhood key method. In
the basic scheme, the MAC is computed over the entire protocol message with the
neighborhood key. In other versions, the MAC may be computed with a shared key.

In our implementation, with the assumption that data confidentiality implies a need for
integrity, the MACs for the payload and header of overlay messages, and the MAC for
protocol messages are always computed, when encryption of application payload is
requested.

Using the neighborhood key method an integrity check may fail for two reasons: (1) the
message or header has been altered, or (2) the neighborhood key has changed and the
verifying node does not have a recent copy of the key. When an overlay socket is
configured with the neighborhood key method, an overlay socket, upon a failed integrity
check, it discards the message, but assumes that the failed test is due to an outdated
version of the neighborhood key. Here, it sends a message to the neighbor from which
the message was received requesting its neighborhood key. By limiting the rate at which
these requests are sent, e.g., no more than one request for a key can be outstanding at

3 Protocol messages are never forwarded.

11/20/2005 Security Architecture 5.13

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

any time, the key requests sent to neighbors even though a message has been altered
without authorization can be ignored.

5.8 CONFIGURING AN OVERLAY SOCKET FOR SECURITY

Figure 6. Attributes for security architecture.

The parameters of the security configuration of an overlay socket are determined from
configuration attributes. Recall from Chapter Advance API.3.5 that there is a distinction
between public and private attributes. Public attributes make up the majority of
configuration parameters. These attributes are stored in the configuration file of a
socket. Private attributes contain confidential information, such as a password to access
a private key or a certificate. They must be configured by the application program that
creates an overlay socket. All public security attributes have the prefix /Public/Security
and all private security attributes have the prefix /Private/Security. The type and format
of public and private attributes are specified in separate XML schema files. The schema
file for public attributes can assign default values to attributes, but private attributes do
not have default values. The public and private attributes for the security configuration
of an overlay socket are shown in Figure 6.

The private key corresponding to the local certificate is obtained from the specified
keystore file. This is a file that can be created by Java programs or the keytool command
line utility (see Chapter Advance API 3.5).

There are separate schema files that specify the type and format of public and private
attributes. The schema for public attributes can have default values for attributes,

Each application program is responsible for maintaining its own certificate, and the
associated private and public keys. The certificate is managed through a keystore, an

 Security Architecture 5.14

encrypted database of private keys and X.509 certificates authenticating the public keys.
Overlay sockets access private keys and certificates from the keystore. The configuration
file declares the location of the certificates and the keystore. The following attributes are
used for accessing and processing certificates:

The following are the public security attributes

SecurityLevel
An overlay socket can be configured with three different security levels:
plaintext, integrity, and confidentiality. The default value is plaintext.

CertificateLocation
Contains the file that contains the X.509 certificate of the application
program. The certificate is obtained from the information in keystore file.
The default value is testcert.cer. (Since the certificate can be extracted
from the keystore file, this attribute can be viewed as being redundant.)

CACertificateLocation
Specifies the file that contains the X.509 certificate of the Certificate
Authority (CA) that granted the certificates. The default values of the file
is testcert.cer. The CACertificateLocation can be used to obtain
Certificate Revocation Lists (CRLs) so that sockets can stay up-to-date
on the validation of certificates. Certificate revocation is not supported in
the current implementation.

KeystoreLocation
The attribute stores the location of the keystore file (default is .keystore).
The certificate must be in a binary or text DER (Distinguished Encoding
Rules)-encoded format, such as PKCS#7 or Base-64.

KeyModeMethod
This attributes selects the method for constructing and managing the keys
that hash or encrypt information in an overlay socket. The value
NeighborhoodKey. The value GroupKeys is based on shared group keys.
Valid values are:

� GroupKeys – All overlay sockets are assumed to have the same
shared group key. Whenever the group key is accessed, e.g., for
signing, verifying, encrypting, or decrypting messages, the overlay
socket checks if the value of the attribute has changed.

� NeighborhoodKey1 (formerly: UniformDynamicKey) – This is the
default value. Each overlay socket has one neighborhood key that it
exchanges with all authenticated overlay sockets.

� NeighborhoodKey2 (formerly: StaticNonNeighborKey) – Each
overlay socket has one neighborhood key for all overlay sockets that
are neighbors in the overlay network topologies, and one
neighborhood key for each overlay socket that has been
authenticated, but that is not a neighbor in the overlay topology.

11/20/2005 Security Architecture 5.15

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

� NeighborhoodKey3 (formerly: SharedProtocolKey) – This scheme is
a hybrid of the GroupKeys and the NeighborhoodKey1 method. Each
overlay socket has a shared group key that is known to all overlay
sockets. In addition, each overlay socket has a neighborhood key that
is exchanged with all authenticated overlay sockets and that is
updated whenever the set of authenticated overlay sockets changes
(Or is it: “whenever the neighbors in the overlay topology change”?
Determine if NeighborHoodKey3 makes a distinction between
neighbors and non-neighbors.). All protocol messages are signed with
the group key. All overlay messages are signed and encrypted with
the neighborhood key. The advantage of this scheme is that an
overlay socket can verify incoming signed protocol messages even
when it does not have an updated neighborhood key.

