
 1 

Integrating FreePastry and HyperCast 
 

Greg Mattes 
Spring 2004 

Independent Networks Study 
Overlay Protocol Implementation in HyperCast 

Prof. Jorg Liebeherr 
University of Virginia 

 
Introduction 
This document lists the specific issues involved in integrating the FreePastry code base into 

the HyperCast system. For a general overview of integrating arbitrary overlay protocols into 
HyperCast see REF. 

 
Implementing I_Node APIs 
In FreePastry routing is performed when a "route message" is processed in the system. 

There is no API to ask for the next hop to a given node. In order to implement the 
getParent() API of I-Node interface, the code for the Pastry routing algorithm had to be 
removed from the file StandardRouter.java and placed in HyperCastNodeAdapter.java 
with minor modifications. 

All neighbors is defined to be everybody in the leaf and route sets. There is support in 
HyperCastNodeAdapter.java to merge these two sets and return their union. 

 
Timer Adapter 
Pastry uses java.util.Timer (Java 1.3), whereas HyperCast implements its own Timer class 

(in the adapter directory). Both do essentially the same thing, but there are at least three 
major differences. First, the HyperCast Timer class gives no API that allows the 
programmer to specify that a certain event should continue to occur periodically, rather the 
burden is on the programmer, when handling a timer event, to reschedule that event. Pastry 
calls the java.util.Timer APIs "scheduleAtFixedRate" and "schedule." These two APIs do 
slightly different things, one is fixeddelay and the other is fixed-rate (See the Javadoc for 
java.util.Timer). The HyperCastTimer provides a timerExpired method for use with previously 
scheduled HyperCastScheduledMessages. The timerExpired method should be called on all 
HyperCastScheduledMessages to ensure that they are rescheduled properly if they were defined 
by Pastry to be periodic. The HyperCastTimer class does not make the distinction between 
fixed-rate and fixed-delay scheduling, however, it is implemented as fixed-rate (to make it 
fixed-delay simply move the line of code "msg.runO;" to be the first line of code in the 
timerExpired method. If the difference between fixed-rate and fixeddelay is crucial in the 
future, two APIs can be easily defined with the "msg.runO" as the first line of one API and the 
last line of the other. 



 2 

Second, the HyperCastTimer does not run in its own thread as does the Pastry timer (since 
Pastry uses java.util.Timer). One of the reasons for having the HyperCastTimer class is so that 
Pastry timer events happen in the HyperCast adapter's timer thread. 

Finally, the Java Timer class works with TimerTask objects rather than general Objects as 
is the case in HyperCast. TimerTask objects have associated with them a run method (this does 
not imply that TimerTask is derived from Runnable, i.e.. a TimerTask does not have its own 
thread, rather it uses the java.util.Timer thread). This run method must be invoked in order for 
the TimerTask registered with the Timer to do its work. In the HyperCast case, the programmer 
writes a handler that does whatever is appropriate with the Object that is passed to the 
timerExpired method of the I-AdapterCallback interface, i.e.. the code run by a HyperCast 
timerlD object is not usually stored with the object, but rather with a handler, a TimerTask 
has a built in handler called "run." The HyperCastTimer method timerExpired takes care of 
invoking the run method of a Pastry TimerTask (Pastry extends "TimerTask" to be a 
"ScheduledMessage," there is another class called "HyperCastScheduledMessage" that is 
extended from "ScheduledMessage" which is used in this interface. 

 
Order of Initialization Operations/Join 
In HyperCast when a node is created its data structures are created first, then a rendezvous 

mechanism finds another node already in the overlay, finally, the overlay join operation 
proceeds. 
This is not the way that FreePastry is architected, FreePastry transposes the order of the first 
two operations, rendezvousing with an existing node first, then initializing data structures. 
This implies that in FreePastry rendezvous messages do not pass through the node network 
interface as they do in HyperCast, specifically, through the node adapter. 

