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CHAPTER 3   
 

Overlay Protocol 
 

This document contains a descirption of the Hypercube (HC) and Delaunay Triangulation (DT) 
protocols. The description is from the documentation of Version 2 (2002).  

This document also describes an extension to the DT protocol to include Buddylist and Broadcast 
Rendezvous mechanisms.  

http://www.cs.virginia.edu/%7Emngroup/hypercast/documentation.html 

An update of this document is pending. 
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Overview 

HyperCast builds overlay networks that have a specified topology.  Currently, 
HyperCast can build two types of overlay network topologies, logical hypercubes and 
logical Delaunay triangulations. These protocols are described in more detail in 
[BEAM99] and [LIEBE01b]. 

The overlay protocol of an overlay socket in HyperCast is implemented by a component 
which is called overlay node. The overlay node component adds and maintains the 
membership of an overlay socket in an overlay network.  

Overlay Socket

Messages of
the Overlay
Protocol

Overlay Node

Overlay Node
Interface

Adapter Interface

Node Adapter

 
Figure 3.1. The overlay node component of an overlay socket. 

Across different overlay protocols can vary widely, the overlay nodes for all overlay 
protocols share the following properties. 

• An overlay node exchanges messages with other overlay nodes in the same 
overlay network. The overlay node runs a finite state machine which performs 
actions when timers expire and when messages are received.  
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• The overlay node communiates with a network adapter which transforms 
protocol messages int datagrams. The node adapter also maintains the timers of 
the overlay protocol. 

• Overlay nodes distinguish between logical and physcial addresses. A logical 
address identifies a member in the overlay network, and is derived from some 
logical address space. Examples of logical addresses are a binary string or 
coordinates.  A physical address is a transport layer endpoint in the network 
over which the overlay network is run. In HyperCast 2.0, the underlying 
network is an IP network. Therefore, physical addresses are a tuple (IP address, 
port number).  

• Each overlay node maintains a neighborhood table which contains a list of its 
neighbors in the overlay network. Each entry of a neighborhood table contains:  

� The logical address of the neighbor, 

� The  physical address of the neighbor, 

� The time elapsed since the node last received a message from the 
neighbor. 

Any protocol that builds an overlay network must provide mechanisms that enable nodes which 
are not members of the overlay to communicate with nodes in the overlay.  These mechanisms, 
referred to as rendezvous mechanisms, are applied when new nodes join an overlay, and when 
when the overlay network has been partitioned and  must be repaired. One can think of three 
rendezvous methods in an overlay network:  

1. Multicast: non-members have a broadcast mechanism that is available to them (e.g. IP 
Multicast).  They use this to announce themselves to members of the overlay network. 

2. Buddy List: non-members maintain a list of members that are likely to be in the  overlay 
network (a “buddy list”).  They use this list to contact members. 

3. Server: non-members contact a well-known server that establishes  communication 
between members and non-members of an overlay network. 

In HyperCast 2.0, the hypercube overlay network performs a rendezvous with multicast 
messages, and the Delaunay triangulation performs a rendezvous with the help of a server.  

All overlay protocols that are used in HyperCast must be able to perform the following 
computation:  

Given the logical address of some overlay node R, each overlay node with 
logical address A must be able to compute the logical address of A’s parent and 
child nodes in an embedded tree which has R as the root. 

With this ability nodes can perform unicast and multicast forwarding functions without 
the need for a routing protocol. 

Overlay protocols in HyperCast are soft-state protocols.  In soft-state protocols, all 
remote state information is periodically refreshed.  If the remote state information is not 
refreshed, then it is invalidated. Timers are used to trigger the operations which 
recalculate and refresh the state information.  
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Hypercube (HC) Overlay Protocoli 

In the Hypercube (HC) overlay protocol, members of the overlay are organized as the 
nodes of a logical n-dimensional hypercube.  

An n-dimensional hypercube is a graph with 2n nodes.  Each node is labeled by a bit 
string kn…k1, where ki ∈ {0, 1}.  Nodes in a hypercube are connected by an edge if and 
only if their bit strings differ in exactly one position.  A hypercube of dimension n = 3 is 
shown in Figure 3.2. 

The HC protocol works with incomplete hypercubes.  In other words, the number of 
overlay  members does not need to be a power of  two.  

3.1.1 Theory 

Each node is identified by a label (e.g. "010"), which indicates the position of the node in 
the logical hypercube. In a hypercube, each node has only log(N) neighbors, where N is 
the total number of nodes.  Also, the longest path in the hypercube is log(N).   

110

010

000 001

011

111

100 101

 

Figure 3.2.  3-dimensional hypercube with node labels. 

It is relatively easy to embed trees in a hypercube topology. Recall that data transmission 
in the HyperCast overlays is done with trees that are embedded in the overlay network. 
A key idea that leads to the algorithm of building the embedded tree is to use a Gray 
code for ordering node labels of a hypercube. Another key idea is to add nodes to the 
hypercube in the order that is given by the Gray code. As an example, consider the labels 
of the 3-dimensional hypercube in Figure 3.2. If we want to add nodes to the hypercube, 
we need to have a rule for the order in which node labels are added. If we were to use 
the order of a binary encoding, then the nodes would be added in the following 
sequence: 000 → 001 → 010 → 011 → … → 111. However, if we use the order that is 
given by a Gray code,  then we will add node labels in the following order: 000 → 001 
→ 011 → 010 → … → 100. Table 3.1 shows the ordering of labels according to a binary 
code and according to a Gray code. Note that consecutive node labels using a Gray code 
differ in exactly one bit position. 

Table 3.1:  Comparison of a Binary code and a Gray code. 

Index                      i 
= 

0 1 2 3 4 5 6 7 

Binary code:   Bin(i) 000 001 010 011 100 101 110 111 

                                                   

i Section 3.2 summarizes material from [BEAM99] and [LIEBE98b]. 
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=  

Gray code:          
G(i)= 

000 001 011 010 110 111 101 100 

 

Using a Gray code, we can devise a simple algorithm which embeds a spanning tree in an 
incomplete hypercube. The algorithm, given in, implements a spanning tree in a 
distributed fashion. A node labeled G(i) calculates the label of its parent node in the tree 
with the root labeled G(r) by only using the labels G(i) and G(r) as input. The algorithm 
merely flips a single bit. The trees constructed by our algorithm have the following 
properties:  

• Property 1.  The path length between a node and a root is given by the Hamming 
distance of their labels.  

• Property 2. If N=2n, i.e. if the hypercube is complete, then the embedding results in a 
binomial tree. 

• Property 3. In an incomplete and compact hypercube, the trees obtained by the 
algorithm are completely contained.  

 
In Figure 3, We show the algorithm to calculate the parent of node I with respect to the 
embedded tree rooted at node R.. 

In Figure 4, we show a spanning tree that is generated by the algorithm for a root with 
label 111 in an incomplete hypercube with seven nodes. 

Figure 3.3. The Algorithm to build the embedded tree. G−1(.)  is the  inverse function of 
G() which assigns a number to a bit label, i.e. G−1(G(k)) = k. 

 

Input:  Label of the I-th node in the Gray encoding: G(i) := I = 
In…I2I1, and the label of the r-th node (≠ i) in the Gray encoding: 
G(r) := R = Rn…R2R1. 
Output:  Label of the parent node of node I in the embedded tree 
rooted at R. 
Procedure Parent(I, R) 
Begin 
          If (G−1(I) < G−1(R)) { 
                // Flip the least significant bit where I and R 
differ. 
                Parent := InIn-1…Ik+1(1 − Ik)Ik-1…I2I1  with k = 
mini(Ii ≠ Ri) 
          }  
          Else  { // (G−1(I) > G−1(R)) 
                // Flip the most significant bit where I and R 
differ. 
                Parent := InIn-1…Ik+1(1 − Ik)Ik-1…I2I1 with k = 
maxi(Ii ≠ Ri) 
          } 
End 
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(b) Resulting tree 

Figure 3.4. Embedded tree with node (111) as root. 

 

3.1.2 Protocol Overview 

Each overlay node in the hypercube has both a physical and a logical address. The 
physical address consists of the IP address of the host on which a node resides and the 
UDP port that is used by the node for HyperCast unicast messages. Each node has a 
unique physical address. The logical address of a node is a bit string label which uniquely 
indicates the position of the node in the hypercube. Logical addresses in the HyperCast 
protocol are represented as 32-bit integers, with one bit reserved to designate an invalid 
logical address. Therefore, the protocol allows for hypercubes of up to 231 
(approximately two billion) nodes. 

The task of the HC protocol is to keep the hypercube overlay network in a stable state.  
A stable state is one which is: 

• Consistent:  No two nodes share the same logical address. 

• Compact:  In a multicast group with N nodes, the nodes have bit string labels 
equal to G(0) through G(N − 1). 

• Connected:  Every node knows the physical address of each of its neighbors in 
the hypercube. 

Nodes joining and leaving the hypercube and network faults can cause a hypercube to 
violate one or more of the above conditions. This results in an unstable state.  The task 
of the HyperCast protocol is to continuously return the hypercube to a stable state in an 
efficient manner. 

The HC protocol that is implemented in HyperCast uses IP multicast when new nodes 
join the node. This is done in order to prevent partitions. A node that wishes to 
participate in the hypercube first joins an IP Multicast group, referred to as the control 
channel.  Every node can both send and receive messages on this channel. Obviously, the 
traffic on this channel should be kept minimal in order to comply with scalability 
requirements.  

3.1.3 Ancestors, HRoot 

Given any node, its successor in the Gray code ordering is defined to be its ancestor. In a 
stable hypercube, every node except the one with the largest logical address has one 
ancestor.  A node without an ancestor is a Hypercube Root (HRoot). In the HyperCast 
protocol, every node keeps track of the logical address that is currently the highest in the 
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hypercube according to the Gray code ordering.  The node that has this logical address is 
assumed to be the HRoot. The address of the highest known logical address is used by a 
node to determine which of its neighbors should be present in its neighborhood table. If a 
node determines that a neighbor should be present in its neighborhood table and that 
neighbor is not present, then the node is said to have an incomplete neighborhood. Each 
node keeps the following information about the node with the highest logical address: 
the logical address, the physical address, the time elapsed since it last received a message 
from this node, and the last sequence number that was received from this node. 

In an unstable hypercube, multiple nodes may consider themselves to be an HRoot. Also, 
different nodes in the hypercube may have different assumptions about which node is the 
HRoot. However, in a stable hypercube there is exactly one HRoot. 