CertificateRequestTimeout
Minimum time that must elapse between transmissions of two
CertRequest messagess. The default value is set to 30 seconds.

KeyRequestTimeout
Maximum waiting time for the reply to a KeyRequest message before a
KeyRequest message is retransmitted. The default value is set to 10
seconds.

MaxAgeOfAuthNode
The maximum age of an entry in the key vault about an authenticated
overlay socket after the last protocol message received from this overlay
socket.

MaxAgeOfKey
The maximum age of a neighborhood key before it is updated with a
KeyUpdate Message.

KeyUpdatePeriod (�Deleted, or?What is the difference to the MaxAgeofKey)
The time interval between the transmission of KeyUpdate messages.

MacAlgorithm
Specifies the algorithm used to compute message authentication codes.
The values of the attribute and the corresponding algorithms are given in
Table 2.

CryptAlgorithm
Specifies the symmetric cryptographic algorithm for encrypting and
decrypting the payload of overlay messages. The values of the attribute
and the corresponding algorithms are given in Table 3. The selection of
the algorithm restricts the value of the SymmetricKeyLength.

SymmetricKeyLength
The length of the key for the cryptographic algorithm. The value must be
in the range from 0 to 1024, with 128 as the default value. As given in
Table 3, each cryptographic algorithm only permits a certain range of
values. (What is the role of Table 4? Is this Java specific?)

 Security Architecture 5.16

CertificateType
The certificate specification that is used for authentication of overlay
sockets. The only permitted value is X.509.

Table 1. Security policy. (The default value is underlined.)

Security Level Level of overlay
messages

Level of protocol
messages

Plaintext Plaintext Plaintext
Protocol Integrity Plaintext Integrity
Integrity Integrity Integrity
Confidentiality Confidentiality Integrity

Table 2. Values for the attribute MacAlgorithm. (The default value is underlined.)

HmacMD5 The HMAC-MD5 keyed-hashing algorithm as defined in RFC
2104: "HMAC: Keyed-Hashing for Message Authentication".

HmacSHA1 The HMAC-SHA1 keyed-hashing algorithm as defined in RFC
2104: "HMAC: Keyed-Hashing for Message Authentication".

Table 3. Values for the attributes CryptAlgorithm. (The default value is underlined.)

AES Advanced Encryption Standard as specified by NIST in a draft
FIPS. Based on the Rijndael algorithm by Joan Daemen and
Vincent Rijmen.
SymmetricKeyLength must be set to 128, 192, or 256 bits.

Blowfish The block cipher designed by Bruce Schneier.
SymmetricKeyLength must be a multiple of 8, and can only range
from 32 to 448.

DES The Digital Encryption Standard as described in FIPS PUB 46-2.
SymmetricKeyLength must be equal to 56.

DESede Triple DES Encryption (DES-EDE).
SymmetricKeyLength must be equal to 112 or 168.

Table 4. Key size parameters and keys sizes for various algorithms. (JL: How come that
“key size parameter” and “size of created keys” have different values. Where does the

table come from?)

Key
algorithm

Key size parameter
(in bits)

Size of the created
key (in bits)

AES 128 128

Blowish 128 128

DES 56 64

DESede 112 or 168 192

11/20/2005 Security Architecture 5.17

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

The following are the private attributes for the security configuration of an overlay
socket. All attributes have the prefix /Private/Security.

KeyStorePassword
Password to access the keystore file as specified by the KeystoreLocation
attribute.

PrivateKeyAlias
The private key is accessed with an alias and protected with a password.
The alias and password are set when a new public/private key pair is
generated.

PrivateKeyPassword
The password for the private key that is accessed with the value of the
PrivateKeyAlias attribute.

GroupKey
Specifies the symmetric shared group key of an overlay network. All
overlay sockets must have the same value of the attribute. The attribute
Note: Each time the group key is accessed, the value of the GroupKey
attribute must be read, since it may have changed since the last access.
(This is an example of a special class of attributes, which should not be
stored internally. Most attributes are read only during configuration of the
overlay socket. Maybe there should be a separate class of attributes,
identified by an XML attribute, that specifies if an attribute should be
handled in this fashion.)

Since private attributes do not have default values and are not stored in configuration
files, they must be explicitly set by the application program. In the Java implementation
of HyperCast, this is done by invoking:

config.setPrivateTextAttribute(XPath xpathOfPrivateAttribute, String value)

Here config is a configuration object of type HypercastConfig of the overlay socket,
xpathOfPrivateAttribute is an XPath expression that is created from the private security
attributes, and value is the value assigned to the attribute as a string.

For example, the group key can be generated from a string with the following line of
code:

//Set the group key into private attribute document
ConfObj.setPrivateTextAttribute(XmlUtil.createXPath("/Private/GroupKey"), “MyKey”);

(Check: what if the string MyKey is very long? Is there truncation? Check out the
following
groupKey = new SecretKeySpec(groupKeyString.getBytes(), confidentialityAlgorithm);
what does SecretKeySpec do if getBytes returns many bytes?)