In addition to rendezvous, Pastry exchanges a series of messages that are not part of the Pastry 
overlay protocol in order to locate an existing node that is physically close to the the new node. 
Only after such an existing nearby node is identified can the data structures for a new pastry 
node be created because in the architecture of the FreePastry system the initialization of these 
data structures requires a nearby node to be known. I refer to this as the first phase of join. 

Only after the first phase of join has completed does the Pastry protocol join operation 
proceed. I call this the second phase of join. 

The second phase of join are simply Pastry overlay protocol message so they are handled easily 
by passing them to the FreePastry system for processing. The first phase of join 
message however are very difficult to implement using HyperCast. Unfortunately no code from 
FreePastry can be reused for this phase of join because FreePastry uses bi-directional 
communication channels that HyperCast does not support. The code for the first phase of join is 
implemented as a state machine 
in PastryJlode-BuddyList. java. 

 



 3 

Pastry H HyperCast Node Adapter 
This is not the node adapter in HyperCast that is responsible for overlay protocol messages, 

rather this is the class that is used as a bridge between the HyperCast Pastry-Node class 
and the Pastry HCPastryNode class. It allows messages to be passed between the code of the 
two systems. Another function provided by this adapter is address translation back 
and forth between I-PhysicalAddress used by HyperCast and InetSocketAddress 
used by Pastry. 

 
Logical Address 
A class was created to support Pastry logical addresses in the file 

Pastry_LogicalAddress. j ava. This class implements the adapter pattern and 
forwards most method calls to the FreePastry Node Id class. 

Code in Id. java had to be changed so that the number of bits used in a Pastry logical 
address was 128 instead of 160. This is due to a logical address length constraint imposed by the 
HyperCast message format. 

 
Rendezvous 
A "buddy list" rendezvous mechanism was chosen to be used with Pastry in 

HyperCast. This mechanism is simple to use and to implement, indeed an existing buddy list 
implementation from the HyperCast Delaunay triangulation code is used as the basis for 
the implementation used with Pastry. 

With buddy lists, a set of well known buddies is placed in a static configuration file that is 
read on system initialization. Attempts are made to contact these buddies, one-by-one, 
until contact is established. When contact is established the two phases of Pastry join begin. 

Unlike the Delaunay triangulation code, the Pastry buddy list code supports only "static" 
buddies and does not cache buddies in a file. 

Message Formats 
The class Pastry-Message was implemented to be able to pass Pastry messages among 

HyperCast nodes. Since FreePastry is used as a "black-box," Pastry overlay protocol messages 
are not interpreted by the HyperCast code. The Pastry-Message class is responsible for 
formatting and reading HyperCast message headers, however the content of Pastry overlay 
message is handled by 
FreePastry code. 

Java serialization is used to create byte streams that represent Pastry overlay 
messages. These byte streams are passed to HyperCast when Pastry needs to send 
information. The byte streams are included as an opaque payload of a Pastry-
Message. 

In addition to overlay messages, several message types used in rendezvous the first phase 
of join 



 4 

are defined by Pastry-Message. These messages were originally implemented in 
PastyNodeFactory. j ava 
but as explained in the Join section of this document, could not be used. 

 
Multicast 
Multicast was not implemented using Pastry in HyperCast. The operations for 

determining which neighbors are children of an arbitrarily based multicast tree 
cannot be done locally on a Pastry node. Messages to all potential children, i.e.. all 
neighbors, must sent and those potential children must report back to the sending 
node if that node is not their parent. In this way a tree may be built. 

 
HyperCast Improvements 
Various changes were made to the HyperCast code base as a result of this work. 

The Pastry API specifies that node should be notified when is has complete a join 
operation. HyperCast had no support for such a mechanism so one was added. 

An operation called "previous hop check" was added to HyperCast to aid in the 
build of a multicast tree in protocols, like Pastry, that cannot make a local 
determination of which neighbors are children in an arbitrary tree. 

A "factory" pattern was added to HyperCast for use in the creation of nodes. It was 
noticed in the analysis of the FreePastry code that the factory pattern was useful 
when creating nodes with different network drivers. This concept was transferred to 
HyperCast when creating a node that is one of many types. 
 
 