3.1.4 Hypercube Timers and Periodic Operations 

Four time parameters are used in the Hypercube protocol.  These parameters and their 
uses are defined below. Their default values are also listed. 

theartbeat (default = 2s):  Nodes send messages to each of their neighbors in the 
neighborhood table every theartbeat seconds. 

ttimeout (default = 10s):  When the time elapsed since a node last received a message from 
a neighbor exceeds ttimeout seconds, the neighbor’s entry is said to be stale and the 
neighborhood table is said to be incomplete.  A missing neighbor is referred to as a tear 
in the hypercube.  The information about the HRoot also becomes stale after ttimeout. 

tmissing (default = 20s):  After the entry of one of its neighbors becomes stale, a node 
begins multicasting on the control channel to contact the missing neighbor.  If the 
missing neighbor fails to respond for another tmissing seconds, then the node removes 
the entry from the neighborhood table and proceeds under the assumption that the 
neighbor has failed. 

tjoining (default = 6s):  Nodes that are in the process of joining the hypercube send 
multicast messages to announce their presence to the entire group. A joining node that 
receives a multicast message from another joining node backs off from its attempt to join 
the hypercube for a period of time tjoining, before retrying to join. This prevents a large 
number of joining nodes from saturating the control channel with multicast messages. 

3.1.5 Message Types 

There are four message types that are used by the Hypercube protocol. All of these 
messages are sent as UDP datagrams. A node transmits a message by either unicasting to 
one or all of its neighbors or by multicasting on the control channel. We do not assume 
that the transmission of these messages is reliable. 

Beacon Message:  Beacon messages are multicast messages on the control channel.  A 
beacon contains the logical/physical address pair of the sender, as well as the logical 
address of the currently known HRoot.  A node transmits a beacon message only if it 
considers itself to be the HRoot, determines that it has an incomplete neighborhood, or 
is in the process of joining the hypercube.   

Based on the construction of the hypercube, there is always at least one Hroot. 
Therefore, at least one node is able to send out beacons on the multicast channel. In a 
stable hypercube, there is only one Hroot. Thus, only one node sends out beacons to the 
multicast channel. Every node uses the beacon messages that are sent by HRoot or 
HRoots to form an estimate of the largest logical address in the hypercube. This 
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information is sufficient for the node to determine whether it has a complete 
neighborhood.  

Each beacon message contains a sequence number, SeqNo.  This sequence number is 
used to resolve conflicts if beacons are received from multiple nodes.  The HRoot's 
sequence number begins at zero. Whenever the HRoot sends a beacon message, the 
SeqNo is incremented by one.  Whenever a new HRoot is chosen, the sequence number 
is also incremented (SeqNo of new HRoot = SeqNo of current HRoot + 1).  Since each 
node keeps track of the current HRoot, the sequence number tracks the timeliness of the 
information on the HRoot. When information at a node is inconsistent, the information 
that is tagged with the lower sequence number is ignored. 

The last group of nodes which send beacon messages are joining nodes which 
periodically send beacons to advertise their presence to the group. 

Ping Message: Every node periodically sends a ping message to all of its neighbors that 
are listed in its neighborhood table. A ping informs the receiver that the node is still 
present in the hypercube.  A ping is a short unicast message.  It contains the logical and 
physical addresses of both the sender and the receiver of the message.  It also contains 
the logical address and sequence number of the currently known HRoot.  If a node has 
not received a ping from a neighbor for an extended period of time (ttimeout), then the  
node considers its neighborhood incomplete and begins sending beacons as described 
above. If it still has not received a ping from its neighbor after another period of time 
(tmissing), then it assumes that its neighbor has failed and removes the neighbor from its 
neighborhood list. Ping messages are also used as the only mechanism to assign a new 
logical address to the receiver of a ping message. 

Leave Message: When a node wishes to leave the hypercube, it sends a leave message to 
its neighbors. When its neighbors receive this message, they will remove the node from 
their neighborhood tables. Since a leave message is not reliable, a node’s neighbors may 
not always receive a leave messages when they should. In this case, the node’s neighbors 
will notice its absence when it fails to respond to ping messages. Thus neighbors of a 
node that has left will eventually realize that it has left the neighborhood, even when they 
do not receive leave messages from it. 

Kill Message: A kill message is used to eliminate a node from the hypercube. More 
specifically, a kill message is used to eliminate nodes with duplicate logical addresses. A 
node which receives a kill message immediately sends a leave message to all its 
neighbors and tries to rejoin the hypercube as a new node. 

3.1.6 Protocol Mechanisms  

The HyperCast protocol implements two mechanisms for maintaining a stable 
hypercube. Recall from Subsection 4.1 that a stable hypercube satisfies the criteria of 
being consistent, compact, and connected. 

Duplicate Elimination (Duel): The Duplicate Elimination (Duel) mechanism enforces 
consistency by ensuring that duplicate logical addresses are removed from the 
hypercube. If a node detects that another node has the same logical address, it compares 
its own physical address with the physical address of the conflicting node. If the node’s 
physical address is numerically greater than the conflicting node’s physical address, the 
node with the greater physical address issues a kill message to the other node.  
Otherwise, it sends leave messages to all of its neighbors and rejoins the hypercube. 
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Address Minimization (Admin): The Address Minimization (Admin) mechanism is 
used to maintain compactness of the hypercube. On a conceptual level, the Admin 
mechanism has nodes attempt to assume lower logical addresses whenever opportunities 
to do so arise. To see how Admin reconstitutes compactness, recall that a hypercube 
which violates compactness must have a tear in the hypercube fabric (i.e. some node has 
an incomplete neighborhood table). The Admin mechanism enforces the rule that a node 
with a logical address that is higher than the logical address of the tear lowers its logical 
addresses to repair the tear.  

The Admin mechanism at a node consists of an active and a passive part. The active part 
is executed when a node receives a beacon message from the HRoot and realizes that it 
is missing a neighbor which has a lower logical address than the HRoot.  In such a 
situation, the node sends a ping with the missing lower logical address to the HRoot. 
The passive part is activated when the HRoot receives a ping message with a destination 
logical address that is lower than its current logical address. The HRoot sets its logical 
address to the value given in the ping in order to fix the hypercube.   

The Admin mechanism also governs the process of nodes joining the hypercube. Initially, 
the logical address of a joining node is marked as invalid. The invalid address is larger 
than any valid address in the hypercube. Since a joining node sends beacons to announce 
its presence to the group, other nodes are able to check to see if they can find a lower 
(valid) logical address for the new node in the hypercube. If there is a node with an 
incomplete neighborhood, then this node will send a ping to the new node with the 
address of the vacant position. The new node assumes the (lower) address given in the 
ping message and occupies the vacant address. If there is no tear in the hypercube, then 
the new node is placed as a neighbor of the HRoot. More precisely, the HRoot sends a 
ping to the new node containing the logical address which corresponds to the successor 
of the HRoot in the Gray code ordering. Therefore, a node which joins a stable 
hypercube becomes the new HRoot. 

The Duel and Admin mechanisms enforce, respectively, the consistency and compactness 
of a hypercube. The last criterion for a stable hypercube, connectedness, is maintained by 
the following process. Whenever a node A receives a message from a node B with a 
logical address that designates it as a neighbor in the hypercube, then the logical/physical 
address pair of node B is added into node A’s neighborhood table. If a node’s neighbor 
does not send pings for an extended period of time, then the node will assumes that the 
neighbor has dropped out of the hypercube. As a result, it will remove that neighbor’s 
entry in its neighborhood table. The Admin mechanism will then be used to repair the 
tear in the neighborhood table. 

3.1.7 States and State Transitions 

In the HyperCast protocol, each node in the hypercube can be in one of eleven different 
states.  Based on events that occur in the hypercube and HyperCast control messages 
that they receive, nodes transits between states. In Figure 3.5 we show the state transition 
diagram of the HyperCast protocol. The states are indicated as circles. State transitions 
are indicated as arcs, which are each labeled with a condition that triggers it. The 
possible states of the hypercube nodes are described in Table 2. With the state 
definitions, we can give a precise definition of a stable hypercube. A hypercube with N 
nodes is stable if all of its nodes have unique logical addresses ranging from G(0) to 
G(N-1) (where G(.) indicates the Gray code discussed in Section 3) and all of its nodes 
are in the Stable state, except for the node with the logical address G(N-1) which is in 
state HRoot/Stable. 
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Figure 3.5. Node state transition diagram. 

 

Table 3.2:  Node state definitions. 
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Outside: Not yet participating in the group. 

Joining: Wishes to join the hypercube, but does not yet 
have any information about the rest of the 
hypercube.  Its logical address is marked as 
invalid. 

JoiningWait: A Joining node that has received a beacon 
from another Joining node within the last 
tjoining. 

StartHypercube: Has determined that it is the only node in the 
multicast group since it has not received any 
control messages for a period of time ttimeout. 
Starts its own stable hypercube of size one. 

Stable: Knows all of its neighbors’ physical addresses. 

Incomplete: Either does not know one or more of its 
neighbors’ physical addresses, or assumes that 
a neighbor has left the hypercube, because it 
has not received ping replies from that 
neighbor for ttimeout. 

Repair: Has been Incomplete for a period of time 
tmissing and begins to take actions to attempt to 
repair its neighborhood. 

HRoot/Stable: Stable node which also believes that it has the 
highest logical address in the hypercube. 

HRoot/ 
Incomplete: 

Incomplete node which believes that it has the 
highest logical address in the entire hypercube. 

HRoot/Repair: Repair node which believes that it has the 
highest logical address in the hypercube. 

Leaving: Node that wishes to leave the hypercube. 

 

3.1.8 Protocol Event Tables 

The protocol actions that are taken by the nodes in response to events are presented in 
table form below.  The “→” symbol means that the node will switch to the indicated 
state. 

Table 3.3:  Event table for Outside state. 

Outside Node is not part of the hypercube 

Event: Action: 

Application wants to join HyperCast group → Joining 

 

Table 3.4:  Event table for Joining state. 



2/7/2008 Overlay Protocol 3.11 

 

University of Virginia   HyperCast 2.0 

Joining 
Wants to join the hypercube 

Logical address is set as invalid 

Event: Action: 

Periodically, every theartbeat Send beacon message to control channel 

No ping received for period ttimeout → StartHypercube 

Beacon received from non-Joining node Update known HRoot information 

Beacon received from Joining node → JoiningWait 

Ping received Set own logical address to ping’s 
destination logical address 

After ping received, own logical address 
equals known HRoot’s logical address 

→ HRoot/Incomplete 

After ping received, own logical address 
does not equal known HRoot’s logical 
address 

→ Incomplete 

 

Table 3.5:  Event table for JoiningWait state. 

JoiningWait 

Wants to join the hypercube 

Has received a beacon from a Joining node 

Logical address is set as invalid 

Event: Action: 

No ping received for period ttimeout → StartHypercube 

Beacon received from non-Joining node Update known HRoot information 

No beacon received from Joining node for 
period tjoining 

→ Joining 

Ping received Set own logical address to ping’s 
destination logical address 

After ping received, own logical address 
equals known HRoot’s logical address 

→ HRoot/Incomplete 

After ping received, own logical address 
does not equal known HRoot’s logical 
address 

→ Incomplete 

 

Table 3.6:  Event table for StartHypercube state. 
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StartHypercube Start new hypercube 

Event: Action: 

 Set own logical address to G(0) 

→ HRoot 

Table 3.7:  Common event table for several states. 