5.9 SECURE PROTOCOL MESSAGES

In an overlay socket with elevated security levels, i.e., levels that are different from
plaintext, all protocol messages created in the overlay socket are encapsulated as
security information exchange (SecInfoExchange) messages. In addition to wrapping
protocol messages of overlay protocols, SecInfoExchange messages are also employed
for the exchange of certificates (CertRequest, CertReply) and keys (KeyRequest,
KeyUpdate). Messages of type KeyRequest and KeyUpdate are used only in the context

 Security Architecture 5.18

of the neighborhood key method. In the following we describe the message format of
SecInfoExchange messages and provide additional information on the processing of
these messages.

5.9.1 MESSAGE FORMAT

In this section we discuss the format of SecInfoExchange messages. SecInfoExchange
messages are defined as a distinct overlay protocol. In particular, the protocol number
0xf0 designates SecInfoExchange messages. The messages follow the convention of all
protocol messages that (1) the first byte identifies the protocol, (2) the next two bytes
define the total length of the message, and (3) the next byte specifies the protocol
specific message type. All SecInfoExchange message have a common header fields as
shown in Figure 7. These fields are referred to as the SecInfoExchange header. The
remainder of the message is different dependent on the message type.

Figure 7. Format of SecInfoExchange message.

Protocol (1 byte):
The protocol number of all SecInfoExchange messages is set to 0xf0.

Length (2 bytes):
The length of message following the length field, i.e., the actual length of
the message larger by 3 bytes.

Type (1 byte):
There are five different message types:
 0x01 Certification Request (CertRequest)
 0x02 Certification Reply (CertReply)
 0x03 Key Request (KeyRequest)
 0x04 Key Update (KeyUpdate)
 0x05 Encapsulated Protocol Message (ProtoMsg)

Sequence Number (4 bytes):
The sequence numbers is set to 1 in the first message and incremented
each time before a message is transmitted. Messages from the same
overlay socket that do not have increasing sequence numbers are
discarded. With the neighborhood key method, sequence numbers are
prevented from wrapping. If a sequence number has reached the
maximum value, a new neighborhood key must be created and sent to

11/20/2005 Security Architecture 5.19

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

neighbors in a KeyUpdate message. Sending KeyUpdate triggers a reset
of the sequence number counters.

Overlay Hash (4 bytes):
A hash value that is computed from the HashAttributes, which is a list of
attributes written as XPath expressions. The HashAttributes may contain
the overlay identifier (/Public/OverlayID), the name of the overlay
protocol (/Public/Node), or other attributes. To compute the overlay
hash, the values of the listed attributes are obtained from the
configuration file,4 concatenated using the UTF-8 character encoding
scheme, converted into a byte array, and a hash function is applied. The
hash function, which can operate on variable-length byte arrays, is defined
as follows:

Input: Byte array A[], containing UTF-8 encoded hash attributes
Output: a 4-byte unsigned integer result
procedure OverlayIDHash (byte A[])
begin
 Result := 0;
 for (int i := 0 ; i < length of A[] ; i++) {
 byte upperByte := (byte) ((result >> 24) & 0xFF);
 int leftShiftValue := ((upperByte ^ A[i]) & 0x07) + 1;
 result := ((result << leftShiftValue) ^ ((upperByte ^ A[i]) & 0xFF));
 }
 return result;
end

Source Address Pair (LA Size + PA Size bytes):
The logical address and the physical address of the
sender of this message. LA Size and PA Size are, respectively, the size of
the logical address and the physical address. The size of the addresses are
known from the configuration file.

Destination Address Pair (LA Size + PA Size bytes):
The logical address and the physical address of the
destination of this message. For messages of type ProtoMsg, the fields of
the destination address are set to zero.

The format of the additional fields for the SecInfoExchange message types shown in
Figure 8.

4 If the XPath expression identifies a simple XML element, the lookup returns the value of the attribute.

Otherwise, the lookup returns the name of the first element contained in this element.

 Security Architecture 5.20

Figure 8. Format of SecInfoExchange messages.

The sender of a CertRequest and CertReply message include their own certificate
following the SecInfoExchange header. The KeyRequest message only consists of the
header. The KeyUpdate message is only transmitted when the neighborhood key method
is employed. Here, the sender of the message sends its neighborhood key in encrypted
form, and also a timestamp when key was created.

A secure protocol message contains the protocol message MAC, its length, a key
timestamp. The timestamp permits the receiver of the message to determine if it has a
current key. When the timestamp does not match the timestamp that is locally stored, the
overlay socket knows that it does not have a current key. Then, the overlay socket sends
a KeyRequest message, to request a more recent key.

Below we explain the fields appearing in the SecInfoExchange.

Certificate (variable):
The encoded form of a X.509 certificate in this message. X.509
certificates are encoded as ASN.1 DER. The length of the field is derived
from the length field of the SecInfoExchange header.

