
Page 1 of 13

The Backbone-Cluster Protocol
Wittawat Tantisiriroj, Jorg Liebeherr, MNG Group
Thursday, February 07, 2008

Table of Contents
1. Introduction ..1
2. Operations ..3
3. States and State Transitions ..4
4. Message Formats ...8

4.1. BackboneIDRequest Message ..8
4.2. BackboneIDReply Message..8

5. Attributes ..8
6. Statistics ... 11
7. Appendix Implementation of the I_Node and AdapterCall Back Interfaces............................... 12

1. Introduction
The backbone-cluster (B-CT) protocol realizes a hierarchical peer network topology with a two-layer
hierarchy. The lower layer of the topology is built by the Cluster (CT) protocol and the upper layer is
built by any other overlay protocol. Recall that the CT protocol organizes sets of nodes of an overlay
network in star topologies, called clusters. The node in the center of a cluster is called cluster head and
the nodes at the periphery are called cluster members. In the CT protocol, application data is exchanged
only between nodes in the same cluster. The B-CT protocol connects multiple clusters and enables the
exchange of application data between nodes in different clusters. This is done by connecting the cluster
heads by another overlay topology, referred to as the backbone.

Figure 1 depicts a network that is created by the B-CT protocol. The figure shows a set of clusters that
are each established by the CT protocol. Cluster members and heads are labeled with an `M’ and `H’,
respectively. The head in each cluster is connected to the backbone. The backbone can be constructed
using any of the existing overlay protocols, such as the spanning tree protocol, Pastry, or the cluster
protocol.

Page 2 of 13

Figure 1. Cluster-Backbone topology.

In the B-CT protocol, each node runs an unmodified instantiation of the CT protocol and the backbone
protocol. In this way, the B-CT protocol can add clusters to the periphery of any existing overlay protocol.
The B-CT protocol provides the glue between the state machines for the two protocol instantiations.

In a backbone-cluster network, all clusters and the backbone belong to the same overlay network, in the
sense that they have the same overlay identifier and compatible configurations. The logical address of a
node in a B-CT protocol is the result of concatenating the logical addresses in the backbone and cluster.
All nodes in the same cluster have a common prefix which is the backbone address of the cluster head.

The B-CT protocol performs the following tasks:

• It creates the logical address of the node by concatenating the logical address in the backbone
with the logical address in the cluster. Cluster members must obtain the backbone prefix from
their respective cluster head.

• It builds the neighborhood association of the node from the neighborhood table in the backbone
protocol node and the cluster protocol.

• It makes all cluster heads join the backbone topology.

• It disseminates information about cluster heads throughout the backbone by having cluster
heads exchange referral lists (see CT protocol) to neighbors in the backbone network.

Page 3 of 13

2. Operations

Figure 2. Node in the B-CT Protocol (Cluster head).

The structure of a protocol node in the B-CT protocol is shown in Figure 2. The node contains a node of
the backbone protocol and a node of the CT protocol. However, cluster members do not join the
backbone overlay topology. In these nodes, the backbone node is inactive.

The B-CT node exploits a property of the overlay node design that permits an overlay node to contain
multiple internal overlay nodes. Internal protocol nodes communicate via a virtual adapter, called a
dummy adapter, and protocol messages from the internal protocol nodes are multiplexed on a single
node adapter using an encapsulation header. The encapsulation is performed by an additional protocol,
called the Multiplexing (MUX) protocol. The MUX protocol and the dummy adapter are discussed
elsewhere. In the design of the B-CT protocol, a B-CT node is a container with one or two internal nodes.
Each B-CT node includes a node of the CT protocol and node of the backbone protocol. The CT node is
always active. The backbone node is active only, if the CT node is running as a cluster head.

As Figure 2, that a B-CT node may include up to three finite state machines (FSMs). The finite state
machines of the cluster node and the backbone nodes, denoted by FSMBBone and FSMCT, execute
independent of each other and are unaware of the presence of the B-CT node. A B-CT node runs a finite
state machine, FSMB-CT, that takes into consideration the state of the internal nodes. The state machine
of the B-CT node, explained in detail in the next section, is minimal. The node periodically tests the state
of the cluster node. When the cluster node is running as a member, the B-CT node sends a message to
the cluster head to request backbone address of the cluster head. When the cluster node is running as a
cluster head, the B-CT protocol creates a backbone node and maintains the membership of the backbone
node in the backbone network.