Stable 

Incomplete 

Repair 

HRoot/Stable 

HRoot/Incomplete 

HRoot/Repair 

 

Event: Action: 

Periodically, every theartbeat Send ping message to all valid neighbors 

Application triggers leave Send leave message to all valid neighbors 

→ Leaving 

Receive message with source logical 
address equal to own logical address and 
source physical address less than own 

Send kill to message source 

Receive message with source logical 
address equal to own logical address and 
source physical address is greater than own 

Send leave to all valid neighbors 

→ Leaving 

Kill received Verify that source’s physical address is 
greater than own physical address 

Send leave to all valid neighbors 

→ Leaving 

Ping received Update neighborhood entry for sender’s 
logical address 

Update known HRoot information 

Beacon received Update known HRoot information 

Leave received Remove neighborhood entry for sender’s 
logical address 

Table 3.8:  Event table for Stable state. 
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Stable  

Event: Action: 

Neighborhood becomes incomplete due to 
lack of pings from a neighbor for period 
ttimeout 

→ Incomplete 

Own logical address is greater than known 
HRoot logical address 

→ HRoot/Stable 

 

Table 3.9:  Event table for Incomplete state. 

Incomplete  

Event: Action: 

Periodically, every theartbeat Send beacon message to control channel 

Neighborhood becomes complete → Stable 

Own logical address is greater than known 
HRoot logical address 

→ HRoot/Incomplete 

Neighborhood partially empty for timeout 
interval tmissing 

→ Repair 

Neighborhood completely empty → StartHypercube 

 

Table 3.10:  Event table for Repair state. 

Repair  

Event: Action: 

Periodically, every theartbeat Send beacon message to control channel 

Beacon received from HRoot or Joining 
node 

Send ping message to beacon source 
containing new logical address to fill tear in 
neighborhood 

Neighborhood becomes complete → Stable 

Own logical address is greater than known 
HRoot logical address 

→ HRoot/Repair 

Neighborhood completely empty → StartHypercube 

 

Table 3.11:  Event table for HRoot/Stable state. 
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HRoot/Stable  

Event: Action: 

Periodically, every theartbeat Send beacon message to control channel 

Increment sequence number 

Beacon received from Joining node Register Joining node as next higher 
neighbor 

Increment sequence number 

Update known HRoot information to be 
new HRoot 

Neighborhood becomes unstable due to 
lack of pings from a neighbor for period 
ttimeout 

→ HRoot/Incomplete 

Own logical address is less than known 
HRoot logical address 

→ Stable 

 

 

 

 

 

Table 3.12:  Event table for HRoot/Incomplete state. 

HRoot/Incomplete  

Event: Action: 

Periodically, every theartbeat Send beacon message to control channel 

Increment sequence number 

Beacon received from Joining node Register Joining node as next higher 
neighbor 

Increment sequence number 

Update known HRoot information to be 
new HRoot 

Neighborhood becomes complete → HRoot/Stable 

Own logical address is less than known 
Hroot logical address 

→ Incomplete 

Neighborhood partially empty for timeout 
interval tmissing 

→ HRoot/Repair 

Neighborhood completely empty → StartHypercube 

 

Table 3.13:  Event table for HRoot/Repair state. 
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HRoot/Repair  

Event: Action: 

Periodically, every theartbeat Send beacon message to control channel 

Increment sequence number 

Beacon received from Joining node Send ping message to beacon source 
containing new logical address to fill tear in 
neighborhood 

Neighborhood becomes complete → HRoot/Stable 

Own logical address is less than known 
Hroot logical address 

→ Repair 

Neighborhood completely empty → StartHypercube 

 

Table 3.14:  Event table for Leaving state. 

Leaving 

Waits for period ttimeout to ensure that 
neighbors receive leave messages in 
response to their pings 

Proceeds to Outside if leave was initiated 
by application, otherwise proceeds to 
Joining 

Event: Action: 

Ping received Send leave to message source 

Leave was triggered by application and 
ttimeout time has elapsed  

→ Outside 

Leave was not triggered by application and 
ttimeout time has elapsed 

→ Joining 

 
 

3.1.9 Message Packet Format 
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Basic messages are sent using the following packet format, which is common to all 
messages: 

Message Type1 byte

Source IP Address4 bytes

Source Port4 bytes

Source Logical Address4 bytes

Dest Port4 bytes

Dest Logical Address4 bytes

Dest IP Address4 bytes

HRoot Logical Address4 bytes

HRoot Sequence Num4 bytes

Data Length4 bytes

Data- bytes  

Figure 3.6.  Packet format. 

 

The Message Type field is defined as follows: 

Table 3.15:  Message types. 

Message 
Type: 

Ping Beacon Leave Kill 

Field Value: 0 1 2 3 

 
The IP Address fields are filled in the network address’ most significant byte to least 
significant byte order.  The Port, Logical Address, Sequence Number, and Data Length 
fields are also filled in order from the most significant to the least significant byte. 

Data is a variable-length field, with its length specified by the Data Length field of the 
packet.  The Data field is present for future expansion, and it is not currently used in the 
protocol. 

 

3.1.10 Example 

We next illustrate the operations of the protocol in a simple example. In this example, we 
use a small number of nodes and assume that there are no packet losses. 

Figure 3.7 shows a hypercube with five nodes, which are represented as circles. We use 
arrows to represent unicast messages. Circles around a node indicate a multicast 
message. In Figure 3.7-a, we show a stable hypercube. Here, the HRoot, node 110, 
multicasts beacons periodically. The beacon is received by all nodes and keeps them 
informed of the logical address of the HRoot. Therefore, the nodes know which of their 
neighbors should be present in their neighborhood tables. Every node periodically sends 
ping messages to its neighbors in the neighborhood table (Figure 3.7-b). 
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Figure 3.7.  Stable hypercube. 
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Figure 3.8.  Joining node. 

In Figure 3.8-a, we show a node in the Joining state. The node is labeled “New” and 
wants to join the hypercube. The node periodically sends beacon messages in order to 
make its presence known to the group. The HRoot places the Joining node as its 
neighbor in the next successive position in the hypercube, according to the Gray code 
ordering. Then, it pings the new node with the new logical address (111) (Figure 3.8-b).  
The new node takes on the new logical address and replies with a ping back to the 
original HRoot (Figure 3.8-c). The new node determines from the ping packet that it is 
the HRoot, since its own logical address is the highest known logical address.  It begins 
sending beacons as an HRoot (Figure 3.8-d). If node 011 receives the beacon from the 
new HRoot, then it realizes that 111 should be its neighbor. Thus, node 011 sends a ping 
message to 111 (Figure 3.8-e).  Once node 111 receives the ping message, it responds 
with a ping itself (Figure 3.8-f).  At this time, all of the nodes in the hypercube have 
complete neighborhood tables and know all their neighbors, so the hypercube is stable. 
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3.1.11 Repairing a Tear 

The process of repairing defects in the hypercube control topology is shown here. 
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(g)  (h) 

Figure 3.9. Repairing a tear. 

 
It is possible for a node to fail unexpectedly (Figure 3.9-a).  Nodes that have failed are 
detected when their neighbors do not receive ping messages from them for a period of 
time ttimeout (Figure 3.9-b).  Each of the failed node’s neighbors then periodically sends 
beacons to indicate that they have detected a missing neighbor (Figure 3.9-c).  Note that 
if the failed node returns at this time, the beacons from its neighbors will be used to 
reestablish the logical connections in its neighborhood table.  After sending beacons for 
a period of time tmissing without receiving a reply, each neighbor assumes that the failed 
node will not return and a replacement is needed.  The Admin mechanism then begins as 
one or more neighbors send a ping to the HRoot. This is done in order to lower the 
HRoot’s logical address and fill the tear (Figure 3.9-d). 

Upon receiving the ping, the HRoot sends leave messages to its neighbors to notify them 
that the HRoot will be leaving their neighborhoods (Figure 3.9-e).  The HRoot then 
assumes the new logical address that was given to it by the failed node’s neighbor.  It 
replies to the failed node’s neighbor with a ping of its own (Figure 3.9-f).  This 
completes the logical connection between the two nodes, since both nodes have entries 
for each other in their respective neighborhood tables and know each other’s physical 
addresses.  The relocated HRoot then beacons, since it does not yet know all of its 
neighbors (Figure 3.9-g). The neighboring nodes receive each other’s beacons and 
respond by sending pings (Figure 3.9-h).  This completes the repair procedure and the 
hypercube returns to a stable state (Figure 3.9-i). 

3.1.12 Evaluation and Discussion 

We used the Spin protocol verification tool [HOLZ97] to aid in the development of the 
HyperCast Protocol.  Spin checks the logical consistency of a protocol specification by 
searching for deadlocks, non-progress cycles, and any kind of violation of user-specified 
assertions. To verify the HyperCast design in Spin, the entire HyperCast protocol 
specification, as well as a system for simulating multiple hypercube nodes was encoded 
using the Process Meta Language (PROMELA).  In addition to checking for deadlocks 
and non-progress cycles, Spin was used to ensure that every execution path resulted in a 
stable hypercube. 

Due to the unavoidable state space explosion when using a tool such as Spin, we were 
only able to analyze hypercubes with at most six nodes. While verification cannot be 
used to prove results for large hypercube sizes, we assert that for the purposes of 
verification there is little qualitative difference between a hypercube of six nodes and a 
hypercube of several thousand nodes.  It is unlikely that non-progress cycles and 
deadlocks will exist in large hypercubes that do not have analogous fault modes in a six 
node hypercube. However, we wish to emphasize that our verification with Spin is not 
equivalent to a complete formal verification of the protocol. 

The HyperCast protocol has been run on a Linux Cluster with up to 10,000 nodes 
[BEAM99][LORIN01]. Overall, the hypercube takes a long time to stabilize if the 
number of nodes is large. Since the HC protocol always enforces the rule that the lowest 
positions of the hypercube (according to the Gray code ordering) are occupied, the 
addition of nodes is serialized. This slows down the process of adding many nodes.  
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The mapping of the overlay network to an underlying network has been evaluated in 
[LIEBE01a].  

Delaunay Triangulationsii 

A Delaunay triangulation is special type of triangulation: for each circumscribing circle 
of a triangle formed by three nodes, no other node of the graph is in the interior of the 
circle. Each node in a Delaunay triangulation has (x,y) coordinates which depict a point 
in the plane. 

An advantage of the Delaunay triangulation is that it can be constructed in a distributed 
fashion (see [LIEBE01a]). Therefore, Delaunay triangulations can be built very quickly.  
In a triangulation, each node has an average of six neighbors. however, in the worst-case 
,  a node can has N-1 neighbors where N is the total number of nodes. 

If the (x,y) coordinates of a node in the Delaunay triangulation reflect its geographical 
location, then nodes in the overlay network are likely to be neighbors if their 
geographical locations are close. However, a Delaunay triangulation is not aware of the 
layer-3 network infrastructure.   