KeyTimeStamp (8 bytes):
The time when the neighborhood key was created at the sender. The
time is the difference, measured in milliseconds, between the timestamp
and midnight, January 1, 1970 UTC.

Key (variable):
The encrypted neighborhood key contained in this message. The local key

11/20/2005 Security Architecture 5.21

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

is encrypted with the RSA algorithm using the private key that
corresponds to the public in the local certificate. The length of the field is
derived from the length field of the SecInfoExchange header.

Protocol Message (variable):
A valid protocol message with a protocol message header.

5.9.2 PROCESSING SECINFOEXCHANGE MESSAGES

Next we describe remaining details of the protocol that governs the transmission and
processing of SecInfoExchange messages. Most of the operations of the protocol were
discussed in Sections 5.3 and 5.5. Figure 7 shows the processing of an incoming
SecInfoExchange message that contains a protocol message. First, there is lookup for
the certificate of the sender. If the certificate is not available, an authentication process is
initiated and the message is dropped. Initializing a certificate authentication includes the
transmission of a CertRequest message to the remote overlay socket, and the addition of
an entry for the remote overlay socket in the neighbor table. Authentication can only be
triggered by the receipt of a SecInfoExchange message that encapsulates a protocol
message. When an overlay socket receivers a CertRequest message, it verifies if there is
a pending CertRequest that it sent to the sender of the message. In this case, there are
two authentication processes ongoing between the same pair of overlay sockets. To
prevent this from happening, the overlay socket discards the incoming CertRequest
message when the logical address of the sender is larger than its own.

There is no retransmission provided for certificate requests. Each time a protocol
message is received from an unauthorized neighbor, a CertRequest is sent. However, a
minimum time given by CertRequestTimeout must elapse between two requests to the
same destination. (JL: 6/11, Is CertRequestTimeout provided?)

In the next step, the overlay socket accesses the key used to perform the integrity check.
If the key is not available, the message is dropped. If the NeighborhoodKey method is
running, the current key is requested in a KeyRequest message. If, on the other hand, the
key is available, the socket performs an integrity check. If the check fails, the message is
dropped. In the context of the Neighborhood method, the node also requests a recent
version of the key from the sender of the message. After a successful integrity check, the
protocol message following the SecInfoExchange header is passed to the overlay node.

 Security Architecture 5.22

Figure 9. Processing an incoming SecInfoExchange.

An overlay socket removes entries, including keys and certificates, about authenticated
overlay sockets if it has not received a message from this overlay socket for an extended
period of time. An overlay socket maintains the time expired since the last message was
received from an authenticated overlay socket, and resets the time to zero whenever a
new message arrives. When the age exceeds a maximum value, given by the attribute
MaxAgeAuthNode, the entry is removed. Periodically, an overlay socket checks all its
authenticated neighbors if they need to be removed. The period is set equal to the
maximum age.

With the neighborhood key method, a key can be used at most a time given by the
attribute MaxAgeOfKey. The maximum lifetime of a key is enforced by a timer, calledthe
RekeyTimer that is associated with the neighborhood key(s), called the RekeyTimer.
When the timer expires, the socket generates a new key and sends it to other sockets in
an UpdateKey message.

The transmission of a CertRequest message is triggered by the arrival of a protocol
message from an unauthenticated overlay socket, i.e., an overlay socket for which no
certificate is available. If a protocol message arrives and a certification process is
ongoing, the overlay socket will send another CertRequest message. However, the
minimum time, given by the attribute CertRequestTimeout, must elapse between two
CertRequest transmissions to the same destination. (JL, 6/11: CertRequestTimeout is not
provided, but I think it was there earlier. If it was deleted, what was the reason?).

Overlay sockets that run the neighborhood key method transmit KeyRequest messages
when one of the following events occurs: (1) A protocol message is received from an
overlay socket, for which an the certificate is available, but not the key; (2) A protocol
or overlay message is received from an overlay socket that fails the integrity check; or
(3) A timeout occurs because a KeyRequest has outstanding for more than
KeyRequestTimeout milliseconds. The third event is triggered by a timer, called the
KeyRequestRetransmitTimer. When a KeyRequest message is retransmitted in this
fashion, the timer is restarted.

11/20/2005 Security Architecture 5.23

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

To reduce the number of KeyRequest message transmissions, an overlay socket does not
remove the key for another socket when a message from this socket fails the integrity
check. Instead the key entry is marked as invalid. An invalid key entry is still used to
perform integrity checks for incoming messages. When an incoming message passes the
integrity check for an invalid key, the invalid marking of the entry is removed. The
timeouts in the third event above are ignored when the corresponding key entry is not
marked as invalid. In this fashion, a DOS attack is avoided where a malicious user sends
faked messages with a spoofed source address, and the receiver of the messages
permanently removes the key for the overlay socket with the spoofed address.
Retransmissions to an overlay socket are repeated only as long as an entry about that
socket exists.

JL (11/6): Is there a maximum times of retransmissions for CertRequest and KeyRequest
after which an overlay socket gives up?