3.1.13 Delaunay Triangulation as an Overlay Network Topology 

A Delaunay triangulation for a set of vertices A is a triangulation graph with the defining 
property that  for each circumscribing circle of a triangle formed by three vertices in A, 
no vertex of A is in the interior of the circle.   In Figure 3.10, we show a Delaunay 
triangulation and the circumscribing circles of some of its triangles.  Delaunay 
triangulations have been studied extensively in computational geometry and have been 
applied in many areas of science and engineering, including communication networks.  

 

Figure 3.10. A Delaunay Triangulation. 

3.1.14 Delaunay Triangulation Overlay Network 

 
In order to establish a Delaunay triangulation overlay, each application (node), is 
associated with a vertex in the plane with given (x,y) coordinates.  The coordinates are 
assigned via some external mechanisms (e.g. GPS or  user input) and can be selected to 
reflect the geographical locations of nodes.  Two nodes have a logical link in the overlay, 
                                                   

ii Section 3.2 summarizes material from [LIEBE01b]. 
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i.e. are neighbors, if their corresponding vertices are connected by an edge in the 
Delaunay triangulation. The Delaunay triangulation has several properties that make it 
attractive as an overlay topology for application-layer multicast. First, it normally has 
different, non-overlapping routes between any pair of vertices. The existence of such 
different paths can be exploited by an application-layer overlay when nodes fail or are 
not responsive. Second, the number of edges at a vertex in a Delaunay triangulation is 
generally small. Specifically, since each triangulation of n vertices has at most 3n-3 
edges,  the average number of edges at each vertex is less than six.  Despite the worst-
case in which the number of edges at a vertex is n-1, the maximum number of edges is 
usually small. Third, once the topology is established, packet forwarding information is 
encoded in the coordinates of a node. Thus, there is no need for a routing protocol. 
Finally, the Delaunay triangulation can be established and maintained in a distributed 
fashion. We elaborate on the last two properties in the next subsections.  
 
 

R A

B

C

15°

30°

 

Figure 3.11.  Compass Routing. Node A has two neighbors, B and C. A computes  B as 
the parent in the tree with root R, since the angle ∠RAB = 15º is smaller than the angle 

∠RAC=30º. 
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Figure 3.12.  Compass Routing. Node A determines that it is the parent for node C, 
since the angle ∠RCA is smaller than angles ∠RCD and ∠RCB. Likewise,  B and D 

determine that they are not the parents of node C,  since ∠RCA < ∠RCB and  ∠RCA < 
∠RCD. 

3.1.15 Compass Routing 

Multicast and unicast forwarding in the Delaunay triangulation is done along the edges of 
a spanning tree that is embedded in the Delaunay triangulation overlay. The tree that has 
the sender as its root. In the Delaunay triangulation, each node can locally determine its 
child nodes with respect to a given tree by using its own coordinates, the coordinates of 
its neighbors, and the coordinates of the sender.  
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Local forwarding decisions at nodes are made by using compass routing [KRANA99]. 
The basic building block of compass routing is that a node A, for a root node R, 
computes a node B as its  parent in the tree, if B is the neighbor with the smallest angle 
to R. This is illustrated in Figure 3.11.  Compass routing is also used for determining a 
multicast routing tree, where nodes calculate their child nodes in the multicast routing 
tree in a distributed fashion. Specifically, a node A determines that one of its neighbors 
C is a child node with respect to a tree with root R.  In order to determine this, A uses 
the following considerations. Since the overlay topology is a triangulation,  the edge AC 
is a border of two triangles, say ∇ABC and ∇ACD (see Figure 3.12).  A determines that 
C is a child node with respect to R,  if selecting A leads  to a smaller angle from C to R, 
than selecting B and D.  If each node performs the above steps for determining child 
nodes,  then the nodes compute a spanning tree with root node R.  

a

b

c

d
 

Figure 3.13. Locally equiangular property.  The property holds for triangles ∇abc and 
∇abd if the minimum internal angle is at least as large as the minimum internal angle of 

triangles ∇acd and ∇cdb.   

F

N
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Figure 3.14. Locally equiangular property for a node N and its neighbors  in the graph. 
Node N can enforce the equiangular property for all quadrilaterals that are formed by N 

and its neighbors A, B, C, D, E,  and F. Here, N detects that the locally equiangular 

property  is violated for triangles ∇NBC and ∇NCD.  Thus, the edge NC should be 

replaced by edge DB . 
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3.1.16 Building Delaunay Triangulations with Local Properties 

Delaunay triangulations can be defined in terms of a locally enforceable property, which  
is illustrated in Figure 3.13. A triangulation is said to be locally equiangular if, for every 
quadrilateral that is formed by triangles ∇acb and ∇abd (which share a common edge, in 

this case it is ab) the minimum internal angle of triangles ∇acb and ∇abd is at least as 
large as the minimum internal angle of the triangles ∇acd and ∇cbd. In [SIBS77], it was 
shown that a locally equiangular triangulation is a Delaunay triangulation.  
 
In a graph that is a triangulation, each node N can enforce the locally equiangular 
property for all quadrilaterals that are formed by N and its neighbors. In Figure 3.14,  
node N can detect that the locally equiangular property is violated for triangles ∇NBC 

and ∇NCD.  It can also detect that the edge NC  should be removed and replaced by an 

edge DB . Thus, N can remove node C from its list of neighbors. 
 
The protocol described in the next section builds and maintains a Delaunay triangulation 
overlay  by enforcing the locally equiangular property for each node and its neighbors.  
 

3.1.17 Overview of the  DT Protocol 

We next describe the network protocol which establishes and maintains a set of 
applications in a logical Delaunay triangulation. Essentially, the network protocol 
implements a distributed incremental algorithm for building a Delaunay triangulation.     

In the following, we will refer to the protocol entities that execute the DT protocol as 
nodes.   Each node has a logical address and a physical address. The logical address of a 
node is represented by (x,y) coordinates in a plane, which identify the position of a 
vertex in a Delaunay triangulation. We set the x and y coordinates to lengths of 32 bits 
each. The logical address of a node is a configuration parameter. It can be either 
assigned to a node or derived from the geographical location of the IP address of a node.  
The physical address of a node is a globally unique identifier on the Internet, consisting 
of an IP address and a UDP port number.  

We will denote the coordinates of a node A as coord(A)=(xA, yA). We define an ordering 
of nodes where coord(A) < coord(B), if yA < yA, or yA = yB and xA < xB.  

 
3.1.18 Neighbors and Neighbor Test 

We say two nodes are neighbors if the edge connecting the two nodes appears in the 
Delaunay Triangulation graph. Each node maintains a neighborhood table which 
contains its neighbors in the Delaunay Triangulation overlay. 

The protocol operations at a node mainly consists of adding and removing neighbors in 
its neighborhood table. To add or remove another node to or from its neighborhood 
table, a node needs to know if that node is eligible to be its neighbor in the current 
topology. We next describe the neighbor test algorithm we developed for this purpose. 
This neighbor test is mainly based on the locally equiangular property described in the 
previous subsections. 
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(a) CW angle < 180                                   (b) CW angle >=180 

                                               Figure 3.15. CW and CCW neighbors 

Before describing this algorithm, we first give the definitions of the clockwise (CW) and 
counter-clockwise (CCW) neighbors of a given node, say node A, with respect to 
another node, say node B, since these two concepts are very important in the neighbor 
test algorithm. A neighbor of node A is said to be CW or CCW neighbor with respect to 
node B, if (1) it forms the smallest CW or CCW angle to node B  taking node A as the 
pivot and (2) the smallest CW or CCW angle is less than 180 degrees. The notions of 
CW and CCW neighbors are illustrated in Figure 15, in which we consider node M with 
respect to node A. 

In Figure 3.15(a), node B is the clockwise neighbor of M with respect to A. While in 
Figure 3.15(b), since the CW angle is larger than 180 degrees, node B will not be 
regarded as the clockwise neighbor. In this case, we say node M has no CW neighbor 
with respect to node A. In both Figure 3.15(a) and (b), node D is the counter-clockwise 
neighbor of M with respect to node A. 

We now describe the neighbor test algorithm. In the neighbor test, a testing node 
determines if another (the tested) node should or should not be its neighbor. The testing 
node performs the neighbor test by looking at the coordinates of its current neighbors 
and the tested node. The test covers all possible locations of the tested node, relative to 
the testing node and the neighbors of the testing node. 

In the following description, M denotes the testing node and A denotes the tested node. 
Essentially, the neighbor test verifies the locally equiangular property for convex 
quadrilaterals from Subsection 2.3. That is, if M  has CW and CCW neighbors with 
respect to A, and the quadrilateral formed by M, A, and these two neighbors is convex, 
A passes the neighbor test at M, if the edge MA maximizes the minimum internal angle. 
Otherwise, A does not pass the neighbor test at M. 

However, there are several cases to consider where the above test can not be made. In 
these cases, A passes the neighbor test at M, if adding A  results in a triangulation. The 
following is a complete set of all feasible cases: 

1. If  A  has a neighbor D, such that M, A, and D lie on the same line, A passes the 
neighbor test, if A is closer to M than D. This is illustrated in                                          
Figure 3.16(a). 

2. If M does not have a CW or a CCW neighbor with respect to A, A passes the 
neighbor test. This is illustrated in                                                   Figure 3.16(b). Note 
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that this includes the case where M has neither a CW nor a CCW neighbor with respect 
to A. 

3. If the quadrilateral formed by M, the CW and CCW neighbors, and A degenerates to a 
triangle (see                                                   Figure 3.16(c)) or it is concave (see                       
Figure 3.16(d)), A passes the neighbor test at M. 

                                                  Figure 3.16. Neighbor test 

 

As described above, M rejects A only in two cases: (1) There is already a neighbor of the 
testing node on the same direction as the tested node, and that neighbor is closer to the 
testing node. (2) The locally equiangular property is violated in the convex quadrilateral 
found out. For all other cases, M will accept A.  

We can argue the correctness of the neighbor test as follows. The neighbor test is a 
consequence of the locally equiangular property from [SIBSON77], which states that a 
triangulation where all convex quadrilaterals are locally equiangular is a delaunay 
triangulation. The neighbor test enforces the property from [SIBSON 77] by enforcing 
two points: (1) Whenever a convex quadrilateral is formed by M, A, and the CW and 
CCW neighbors, then the locally equiangular property is enforced; (2) When no convex 
quadrilateral can be formed by M, A, and the CW and CCW neighbors, i.e., the locally 
equiangular property is not applicable, then node A passes the neighbor test at M if 
adding A as a neighbor forms a triangulation. 

Each node periodically sends neighbor messages to nodes in its neighborhood table. A 
neighbor messages contains the physical and logical addresses of the sending node, as 
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well as the logical and physical addresses of its CW and CCW neighbors with respect to 
the receiver. 

 

When node M receives a neighbor message which contains the addresses of A, CWM(A), 
and CWM(A), it updates its neighborhood table as follows:  

 

 Neighbor CW Neighbor CCW Neighbor 

Neighborhood table at  M: A E = CWM (A) F = CWM(A) 

 … … … 

 
 
Each node that sends a neighbor message to node M and passes M's neighbor test is 
added as a neighbor in M's neighborhood table. If a node in the neighborhood table fails 
the neighbor test, it is removed from neighborhood tables. If node A knows the logical 
and physical addresses of some node X that is not a neighbor of A and if X passes the 
neighbor test for A, then X becomes a candidate neighbor at A. Node A can learn about 
the existence of other nodes through messages that it receives, which are not neighbor 
messages, and from the CW or CCW neighbor columns in its neighborhood table (e.g. E 
and F in the above table). If a node has candidate neighbors, it will send them neighbor 
messages. If a candidate neighbor responds with a neighbor message, it is elevated to the 
status of a neighbor. If two nodes are neighbors of each other, then this represents a link 
in the triangulation.  

 
A neighbor can be removed from the neighborhood table for any one of the following 
reasons:  (1) the neighbor has sent a message indicating that it has left the overlay, (2) no 
message has been received from this neighbor for an extended period of time, or (3) the 
neighbor has failed a neighbor test.  

 

3.1.19 DT Servers and Leaders 

Any protocol that builds an overlay network must provide mechanisms that enable nodes 
which are not members of the overlay to communicate with nodes in the overlay. These 
mechanisms are applied when new nodes join an overlay and when the overlay network 
has been partitioned and must be repaired.  

In the DT protocol, a server facilitates the addition of members to the overlay and the 
partitioning of overlay networks. A reservation against using a well-known server is that 
the server may become a performance bottleneck. However, in our experiments a single 
server was sufficient to manage the workload from 10,000 new members joining the 
overlay in a short period of time.   Another potential problem with well-known servers is 
that they provide likely points of failure.   We emphasize that variations of the DT 
protocol which use broadcast announcements or buddy lists can be derived without 
changing the main characteristics of the DT protocol. Also, one can adapt the protocol to 
support multiple servers. 

The server component of the DT protocol is called the DT server. New nodes join the 
overlay network by sending requests to the DT server. The server responds with the 
logical and physical addresses of some node that is already in the overlay network. The 
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new node then sends a message to the node identified by the DT server. Thus, it has 
established communication with some node in the overlay network.  

The DT server is also engaged in repairing partitions of the overlay network. In the DT 
protocol, a node believes that it is a Leader if it does not have a neighbor with a greater 
logical address (using the ordering given at the beginning of this section). Each Leader 
periodically sends messages to the DT server. If an overlay has a partition, then more 
than one node will believe that they are Leaders. If the server receives messages from 
multiple Leaders, then it replies with the identity of the Leader with the greatest 
coordinates. If a node A believes it is a Leader and learns about a node B with coord(A) 
< coord(B), then B will pass A's neighbor test. Consequently, A will add node B as a 
candidate neighbor and will no longer believe that it is a Leader.  

Each DT server maintains a list (cache) of the logical and physical addresses of other 
nodes in the overlay. When the DT server sends the address of a node in the overlay to a 
node that is trying to join, the address is taken from the cache. We set the default size of 
the cache to 100 nodes. The DT server periodically queries nodes in the cache to verify 
that they are still members of the overlay. If a node does not respond to a query, then  it 
will eventually be removed from the cache. Also, a node is removed from the cache 
when the DT server has selected this node six times as the contact node for a node that is 
trying to join. If a node that is trying to join contacts the DT server and the cache is not 
full, then it will be added to the cache.    

3.1.20  Timers 

The DT protocol is a soft-state protocol. This means that all remote state information is 
periodically refreshed. If it is not refreshed, then it is invalidated. The operations that 
recalculate and refresh state are triggered by timers. A node of the DT protocol uses the 
following three timers.    

• Heartbeat Timer. The heartbeat timer determines when a node sends messages 
to its neighbors. The timer runs in two modes, SlowHeartbeat and FastHeartbeat. 
A node is in FastHeartbeat mode when it joins the overlay and when it has 
candidate neighbors. In all other cases, the node is in SlowHeartbeat mode. The 
operation of the heartbeat timer in two modes attempts to trade off the need for 
fast convergence of the overlay network when the topologies change and low 
bandwidth consumption in a steady state. In our experiments, we set the 
heartbeat timer to tSlowHeartbeat= 2 seconds in  SlowHeartbeat mode and to 
tFastHeartbeat= 0.25 seconds  in FastHeartbeat mode.  

• Neighbor Timers. Each node deletes neighborhood table entries that are not 
refreshed within tNeighbor seconds. Also, a DT server invalidates its cache entries 
and the information on the Leader(s) after tNeighbor seconds. We set the value of 
the Timeout timer to tNeighbor= 10 seconds.   

• Backoff Timer. When a node does not receive a reply from the DT server, it 
retransmits its request using an exponential back-off algorithm with a Backoff 
timer. Initially, the Backoff timer is set to tFastHeartbeat and doubled after each 
repeated transmission. It does this until it reaches tNeighbor= 10 seconds. If there 
are alternate DT servers, then the node switches to an alternate DT server when 
tNeighbor= 10 seconds. 

      The DT server uses the following two timers: 
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Cache Timer. If the DT server has not received a CachePong message from a node in 
its node cache, in response to CachePing message for tCache seconds, the node will be 
deleted from the cache. There is, however, one exception. The node cache entry for the 
node with the largest coordinates, the Leader, is not deleted, even if the the cache timer 
expires. There is one cache timer for each node in the node cache. The default timeout 
value of the timer is tCache=10 seconds. 

Leader Timer. If the DT server has not received a message from the Leader for tLeader 
seconds, another node from the node cache will be selected as Leader. The default 
timeout value of the leader timer is tLeader seconds. 

 

3.1.21 Message Types 

The DT protocol has eight types of messages, which are sent as UDP datagrams. All DT 
protocol messages are sent as unicast messages. We describe the contents of each 
message and the operations associated with the transmission and reception of each 
message.    

• HelloNeighbor and HelloNotNeighbor Messages. These messages are used to 
create and refresh neighborhood tables at nodes.   Each HelloNeighbor and 
HelloNotNeighbor message contains the logical and physical addresses of the sender 
and the clockwise and counter-clockwise neighbors of the sender with respect to the 
receiver.   Each time the Heartbeat timer goes off, a node sends HelloNeighbor 
messages to each of its neighbors and to one of its candidate neighbors, if there is a 
candidate neighbor.  If there are multiple candidate neighbors, then the message is 
sent to the candidate neighbor with the closest coordinates.    

HelloNotNeighbor messages are sent as immediate replies to HelloNeighbor 
messages from nodes that fail the neighbor test.  The HelloNotNeighbor message 
serves three purposes.  First, the information in the message is used by the receiver 
to update its neighborhood table.   Second, the clockwise and counter-clockwise 
neighbors in the HelloNotNeighbor message provide the receiver with additional 
information about neighbors in its vicinity.   Lastly, HelloNotNeighbor messages are 
used to resolve situations where two nodes have the same logical address.   

• Goodbye Message.  When a node leaves the overlay, it sends Goodbye messages to 
the DT server and to all of its neighbors. If a node receives a Goodbye message,  
then it removes the sender of the Goodbye message from its neighborhood table. The 
DT server removes the sender of a Goodbye message from its cache.   A node that 
has sent Goodbye messages can continue to send Goodbye messages in response to 
messages that it receives, until the process that runs the node is terminated by the 
application.  

• ServerRequest and ServerReply Messages.   ServerRequest and ServerReply 
messages are, respectively, queries to and replies from the DT server.   
ServerRequest messages are sent by nodes that are trying to join and by Leaders.   A 
Leader sends a ServerRequest message every tFastHeartbeat seconds.   ServerRequest 
messages are retransmitted if no ServerReply is received, using the exponential 
backoff outlined above.    

Each ServerRequest message contains the logical and  physical addresses of the 
sender.  The ServerReply message contains the logical and physical addresses of 
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some node in the overlay.  More specifically, a ServerReply sent to node X contains 
the logical and physical addresses of some node Y,  with X ≤ Y.  

Newly joining nodes use addresses in the ServerResponse message to find a node 
that is already in the overlay.  Leaders use the addresses in the ServerResponse 
message to determine if the overlay has a partition.  

• NewNode Message. The NewNode message contains the logical and physical 
addresses of a new node.   When a new node N obtains the address of some node in 
the overlay D from the DT server, then N will send a NewNode message to D.   If N 
passes the neighbor test at D, then N becomes a candidate  neighbor at D, and D 
responds to N with a HelloNeighbor message.   Otherwise, D passes the NewNode 
message to one its neighbors whose coordinates are closer to those of N. Thus the 
NewNode message is routed through the overlay toward the coordinates of the new 
node, until the NewNode message reaches a node where the new node passes a 
neighbor test. 

• CachePing and CachePong Messages. CachePing and CachePong messages are 
used to refresh the contents of the cache at the DT server.  Every tSlowHeartbeat seconds, 
the DT server sends a CachePing message to each node in the cache.  A node that 
receives a CachePing message immediately replies with a CachePong message.  

 
3.1.22  Shifting Coordinates 

Since the logical address of a node is a configuration parameter, it is possible for two 
nodes to have the same coordinates.  It is also possible for the coordinates of four nodes 
to lie in a circle (created by three nodes). In the former case, the Delaunay triangulation 
is not defined. In the latter case, the Delaunay triangulation overlay is not unique. Here, 
the DT protocol forces one of the nodes to change its coordinates by a small amount. 
This ensures that the Delaunay triangulation of the nodes is unique.  

Whenever a node receives a message from a node with the same coordinates, the 
receiver shifts its coordinates by a small amount.  The receiver also removes all 
neighbors that fail the neighbor test with the new coordinates. If a node A receives a 
message from a node B and a node in A's neighborhood table has the same coordinates 
as B, then A will send a HelloNotNeighbor message to B. Since the HelloNotNeighbor 
message contains A's neighbor with B's logical address, B sends the node with the 
duplicate logical address a HelloNeighbor message.  The receiver of this HelloNeighbor 
message notices that the message was sent by a node with the same coordinates and 
changes its logical address. 

If a node A receives a HelloNeighbor or HelloNotNeighbor message from a node N 
such that the sender N,  the receiver A, the CW and CCW neighbors of A with respect to 
N, CWN(A) and C CWN(A),  contained in the  message lie on a circle, then A will shift 
its coordinates before processing the message. 

Each time a node receives a HelloNeighbor or HelloNotNeighbor message from a 
neighbor, it checks whether or not the neighbor's logical address has changed. If the 
logical address has changed, then the node removes the neighbor's entry from its 
neighborhood table and then processes the message. In most cases, the node with the 
shifted coordinates will be added again as a neighbor. 

 
3.3.11 States and State Transitions of the DT Protocol 
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We next discuss the states and state transitions of the DT protocol. The discussion 
summarizes our earlier description of the protocol. The DT protocol has two different 
finite state machines, one for a node and one of the DT server. A detailed description of 
the state transitions will be presented in tabular form in this section. 