In Figure 9 we show the steps for computing the protocol message MAC for an
outgoing protocol message. The MAC is computed either with a group key or a
neighborhood key. The MAC is calculated over the entire SecInfoExchange message,
where the field of the MAC is removed. Once the MAC is computed, it is written into
the field reserved for the protocol message MAC.

Figure 10. MAC calculation for a secure protocol message.

5.10 SECURE OVERLAY MESSAGES

All overlay messages in an overlay socket with the security level set to protocol
integrity, integrity, or confidentiality contain a security extension, also called security
header. Overlay messages with a security extension header are also called secure overlay

 Security Architecture 5.24

messages. The security extension is specified in the preceding header by a next header
field with value 0x21. The security extension contains, among others, the MACs for the
header and the payload and, if the neighborhood key method is enable, an encrypted
message key. The security extension header is shown in Figure 11. (What happens if
there is no payload extension?)

Figure 11. Security extension header in a secure overlay message.

The format of a security header is shown in the Figure 12. The contents of the fields is as
follows:

Figure 12. Format of the security extension.

Next Header (1 byte):
Specifies the type of extension following this header.

Length (4 bytes):
The length of the security header in bytes following the Length field, i.e.,
not include the Next Header and Length fields.

Sequence Number (4 bytes):
Specifies the sequence number of the message. The field is used in the
same was as described for the SecInfoExchange header. The sender of a
message increments the sequence number before each message
transmission. With the neighborhood method, when the number of
messages, both protocol and overlay messages, exceeds the maximum
allowed number, then a new neighborhood key is generated and
transmitted in a KeyUpdate message, and the sequence number is set to
zero.

Encrypted Message Key (0-32 bytes):
Contains the encrypted message key. This field is not used when the
group key method is executed, i.e., the length of the field is zero. The

11/20/2005 Security Architecture 5.25

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

length of the encryption key is determined from the configuration
attributes. (JL (6/11): Verify that message key is not included in
message for group key method.)

SPI (4 bytes):
The field SPI (Security Parameter Index) can contain a security
association identifier, which is a random value identifying the security
association for this message. The field is currently not used.

LA length (1 byte):
The length of the logical address of the overlay socket.

LA of Sender (variable):
The logical address of the neighbor that forwarded this message. The
field is used to look up certificates and keys for the neighbor.

Header MAC Length (1 byte):
Length of the MAC for the header of the overlay message in bytes.

Header MAC (≥ 16 bytes):
Contains the MAC for the overlay headers. Precisely, the MAC is
computed over the byte array of the entire message, with the Header
MAC field and the payload field removed.

Payload MAC Length (1 byte):
Indicates the length of Payload MAC field in bytes.

Payload MAC (≥ 16 bytes):
Contains the MAC for the payload. If the payload is encrypted, this is the
MAC of the encrypted payload. (What happens to the field if there is
no payload?)

An overlay socket must compute the extension header in the following order: (1)
Encrypt the payload field of the payload header; (2) Compute the payload MAC; and (3)
Compute the Header MAC. When encryption is required, the payload MAC is computed
over the encrypted payload field. The header MAC is computed over the entire message,
with exception of the MAC header field and the payload field in the payload extension
header.

With the group key method the group key is used for the payload encryption and the
computation of both MACs. Here, the message key field is not used. With neighborhood
keys, the message key is used for payload encryption and the payload MAC. The
neighborhood key is used to encrypt the message key and to compute the header MAC.

For an incoming secure overlay message, an overlay socket verifies the sequence number
and the header MAC. If either of these checks fails, the message is dropped without
further processing. Otherwise, with the neighborhood key scheme, the message key is
decrypted. When an overlay socket forwards a secure overlay message, it recomputes
the header MAC and the sequence number, re-encrypts the message key in the security
header (if present), and updates the LA Sender field with its own logical address. The
header MAC is recomputed either with the group key or the neighborhood key of the
local overlay socket. The encrypted message payload, the payload MAC, and the
message key are not modified when the message is forwarded. The forwarding of

 Security Architecture 5.26

messages with security headers can be viewed as an operation that replaces a security
header.

When a secure message arrives at an overlay socket that is a destination of the message,
a message is processed like any incoming message. Then the payload MAC is verified
either with the group key or the message key. If not successful, the message is dropped.
Otherwise, the payload is decrypted with the group key or the message, and delivered to
the application. Incoming multicast and flood messages are delivered to the application,
but may also be forwarded to other overlay sockets. Here, it is advisable that the
message is forwarded before the payload is decrypted, otherwise the processing time for
decrypting the payload at intermediate hops increases the latency of a packet.

When messages are transmitted with an enhanced delivery semantics (see Chapter
MessageStore) they may be stored in the message store of the overlay socket, and may
be forwarded at a later time, e.g., to retransmit a message when no acknowledgment has
been received. When a message is stored in the message key, it is important that the
decrypted message key is stored together with the message.