 

3.3.11.1 Node States 

The state of a node is derived from the neighborhood table and the presence of candidate 
neighbors. There are no variables that memorize the states of a nodes. A node is in one 
of five states: Stopped, Leader without Neighbor, Leader with Neighbor, Not Leader, 
and Leaving. Recall that a node is a Leader if the node that has no neighbor with greater 
coordinates than its own. By definition, a node with no neighbors is a Leader. The states 
Leader with Neighbor and Leade without Neighbor are distinguished, for the following 
reason. When a newly joining node starts up or when a node has no neighbors, it 
believes itself to be a Leader, and it generate NewNode Messages. A node with 
neighbors does not send NewNode Messages. The definitions of the three states are 
given in Table 16. 

 

    State Name                                 State Definition 

Stopped The node is not running 

Leaving The node is going to leave the group 

Leader without Neighbor The node that has no neighbors 

Leader With Neighbor The node that has neighbors, and no neighbor has greater 
coordinates than its own 

Not Leader The node has a neighbor with coordinates greater than its 
own 

 

                                              Table 3.16. Node State Definitions. 

 

For nodes in states Leader with Neighbor and Not Leader, we define three sub-states: 
Stable With Candidate Neighbor, Stable Without Candidate Neighbor, and Not Stable. 
We say a node X is stable when all nodes that appear in the CW and CCW neighbor 
columns of node X’s neighborhood table also appear in the neighbor column. We say a 
node M has a candidate neighbor, say node N, if (1) N appears in the CW or CCW 
column of M’s neighborhood table, or it is contained in a NewNode message received by 
M, and (2) N is not in the neighbor column of M’s neighborhood table, and (3) N passes 
the neighbor test at M. The definitions 

of the three sub-states are given in Table 3.17. 

 

Sub-state Name State Definition 

Stable Without Candidate The node is stable and has no candidate neighbors 
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Neighbor 

Stable With Candidate Neighbor The node is stable and has candidate neighbors 

Not Stable The node is not stable 

 

                                             Table 3.17.Node Sub-state Definitions.  

 

A new node starts in state Stopped. When it is in state With Neighbor Leader and Not 
Leader, the node also has a sub-state. The transition diagram of states and sub-states is 
shown in Figure 17. 
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                                     Figure 3.17. State and Sub-state transition diagrams 
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3.3.11.2 DT Server States 

The functions performed by the DT server are minimal. It is used as rendezvous point 
when new nodes join the overlay network and when the overlay Newark must be 
repaired after a partition. The DT server has only two states: Has Leader and Without 
Leader. Recall that the DT server maintains a cache of nodes. The node with the highest 
logical address is identified by the DT server as the Leader of the overlay network. If the 
node cache is empty, the DT server has no information about nodes in the overlay 
network. This state is referred to as Without Leader. If the node cache is not empty, the 
DT server can identify the Leader of the overlay network. This state is referred to as Has 
Leader. The definitions of the two states are given in Table 3.18. 

 

 

State Name State Definition 

Has Leader The node cache contains at least one node 

Without Leader The node cache is empty 

 

                                           Table 3.18: DT Server State Definitions. 

 

The state transition diagram of the DT server is shown in Figure 3.18. The DT Server 
starts in state Without Leader. When the first joining node sends a ServerRequest 
message to the DT server, this node is added to the node cache, and the DT server will 
enter state Has Leader. 

W ith o u t
L e a d e r

H a s  L e a d e r
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 N o d e  C a c h e
is  e m p ty  

             

Figure 3.18. DT Server State Transition Diagram. 

 
3.3.12 Examples 

In an overlay network that has been stable for an extended period of time, there are three 
types of events:  (1) all nodes send HelloNeighbor messages to their neighbors every 
tSlowHeartbeat seconds; (2) the Leader exchanges ServerRequest and ServerReply messages 
with the DT server every tFastHeartbeat seconds; (3) the server exchanges CachePing and 
CachePong messages with the nodes in its cache every tSlowHeartbeat seconds. 

In the following diagrams, we illustrate the dynamics of the DT protocol. We illustrate 
the case when a node joins and the case when a node leaves the Delaunay triangulation. 
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Figure 3.19. Joining node. Node N with coordinates coord(N)=(8,4) joins the overlay 
network.   Note that in (a) and (b), we have omitted some edges from the Delaunay 
triangulation for the sake of simplicity. Also, nodes X and Y are omitted in (c)-(f). 
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Figure 3.20. Node N with coordinates coord(N)=(8,4) leaves the overlay network. 

In Figure 3.19 illustrate the steps of the DT protocol when a new node N with 
coord(N)=(8,4) joins an overlay network. As shown in Figure 3.19(a), N first sends a 
ServerRequest to the DT server. Then, N receives a ServerReply which contains the 
logical and physical addresses of some node X with coord(X) > coord(N). Next, N sends 
a NewNode message to X (Figure 3.19(b)).   X performs a neighbor test for N, which 
fails. Therefore, X forwards the NewNode message to a neighbor Y, which is closer to N 
than X. Assuming that N fails the neighbor test at Y, Y forwards the NewNode message 
to D, which is closer to N than Y. At node D, N passes the neighbor test. Therefore, D 
makes N a candidate neighbor and sends a HelloNeighbor message to N. Thus, N has 
found its first neighbor.    

Since the HelloNeighbor from D in Figure 3.19(b) contains B = CWN(D) and C= CCWN 
(D), nodes B and C become candidate neighbors at N. At the next timeout of the 
Heartbeat timer, N sends a HelloNeighbor to its neighbor D and its closest candidate 
neighbor B (Figure 3.19(c)). As soon as these HelloNeighbor messages are received at B 
and D, these nodes will drop each other from their neighborhood tables. In other words, 
the link in the overlay between nodes B and D will be removed. 

In Figure 3.19(d), we assume that the Heartbeat timer expires at both B and D. Note that 
the sequence of events in this example is different if the Heartbeat timers expire in a 
different order. The nodes send HelloNeighbor messages to all their neighbors. When N 
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receives the message from B, it promotes B from a candidate neighbor to a neighbor. 
The messages from B to E and from D to C contain N as a CW or CCW neighbor. 
Hence, N becomes a candidate neighbor at both C and E.  

Assuming that the next Heartbeat timeout occurs at nodes C and E, these nodes send 
HelloNeighbor messages to all their neighbors and to their candidate neighbor N (Figure 
3.19 (e)).   When N receives the messages from C and E, it adds these nodes as 
neighbors. Now, N has a correct view of its neighborhood. 

At the next Heartbeat timeout at N, shown in Figure 3.19(f), N sends HelloNeighbor 
messages to nodes B, C, D, and E. When the respective HelloNeighbor messages arrive 
at C and E, these nodes promote node N from candidate neighbor to neighbor. This 
completes the procedure for adding node N to the overlay network. Subsequently, each 
node sends HelloNeighbor messages to its neighbors at each Heartbeat timeout.  

3.1.23 When a Node Leaves the Overlay 

In Figure 3.20 we illustrate the steps involved in node N leaving the overlay. When N 
decides to leave the overlay, it sends Goodbye messages to all of its neighbors and to the 
DT server (Figure 3.20(a)). When the server receives the Goodbye message, it removes 
N from the cache. When N’s neighbors receive the Goodbye message, they remove N 
from their neighborhood tables.  

Although N is deleted from the neighborhood tables of nodes B, C, D, and E, these 
nodes have other neighbor entries where N is listed as a CW or CCW neighbor. For 
example, since N= CWE(B) and N = CCWE(D), node N appears as CW neighbor of B 
and as CCW neighbor of D in E's neighborhood table. Therefore, N is now a candidate 
neighbor at all of these nodes. Thus, these nodes will send HelloNeighbor messages to N 
at the Heartbeat timeout. 

Let us now assume that all nodes send HelloNeighbor messages to their neighbors and 
their candidate neighbor N (Figure 3.20(b)). When N receives the messages, it will 
respond with Goodbye messages, as shown in Figure 20(c). The HelloNeighbor 
messages that are sent in Figure 3.20(b) contain the updated values of the CW and CCW 
neighbors of the nodes.   For instance, B's message to E lists C (and no longer N) as the 
CW neighbor of B with respect to E, so C= CWE(B). As a result, after Figure 3.20(b), 
node N no longer exists as a CW or CCW neighbor in the neighborhood tables of any 
node. Furthermore, nodes B, C, D, and E, know about each other either as neighbors or 
as a CW or CCW neighbor of some neighborhood table entry. When the neighbor tests 
are executed, C will fail the neighbor tests at node E and vice versa.  

On the other hand, D passes the neighbor test at node B and B passes the test at node D.   
Hence, nodes B and D add each other as candidate neighbors and send HelloNeighbor 
messages to each other (Figure 3.20(d)). Once these messages are received, both B and D 
have established each other as neighbors and as a result the overlay network has been 
repaired.    

Evaluation  

We have evaluated the performance characteristics of the DT protocol in measurement 
experiments on a cluster of Linux PCs. The  experiments included up to 100 PCs and 
overlay networks  with up to 10,000 nodes. The measurement experiments are reported 
in [LIEBE01b]. 
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We do not have a formal proof that the protocol always generates a Delaunay 
triangulation. However, we have verified that the network topologies that are generated 
by the protocol are Delaunay triangulations. 
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Appendix A: Actions of the DT protocol 

 

The following tables show the actions taken by the nodes in each state when events like 
message arrivals, timer expirations happen. We do not have separate tables for the three 
sub-states; the description of the actions in the sub-states are included in the With 
Neighbor Leader and Not Leader tables. We use the following notations and 
terminology: 

 

ServerReply(x):  Indicates a ServerReply message which contains node x. 

NewNode(w):    Indicates New Node message which contains node w. 

�       :               Indicates a state transition. 

return :              Processing for this event is complete. Skip the remainder. 

this :                   Refers to the local node. 

 

A.1 Transition Table for Node 

 

The following are transitions at node v. 

 

State: Stopped 

Event  Action 

Application starts � Leader Without Neigbhor 

 

States: Leader with Neighbor, Leadwer without Neighbor, Not Leader 

Event Action 

Application exits Send Goodbye to all neighbors 

Send Goodbye to server 

Ã� Leaving 

CachePing received Reply with CachePong message 

NewNode(w) received IF w passes neighbor test at v 

    /* w is a candidate neighbor */ 

    Send HelloNeighbor to w 

    Set timeout value of Heartbeat Timer to Fastheartbeat 

ELSE 

    Forward message to a neighbor which is closer to w 

 

State: Leader With Neighbor, Not Leader 
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Event Action 

Heartbeat Timer expires Send HelloNeighbor to all neighbors 

IF node is not stable 

    Send HelloNeighbor to closest candidate neighbor 

    Set timeout value of Heartbeat Timer to Fastheartbeat 

ELSE 

    Set timeout value of Heartbeat Timer to Slowheartbeat 

 

State: Leader Without Neighbor 

Event Action 

Backoff Timer expires IF NeighborBackoff tt ≥ and an alternate DT server exists 

     Switch to alternate DT server 

     Set Backofft  to eatFastHeartbt  

      Send ServerRequest to alternate DT server 

ELSE 

     Send ServerRequest to DT server 

     Set BackoffBackoff tt 2=  

     Start Backoff Timer 

Receives ServerReply(w) Set eatFastHeartbBackoff tt =  

IF thisw ≠   

       Send NewNode(this) to w. 