5.11 SOFTWARE DESIGN

The majority of the security architecture is realized by two components of the overlay
socket: a key vault and a security processor. These components are instantiated only if
the security level is set to protocol integrity, integrity, or confidentiality. Hooks to access
the key vault and the security processor are added to various functions in the overlay
socket. Most components in the overlay socket do not know whether the security
components are activated. Specifically, there is no security-specific API defined for the
overlay socket. All security features of an overlay socket are activated by attributes in
the configuration file. Refer to Chapter “Overlay Socket API (Advanced)” for the
information on security configuration.

Figure 13. Overlay socket with key vault and security processor.

11/20/2005 Security Architecture 5.27

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

The key vault manages certificates and keys of the local overlay socket and remote
overlay sockets that communicate with the local socket, and also stores the information
about the currently used cryptographic algorithms. The key vault must be accessed by all
overlay socket components that need to access keys or certificates. For example, the
socket adapter that performs an integrity check the key vault is accessed to check if the
sender has been authenticated, to access the algorithm and the key needed to perform an
integrity check.

The security processor is a wrapper for the overlay socket adapter that provides a layer
between the overlay node and the node adapter. The security processor is responsible for
adding and removing the security encapsulation headers. All protocol messages created
by the overlay node are passed to the security processor where they are converted into
SecInfoExchange messages and sent out by the overlay socket adapter.
SecInfoExchange messages encapsulate regular protocol message. In an overlay socket
with a security processor, all incoming protocol messages are received as
SecInfoExchange messages, reconstructed as regular (plaintext) protocol messages by
the security processor, and then passed to the overlay node for processing.

5.11.1 KEY VAULT

Figure 14. The key vault.

The key vault is a component created by and contained in the overlay socket to manage
various security properties. It is the central place for managing certificates and keys. An
overlay socket needs to have a key vault only when the security level is set to protocol
integrity, integrity, or confidentiality. The key vault is configured with security attributes
defined in the configuration file of the overlay socket and with attributes that must be
provided by the application program.

The key vault maintains all security information of the overlay socket, including the
security policy, the algorithms for encryption and hashing, all local keys and their sizes,
as well as the local certificate, and the private key associate with the certificate.
Information about remote overlay sockets is stored in two lookup tables, the key table
and the certificate table. Both tables are indexed by their logical addresses. The tables
store, respectively, keys and certificates of remote overlay sockets. When the group key
method is enabled, the key table is not used.

 Security Architecture 5.28

The certificate table and key table store information about remote overlay sockets with
which the local socket exchanges protocol messages. These remote overlay sockets fall
into two groups: (1) Sockets that are current neighbors in the overlay topology, and (2)
overlay sockets that are non-neighbors. An example of a non-neighbor is a newly joining
overlay socket that announces itself to all overlay sockets, but does not become a
neighbor of all sockets that receive the message. Another example are overlay sockets
that are involved in the rendezvous process, e.g., buddies or rendezvous servers. For
some security configurations, the overlay socket employs different authentication
methods for neighbors and non-neighbors. For this reason, the key vault maintains
separate sub-tables for certificates and keys of neighbors and non-neighbors.

Periodically, the key vault tables are searched for expired entries that need to be deleted.
This period is given by the attribute KeyVaultCleanUp. A timer controlled by the
security processor initiates the clean up of expired entries.

The key vault is used extensively by the security processor and functions that process
protocol and overlay messages. The security processor accesses the key vault to check
and update the local certificate and key, and to verify the existence and validity of
certificates and keys of remote overlay sockets. If the desired certificate or key is not
available in the key vault, the security processor initiates a certificate or key exchange
with the remote overlay socket. The functions in the overlay socket that process
protocol and overlay messages rely on the key vault for information on the security
policy, access to local and remote keys and certificates, and to access and creation of
new keys.

5.11.2 SECURITY PROCESSOR

The security processor provides authentication and key management, as well as handling
of secure protocol messages. For any incoming secure protocol message, the security
processor checks the presence and validity of the certificate and key for the sender of the
message. If necessary, and as discussed earlier in this chapter, the security processor
initiates a certificates or key exchange. All SecInfoExchange messages for authentication
and key exchange (CertRequest, CertReply, KeyRequest, KeyUpdate) are created and
handled by security processor independent of the activated overlay protocol.

The security processor hides the presence of security features form the overlay node. An
overlay node is not aware of security and exchanges plaintext protocol messages with
other overlay nodes. When security is specified, all protocol messages are protected by
an signed hash, the Protocol Message MAC, which is computed in the security
processor.

As indicated in Figure 13, the security processor supports the same interfaces as the
node adapter. In fact, to an overlay node, the security processor serves as the node
adapter, and to the node adapter, the security processor works as the overlay node.
Neither the overlay node nor the node adapter is aware of the existence of the security
processor. Protocol messages are wrapped as SecInfoExchange messages by the security
processor before transmission. At the receiver side, the SecInfoExchange messages are
converted into plaintext protocol messages by the security processor and passed to the
overlay node to process.