HelloNeighbor arrives 
from node w 

While wthis CoordCoord =  

      Node shift its coordinates 

IF w passes neighbor test 

     Add w as neighbor in neighborhood table 

     Start Neighbor Timer for w with Neighbort  

     IF thisw CoordCoord >  

           � Not Leader 

      Else 

           Set eatFastHeartbBackoff tt =  

            � Leader with Neighbor 

 

State: Leader With Neighbor 
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Event Action 

Backoff Timer expires IF NeighborBackoff tt ≥ and an alternate DT server exists 

     Switch to alternate DT server 

     Set Backofft  to eatFastHeartbt  

      Send ServerRequest to alternate DT server 

ELSE 

     Send ServerRequest to DT server 

     Set BackoffBackoff tt 2=  

     Start Backoff Timer 

Receives ServerReply(w) Set eatFastHeartbBackoff tt =  

IF thisw ≠   

       Send NewNode(this) to w. 

Neighbor Timer for w 
expires or Goodbye 
arrives from w 

IF w is neighbor 

    Remove w from neighborhood table 

    Set timeout value of Heartbeat Timer to Fastheartbeat 

IF no neighbors in neighborhood table 

    � Leader without neighbors 

HelloNeighbor or 
HelloNotNeighbor 
arrives from node w 

Ã 

IF w is a neighbor 

     IF w has changed its coordinates 

         Remove w from neighbor table 

         Return 

    Update neighborhood entry for w 

    Start Neighbor Timer for w 

     IF node is stable 

         Set Heartbeat Timer to Slowheartbeat 

    Else 

         Set Heartbeat Timer to Fastheartbeat 

Else  /* w is not a neighbor */ 

    IF another neighbor wv ≠ exists such that 

wv CoordCoord =  

         Send HelloNotNeighbor to w 

    Else 

         While wthis CoordCoord = , or for any neighbor v, 
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vthis CoordCoord =  

                 Node shift its coordinates 

         IF w passes neighbor test 

              Add w as neighbor in neighborhood table 

              Set Neighbor Timer for w 

              Remove all neighbors that fail neighbor test 

              While there are four nodes with coordinates on a 
circle 

                   Node shifts its coordinates 

                   While there exists neighbor v 
with vthis CoordCoord =  

                          Node shifts its coordinates 

              Remove all neighbors that fail neighbor test 

        Else if message is HelloNeighbor and w fails neighbor test 

              Send HelloNotNeighbor to w 

        IF there exists neighbor v with thisv CoordCoord >  

            Clear the Backoff Timer(if the timer was set) 

           � Not Leader 

 

 

State: Not Leader 

Event Action 

Backoff Timer expires IF NeighborBackoff tt ≥ and an alternate DT server exists 

     Switch to alternate DT server 

     Set Backofft  to eatFastHeartbt  

      Send ServerRequest to alternate DT server 

Else 

     Send ServerRequest to DT server 

     Set BackoffBackoff tt 2=  

     Start Backoff Timer 

Receives ServerReply(w) Set eatFastHeartbBackoff tt =  

IF thisw ≠   

       Send NewNode(this) to w. 

Neighbor Timer for w IF w is neighbor 
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expires or Goodbye 
arrives from w 

    Remove w from neighborhood table 

    Set timeout value of Heartbeat Timer to Fastheartbeat 

IF no neighbors in neighborhood table 

    � Leader without neighbors 

HelloNeighbor or 
HelloNotNeighbor 
arrives from node w 

Ã 

IF w is a neighbor 

     IF w has changed its coordinates 

         Remove w from neighbor table 

         Return 

    Update neighborhood entry for w 

    Start Neighbor Timer for w 

     IF node is stable 

         Set Heartbeat Timer to Slowheartbeat 

    Else 

         Set Heartbeat Timer to Fastheartbeat 

Else  /* w is not a neighbor */ 

    IF another neighbor wv ≠ exists such that 

wv CoordCoord =  

         Send HelloNotNeighbor to w 

    Else 

         While wthis CoordCoord = , or for any neighbor v, 

vthis CoordCoord =  

                 Node shift its coordinates 

         IF w passes neighbor test 

              Add w as neighbor in neighborhood table 

              Set Neighbor Timer for w 

              Remove all neighbors that fail neighbor test 

              While there are four nodes with coordinates on a 
circle 

                   Node shifts its coordinates 

                   While there exists neighbor v 
with vthis CoordCoord =  

                          Node shifts its coordinates 

              Remove all neighbors that fail neighbor test 

        Else if message is HelloNeighbor and w fails neighbor test 
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              Send HelloNotNeighbor to w 

 

 

State: Leaving 

Event Action 

Application exits � Stopped 

Goodbye arrives from w Ã 

Do nothing. 

A message (not 
Goodbye arrives from w) 

Send Goodbye to w 

 

 

A.2 Transition Table for DT Server 

 

The actions of the server in its two states are shown in the following two tables. 

 

 

State: Without Leader 

Event  Action 

Server receives 

ServerRequest from v 

Add node v to node cache 

Start Cache Timer for v 

Set Leader:=v 

ä Start Leader Timer 

Send ServerReply(v) to node v 

� Has Leader 

 

 

State: Has Leader 

Event  Action 

Server receives 

ServerRequest from v 

 

IF Leader = v or v is in node cache 

     IF v has changed its coordinates 

           Update v’s stored coordinates 

ELSE IF Leaderv CoordCoord >  

     Set Leader := v 

      Start Leader Timer 
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     IF node cache is full 

            Remove one node cache entry 

     Add node v to node cache 

ELSE 

      IF node cache is not full 

            Add v to node cache 

             Start Cache Entry Timer 

      IF Leader = v 

             Send ServerReply(v) to node v 

ELSE 

      Selcet w from node cache with vw CoordCoord >  

        Send ServerReply(w) to v 

        IF Leader != w and w has been used in 6 ServerReplys 

              Remove w from cache 

Goodbye received from 
v or Cache Entry Timer 
for v expires or Leader 
Timer for v expires 

IF v is in node cache 

     Remove v from node cache 

IF Leader = v and cache is not empty 

     Select new Leader = y, where y is the node in the node 
cache 

      with largest coordinates 

ELSE 

     IF Leader = v and cache is empty 

      � Without Leader 

Heartbeat Timer expires Ã 

Send CachePing messages to every node in node cache 

CachePong received  

From v 

Restart Cache Entry timer for v 

 

 



2/7/2008 Overlay Protocol 3.44 

 

University of Virginia   HyperCast 2.0 

 

Appendix B. DT Protocol Message Format 

 

All DT protocol messages have the same format with the same set of fields. However, 
the same fields may be interpreted differently dependent on the message type. The 
message format is shown in Figure 21. 

OverlayID
Hash

ADDR2ADDR1DSTSRCType

14 bytes 14 bytes 14 bytes 14 bytes4 bytes1 byte

                                  

Figure 21. Message format of DT protocol 

 

The type of the DT protocol message is indicated by a 1-byte long Type field.  
 

Message Type Type Field 

HelloNeighbor 0 

HelloNotNeighbor 1 

Goodbye 2 

ServerRequest 3 

ServerReply 4 

NewNode 5 

CachePing 6 

CachePong 7 

 
The OverlayIDHash is a 4-byte long hash value which is derived from the OverlayID. If 
the OverlayID is composed of only ASCII characters, we apply the hash function to the 
byte array of these ASCII characters. If the OverlayID contains non-ASCII characters, 
we require that the character encoding scheme is UTF-8, then we apply the hash 
function to the raw byte array of the UTF-8 encoding. The hash function, which can 
operate on variable-length byte arrays, is as follows: 

 

Input:  byte array, denoted by “A[ ]” 

Output:  a 4-byte unsigned integer, denoted as “result” 

 
Operators: 

Op1 >> Op2:  “Op1” is bit-wise right shifted “Op2” times.  

Op1 << Op2:  “Op1” is bit-wise left shifted “Op2” times. 

Op1 &  Op2:   bit-wise AND of “Op1” and “Op2”. 
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Op1  ^  Op2:   bit-wise XOR of “Op1” and “Op2”. 

Procedure OverlayIDHash (byte  A[] ) 

Begin 

    Result := 0; 

    For ( int i := 0 ; i < length of A[ ] ; i++ ) { 

            Byte  upperByte := (byte) ( (result >> 24) & 0xFF ); 

            int    leftShiftValue := ((upperByte ^ A[i]) & 0x07) + 1; 

            result := ((result << leftShiftValue) ^ ((upperByte ^ A[i]) & 0xFF)); 

    } 

    return result; 

end     
 

                      Table 3.19 The SRC, DST, ADDR1, and ADDR2 fields each contain the 
logical and physical addresses of a node. 

A logical address consists of the (x,y) coordinates of the Delaunay triangulation, where x 
and  y are each a 4-byte unsigned integer. A physical address consists of an IP address 
and a  port number, where the IP address is 4 bytes long and the port number is 2 bytes 
long. So, the entire length of an address field with a logical and a physical address is 14 

bytes. The exact format is shown in                             Figure22. 

port
number

IP addressy-coordinate of
logical address

x-coordinate of
logical address

4 bytes 4 bytes 4 bytes 2 bytes

 

                            Figure 22. Format of a logical address/physical address. 

 

• HelloNeighbor/HelloNotNeighbor:  SRC and DST contain the addresses of the 
sending and receiving node. ADRR1 and ADDR2, respectively, are the address 
of the CW and CCW neighbors of the sender with respect to the destination. If 
the sender has no CW or CCW neighbors, the corresponding fields are set to 
zero. 

• Goodbye: If the message is sent to the DT server, DST is set to all zeros. 
Otherwise, DST contains the address of the receiving node. The fields ADDR1 
and ADDR2 are set to zero. 

•  ServerRequest: SRC contains the address of the sending node. The fields DST, 
ADDR1, and ADDR2 are set to zero.  

• ServerReply:  The IP address and port number portion of the SRC field are set 
to the IP address and the port number of the DT server. The logical address part 
of field SRC is set to zero (Note that the DT server does not have a logical 
address). DST is the address of the node that sent the corresponding 
ServerRequest.  The field ADDR1 has the address of a node with a larger logical 
address (coordinates) than the logical address (coordinates) in the DST field. If 
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the DT server does not know about a node with a larger logical address, i.e., the 
DT server believes that the node described in the DST field is a Leader, then the 
ADDR1 field is set to be equal to the DST field. The field ADDR2 is set to zero.  