Operations in the security processor are triggered by the transmission of protocol
messages by the overlay node, changes to the neighborhood table in the overlay node,
the arrival of SecInfoExchange messages from the node adapter, and timeouts of timers

11/20/2005 Security Architecture 5.29

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

that were previously set by the security processor. The handling of changes to the
neighborhood tables requires special considerations. Recall that upon a change to the
neighborhood in an overlay node the security processor may need to update and
distribute its neighborhood key. Since the change to the neighborhood table is internal to
the overlay node and does not necessarily result in the transmission of protocol
messages, the security processor catches the NeighborhoodChanged event which is
defined through the HyperCast event notification system (see Chapter “Overlay Socket
API (Advanced)”) by providing an event handling routine for the
NeighborhoodChanged event.

Figure 16 shows the structure of the class SecurityProcessor that implements the
security processor.The security processor can be viewed as a layer that bridges the
overlay node and the node adapter. To an overlay node, the security processor works as
the node adapter which implements the I_MulticastAdapter interface. To the node
adapter, the security processor serves as the overlay node that implements the

I_AdapterCallback interface. Neither the overlay node nor the node adapter are aware
of the existence of the security processor. Figure 15 shows the structure of class
SecurityProcessor.

Figure 15. The class structure of SecurityProcessor

The class SecInfoExchange_Message implements the I_Message interface with the
standard methods to process protocol and overlay messages. Figure 16 shows the
structure of SecInfoExchange_Message class.

Figure 16. SecInfoExchange_Message Class.

Figure 17 and 18 show the flow of outgoing and incoming secure protocol messages. An
outgoing protocol message created in the overlay node is wrapped by the security
processor into a SecInfoExchange message, and sent out through the node adapter.
When the security processor receives a protocol message from the overlay node, it
creates a SecInfoExchange header. Before the message is transmitted, the

 Security Architecture 5.30

SecInfoExchange header is transformed into a byte array and concatenated with the byte
array of the protocol message. The result is sent by the node adapter.

An incoming secure protocol message is received in the node adapter as a byte array,
which is reconstructed into a SecInfoExchange message by the security processor ((1) in
Figure 18). This is done by calling the restoreMessage method of an SecInfoExchange
message. This method restores the SecInfoExchange header information and verifies the
Protocol Message MAC. The reconstructed SecInfoExchange message is passed to the
messageArrivedFromAdapter method of the security processor where the byte array is
restored into a plaintext protocol message via the restoreMessage method of the
protocol message ((3) in Figure 18). Finally, the method messageArrivedFromAdapter
of the overlay node is invoked to process the message ((4) in Figure 18).

Similarly, when the security processor needs to send a CertRequest or KeyRequest
message, it creates a SecInfoExchange message and passes it to the node adapter. When
a CertReply or KeyUpdate message is received by the node adapter, the node adapter
invokes the restoreMessage method, which in turn calls the restoreMessage of the
SecInfoExchange message. The reconstructed SecInfoExchange message is passed to
the method messageArrivedFromAdapter in of the security processor where the
SecInfoExchange message is processed.

Figure 17. Processing an outgoing secure protocol message.

11/20/2005 Security Architecture 5.31

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

Figure 18. Processing an incoming secure protocol message.

5.11.3 SECURE OVERLAY MESSAGES

We now turn to the implementation aspects of secure overlay messages. Unencrypted
overlay message payloads are implemented by the PayloadExtension class. When the
security level is set to confidentiality, the encryption and decryption of the payload is
handled by an instance of the EncryptedPayloadExtension class. Figure 18 shows the
inheritance structure of the class.

Figure 19. EncryptedPayloadExtension Class.

 Security Architecture 5.32

Encryption and decryption of message payloads is transparent to the class that
implements the overlay message, and, thereby, to the application. An overlay message
treats an EncryptedPayloadExtension as a normal Extension instance. When the
methods toByteArray() or getPayload() are called for this type of extension, the
encryption or decryption is started. To reduce the time spent on encrypting or decrypting
data, payload encryption and decryption is only done when an overlay message is
converted into a byte array, the encryption on the payload is executed, and decryption is
done only when the plaintext payload is needed.

Another optimization is that the overlay socket avoids encryption or decryption the
payload of a message more than once, even if a message is retransmitted multiple times.
This is done by storing a plaintext copy and an encrypted copy of an encrypted message
in the EncryptedPayloadExtension object. Encryption of a message is performed only
when the encrypted copy does not exist and decryption is done only when the plaintext
copy of the payload is not available.

Figure 20. Processing an encrypted overlay message.

11/20/2005 Security Architecture 5.33

© Jorg Liebeherr, 2005. All rights reserved. HyperCast 3.0

5.12 BIBLIOGRAPHY

[1] [AES01] Announcing the Advanced Encryption Standard Federal Information Processing
Standards Publication, National Institute of Standards and Technology, 2001.

[2] [DSS00] Digital Signature Standard. Daley, W.M. ed. Federal Information Processing Standards
Publication Series, National Institute of Standards and Technology, 2000.

[3] [SHS95] Secure Hash Standard. Brown, R.H. ed., National Institute of Standards and Technology,
1995.

[4] [RFC2104] H. Krawczyk, M.B., R. Canetti. HMAC: Keyed-Hashing for Message Authentication,
Internet Engineering Task Force, RFC 2104, 1997.

[5] [Gar94] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly, November 1994.

[6] [Datta03] A. Datta, M. Hauswirth, and K. Aberer. Beyond `Web of Trust’: Enabling P2P E-
commerce. In Proceedings of IEEE Conference on E-Commerce (CEC'03), June 2003.

[7] [Chen00] R. Chen and W. Yeager. Poblano: A Distributed Trust Model for Peer-to-Peer Networks.
Sun Microsystems Technical Paper, 2000.

[8] [Aberer01] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information System. In
Proceedings of the 10th International Conference on Information and Knowledge Management
(ACM CIKM), New York, USA, 2001.

[9] [Cornelli02] F. Cornelli, E. Damiani, S. D. C. D. Vimercati, S. Paraboschi, and S. Samarati.
Choosing Reputable Servents in a P2P Network. In Proceedings of the 11th World Wide Web
Conference, Hawaii, USA, May 2002.

[10] [Kamvar03] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm for
reputation management in P2P networks. In Proceedings of the 12th International Conference
World Wide Web, Budapest, Pages 640 – 651, May 2003.

[11] [Castro02] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Security for Peer-
to-Peer Routing Overlays. In Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI '02), December 2002.

[12] [Wallach02] D.S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proceedings of the
International Symposium on Software Security, Tokyo, Japan, November 2002.

[13] [Buragohain03] C. Buragohain, D. Agrawal, and S. Suri. A Game Theoretic Framework for
Incentives in P2P Systems. In Proceedings of the 3rd International Conference on Peer-to-Peer
Computing (P2P '03), 2003.

[14] [Chun04] B.-G. Chun, R. Fonseca, I. Stoica, and J. Kubiatowicz. Characterizing selfishly
constructed overlay networks. In Proceedings of IEEE INFOCOM’04, Hong Kong, March 2004.

[15] [Feldman04] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for peer-
to-peer networks. In Proceedings of the Fifth ACM Conference on Electronic Commerce (EC’04),
New York, NY, June 2004, pp. 102–111.

[16] [Kamvar03] D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. Incentives for Combatting
Freeriding on P2P Networks. In Proceedings of EURO-PAR, 2003. International Conference on
Parallel and Distributed Computing, August 2003.

[17] [Reiter96] M. K. Reiter, M. K. Franklin, J. B. Lacy, and R. N. Wright. The Omega key
management service. Journal of Computer Security 4(4):267–287, IOS Press, 1996.

[18] [Zhou??] L. Zhou, F. B. Schneider, R. Van Renesse. COCA: A Secure Distributed On-line
Certification Authority. ACM Transactions on Computer Systems, 20(4):329-368.

[19] [Asokan00] N. Asokan, P. Ginzboorg. Key Agreement in Ad Hoc Networks. Computer
Communications, 23:1627-1637, 2000.

[20] [Hubaux03] J.-P. Hubaux, L. Buttyan, S. Capkun. Self-Organized Public-Key Management for
Mobile Ad Hoc Networks. IEEE Transaction on Mobile Computing, 2(1): 52-[26]64,
January/March 2003.

[21] [Luo05] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, URSA: Ubiquitous and Robust Access
Control for Mobile Ad Hoc Networks, ACM/IEEE Transactions on Networking, 2005 (to appear).

 Security Architecture 5.34

[22] [Wang03] W. Wang, Y. Zhu, and B. Li. Self-Managed Heterogeneous Certification in Mobile Ad
Hoc Networks. In Proceedings of IEEE Vehicular Technology Conference (VTC 2003), October
2003.

[23] [Yi03] S. Yi and R. Kravets, MOCA: Mobile Certificate Authority for Wireless Ad Hoc Networks,
In Proceedings of 2nd Annual PKI Research Workshop Program (PKI 03), Gaithersburg, April
2003.

[24] [Yi02] S. Yi and R. Kravets. Practical PKI for Ad Hoc Wireless Networks. University of Illinois,
Computer Science, Report. No. UIUCDCS-R-2002-2273, May 2002.

[25] [Zhou99] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network, 13(6):24-30, 1999.

[26] [Shamir79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613,
1979.

[27] [Andert02] D. Andert, R. Wakefield, and J. Weise. Trust Modeling for Security Architecture
Development. Sun Microsystems Sun BluePrint, December 2002.

[28] [RFC ???] M. J. Moyer, J.R.R., P. Rohatgi. Maintaining Balanced Key Trees for Secure Multicast,
Internet Engineering Task Force, 1999.

[29] [RFC ????] S. Kent, R.A. IP Authentication Header, Network Working Group, Internet
Engineering Task Force, 1998.

[30] [RFC ????] S. Kent, R.A. IP Encapsulating Security Payload (ESP), Network Working Group,
1998.