• NewNode:  The fields SRC and DST contain the sender and receiver, 
respectively, of the message. Whenever, the NewNode message is forwarded to 
another node, the fields SRC and DST are updated. ADDR1 contains the node 
who initially sends the NewNode message, i.e., the “new node”. ADDR2 is set to 
zero.  

• CachePing: The SRC contains the IP and port number of  the DT server, with 
the logical address part of the address set to zero. The DST field contains the 
address of the receiving node. The ADDR1 and ADDR2 fields are set to zero. 

•  CachePong: SRC contains the address of the sending node. DST is IP address 
and port number of the DT server, as contained in the CachePing message. The 
fields ADDR1 and ADDR2 are set to zero. 
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DT protocol versions 

The following is an update of on the HyperCast protocol  changes from 2004. 

The Landmark option was implemented, but has been deleted. 
The DT protocol uses (x,y) coordinates (where x,y are integer numbers)  as logical 

addresses. There exist multiple DT protocol versions due to the usage of different methods 
through which the logical address can be assigned, and rendezvous mechanisms. This document 
describes all of the existing variants of the DT protocol. 

In HCAST2.0 (HyperCast Version 2), for coordinate assignment, three methods are 
available: static assignment, coordinates derived from IP address, and random assignment.  The 
methods are determined by selecting the attribute DT2-0.Coords.  

x,y: specify the coordinates of the node. 
USE_IP: coordinates of the node are derived from IP address. 
RANDOMxxxx (xxxx is a number such as 1000): coordinates of the node are 
randomly selected from a xxxx by xxxx grid.  

HC3.0 (HyperCast Version 3.0) provides two additional methods to assign coordinates: 

USE_LM: coordinates of the node are determined by measuring the delays to a predefined set of 
nodes called Landmarks. 

USE_GEO: coordinates of the node are derived from longitude and latitude. 

 

3.1.24 Rendezvous methods 

Generally, a new node can use one of the following methods to rendezvous with an existing 
DT overlay: a dedicated server (rendezvous server), a list of potential members (buddylist) and 
announcement via multicast or local broadcast (broadcast). In HCAST2.0, only the rendezvous 
server is supported. In HCAST3.0, all three rendezvous methods are supported. 

 

• Rendezvous server 

With the server rendezvous, a dedicated server which is not part of the overlay is employed for 
node joining objective. The rendezvous server caches a list of existing overlay nodes. When a 
new node joins the overlay, it first sends a request to the rendezvous server, which provides 
information to contact with the overlay. 

• Buddylist 

With a buddylist rendezvous, a newly joining node has (by configuration) a list of possible 
members, called the buddylist. The new node  joins the overlay by trying to contact the nodes in 
the buddylist. The node in the buddylist provides information for contacting the overlay. 

• Broadcast 

A broadcast rendezvous server assumes the existence of a broadcast channel, e.g.,  IP multicast 
or local broadcast. A new node sends join request to and receives reply from this channel. By this 



2/7/2008 Overlay Protocol 3.48 

 

University of Virginia   HyperCast 2.0 

way, the new node can establish the connection with the existing nodes, and the existing overlay. 
In HCAST3.0, IP multicast is used to provide the functions of the broadcast channel. 

 

 

3.1.25 Coordinate selection with LANDMARKS 

Design Overview 

The method for  determining a node’s coordinates by employing Landmarks is based on the work 
of Global Network Positioning (GNP) by Eugene Ng. GNP models the Internet as a Euclidean 
coordinate system. A number of landmark hosts are placed on the Internet as the reference points.  
The operations can be divided into two phases: 

• First, these landmarks measure the delays between each other and determine their 
coordinates by solving an optimization problem that minimizes the difference between 
measured and estimated delays.  

• Second, after the coordinates of the landmarks are determined, the coordinates and 
landmarks’ addresses information (IP address & port number ) are published to a well-
known website or an overlay management server ( in the case of Hypercast), so that the 
information can be widely accessed. In the second phase, a node who needs to determine 
its logical coordinates makes delay measurements to the landmarks and calculates its 
coordinates via a triangulation.  

 

Figure 1. GNP system 

 

As shown in Figure 1, the two key parts are the landmarks and the targets, the hosts that need 
logical coordinates. In the implementation, the landmark is implemented as a daemon process 
running on a number of pre-selected long-live hosts. The other alternative to this daemon process 
is to probe the well-known port of the landmarks. This can simplify the whole design because the 
design and implementation of the daemon process can be saved. However, this approach has two 
disadvantages. First, not all the hosts support those well-known ports and actually many publicly 
accessible hosts disable those ports for security reasons. Second, to obtain all the pair-wise 
delays between all the landmarks, it is inevitable to obtain accounts of those landmark hosts. 
Therefore, the complexity and cost of this approach cannot be lowered considerably, compared to 
the daemon process approach. The target is implemented as a configurable and pluggable 
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component so that it can be seamlessly integrated into the existing Hypercast software. The 
communications between landmarks themselves and between landmarks and targets use message 
format explained in details in section 3. 

 

To make the configuration of GNP consistent with the current Hypercast configuration, we 
extend the configuration file and ensure modifications are backward compatible. Below lists the 
Landmark related properties for single node case. The lines in the configuration file are shown in 
dark-blue bold font and the explanation is shown in Italic font. 

DT3-0.Coords = USE_LM 

To use GNP to determine an overlay node’s logical coordinates, one more option for the attribute 
DT3-0.Coords is added.  

DT3-0.LandmarkNum = 3 

Indicate the number of landmarks used in an overlay 

DT3-0.Landmark0 = 128.143.69.149:3456 

The physical address (IP+UDP port number) of the first landmark 

DT3-0.Landmark1 = 128.143.137.16:3456 

The physical address (IP+UDP port number) of the second landmark 

DT3-0.Landmark2 = 128.143.137.15:3456 

The physical address (IP+UDP port number) of the third landmark 

DT3-0.Landmark0.Coordinates = 108.37761,102.059715 

The logical coordinates of the first landmark 

DT3-0.Landmark1.Coordinates = 108.91815,106.42619 

The logical coordinates of the second landmark 

DT3-0.Landmark2.Coordinates = 104.11766,102.20526 

The logical coordinates of the third landmark 

 

Software Architecture, in OL Socket & LM Design 
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Figure 2. GNP component in OL_Socket 

As the figure shows, GNP component (target) is a configurable part inside DT_Node. Three 
options are considered during the design phrase. First, GNP component can be placed outside the 
overlay node process. In that case, GNP component acts as a location service running on the 
local machine. The main advantage of the first choice is that it ensures all the overlay nodes on 
the same machine can obtain the same logical address and consequently, leads to a host-specific 
optimization for the overlay topology. For example, only one overlay node on the local host is 
elected to communicate with outside. This can eliminate the many duplicated logical links 
originated from the same node. However, the major concern for this choice is the high cost of 
inter-process communication, complicated dependency between processes and difficulty of 
updating logical addresses. The second choice is to place GNP component inside OL_Socket, but 
outside DT_Node. There are two main disadvantages of doing that. One is the introduction of 
inconsistency in software architecture. Adding GNP component to OL_Socket means that this 
component is a member of OL_Socket. However, not every overlay node needs such information, 
for example, Hypercube. Such a design does not abstract the essential common functions well. 
The other disadvantage is that the communication between GNP component and overlay node, is 
still complicated. Therefore, we choose the third option of placing GNP component inside DT 
Node. In this way, the whole software architecture is keep intact and all the changes are limited 
to DT node. In addition, since GNP component is a member of DT node, the communication 
between the two is simple and easy to implement. 

In the GNP component, the UDP_UnicastAdaptor is used to for the probing of landmarks. GNP 
component implements the I_AdapterCallBack interface to process the messages to and from the 
landmarks. Logical address is a critical resource because GNP component’s processing thread 
and DT node’s process threads can access it concurrently. The logical address of the DT node is 
stored at the member neighborhood. To ensure the consistence of the data, Java synchronization 
is used to protect the critical resource. The other part of the system is landmark daemon. The 
landmark is also implemented using UDP_UnicastAdapter.  

 

 

3.1.26 Coordinate selection USING Geographical Coordinates 

Algorithm 
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Geographical coordinates are two-dimensional coordinates obtained from the longitudes and 
latitudes of a node. For a longitude-latitude pair (lo, la), we know the range of their values: 

(south) -90 <= la <= +90 (north) 

(west) -180 <= lo <= +180 (east) 

Given a set of points on the earth, each of them corresponds to a longitude-latitude pair (x, 
y), we can draw a rectangle area which contains all points. To ensure the DT formed by this set 
of points resides in this rectangle area, we choose a base meridian, which is outside of the 
rectangle area, as the reference line. The value of the base meridian is denoted by base_meridian. 
The objective of this algorithm is to calculate the two-dimensional coordinates (x_cor, y_cor) 
from the value of (x, y) and base_meridian. For each point, its x-coordinate is calculated based 
on the adjusted difference between the longitude of this point and the base meridian. If base 
meridian is not specified, the Prime Meridian will be used as the base meridian. 

 

Figure 1. Base Meridian 

 

 

Case 1: base_meridian >= 0 

If x >= base_meridian, then x_cor = x - base_meridian; 

If x < 0, then x_cor = (180 - base_meridian) + (x – (-180))  

= 360 + x - base_meridian; 

If 0<= x < base_meridian, then x_cor = 360 – (base_meridian – x)  

= 360 + x - base_meridian. 

 

Case 1: base_meridian < 0 

If base_meridian <= x <= 0, then x_cor = x – base_meridian  

If x > 0, then x_cor = (x – 0) + (0 – base_meridian) = x - base_meridian; 

If x < base_meridian, then x_cor = 360 –  (base_meridian - x) 

= 360 + x - base_meridian; 

 

Combine all cases, we can simplify the calculation: 
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If x >= base_meridian, then x_cor = x - base_meridian; 

Else, x_cor = 360 + x - base_meridian. 

 

For y_cor, the following calculation is used which ensures y_cor >= 0: 

 y_cor = y + 90 

 

The coordinates calculated in the above way satisfy: 

1. x_cor >= 0, y_cor >= 0; 
2. the DT formed by the coordinates of the set of pints will not cross the base meridian 

line. 
 

Implementation 

To support the way through which a node derives its logical address from the longitude and 
latitude, the following properties are added in the Hypercast configuration file for single node 
case: 

DT3-0.Coords = USE_GEO 

To use geographical information to determine an overlay node’s logical coordinate.  

DT3-0.USE_GEO.GeoLocation = -95.2631, 38.9605 

Indicate the longitude and latitude of the node. 

DT3-0.USE_GEO.BaseMeridian = 0.0 

Indicate the base or reference meridian line for the overlay. 

 

In the DT_Node, DT_Node_Buddylist and DT_Node_Multicast class, the above algorithm is 
implemented in the method createLogicalAddress(). A modification is made to reduce the impact 
of the shift of a node’s coordinates: after obtaining x_cor and y_cor, we set x_cor = x_cor * 10, 
and y_cor=y_cor*10. 

 

 

 