The logical address of an overlay node serves as a unique address in the overlay network. The logical
address of B-CT node is constructed as a concatenation of the logical address of a backbone address,
LABBone, and a cluster address, LACT. This concatenation is denoted as LAB-CT = LABBone ° LACT.

Page 4 of 13

The B-CT protocol has only a single exchange of protocol messages, whose purpose is to assign a
backbone logical address LABBone to a cluster member. A cluster member sends a request for a backbone
address to its cluster head. The cluster head returns its address in the backbone network.

In HyperCast, application data is forwarded in spanning trees that are embedded in the overlay topology.
Each node forwards data to one or more of its neighbors in the overlay topology. A multicast message is
forwarded downstream in a rooted tree that has the sender of the multicast message as the root. A
unicast message is forwarded upstream in a rooted tree that has the destination of the message as the
root. In HyperCast, each node can locally compute its upstream neighbor (parent) and its downstream
neighbors (children) with respect to a given root note. In the B-CT protocol, the computation must
consider neighbors in a cluster topology as well as in the backbone topology. If a B-CT that contains a CT
node that is a cluster member, the situation is simple since a node has only one neighbor, i.e., its cluster
head. Let us now look at a B-CT node that contains a cluster head. The neighborhood of this node is the
union of the neighbors in the cluster and the backbone network. When this node calculates the
downstream neighbors in the overlay network, the distinguishes whether the root node is one of its
cluster members. If so, the downstream neighbors are all other cluster members and all downstream
neighbors in a spanning tree that has the local node as the root. If the root is not one of its cluster
members, then the downstream nodes consists of its downstream neighbors with respect to the given
root in the backbone and all cluster members. An upstream neighbor is either one of its cluster members
(if the root is in its cluster), the upstream node in the backbone network (if the root node is not one of its
cluster members).

3. States and State Transitions
In this section, we specify the finite state machines of the B-CT protocol. Table 1 summarizes the states
of the protocol. Each B-CT node instantiates a node of the CT protocol. The states of the B-CT protocol
depend on the state of the CT protocol. If the CT node s a cluster member, the B-CT node must acquire
a backbone logical address (backbone ID) from its cluster members. In the state, Member without
Backbone ID a node requests a backbone ID from the cluster head. In this state, without a backbone ID,
the node has not a valid logical address that can be used as source or destination in the overlay network.
In the B-CT protocol, a node must monitor the state of the CT node. This is enforced through a timer,
called the Update timer.

Table 1. State Description.

State Name State Definition

Stopped The node is not running

Unknown Its cluster node is neither a cluster head or cluster member

Member without
Backbone ID

Its cluster node is a cluster member and it does not have a backbone ID

Member without
Backbone ID

Its cluster node is a cluster member and it does have a backbone ID

Head Its cluster node is a cluster head

Page 5 of 13

Figure 3. State transition diagram of the Backbone-Cluster.
(From each state, there is an additional edge with label Leave overlay to state Stopped.)

The state transitions are depicted in the diagram in Figure 3. The labels of the links are as follows:
*Candidate= The state of the CT node changes to Member Candidate Without Head or Member

Candidate With Head

*Member = The state of the CT node changes to Member
*Head = The state of the CT node changes to Head Without Member or Head With Member

Page 6 of 13

The following event-action tables provide a detailed description of the B-CT protocol. In the table, CT-
State denotes the states of the node in the CT protocol.

State: Stopped

Event Action

Join Group Cluster node performs a join operation
� Unknown

State: Unknown

Event Action

Update timer expires Check the state of the cluster node
If CT-State1 = Member
 � Member without Backbone ID

Else if CT-State = Head Without Member or Head With Member
 Backbone node joins the backbone topology
 Update the logical address
 � Head

Leave Group Leave overlay of CT node and backbone node
� Stopped

State: Member without Backbone ID

Event Action

Update timer expires Send a BackboneIDRequest message to the cluster head

Check the current state of the cluster node
If CT-State = Member Candidate Without Head or

 Member Candidate With Head
 � Unknown
Else if CT-State = Head Without Member or Head With Member

 Backbone node joins the backbone topology
 Update the logical address
 � Head

BackboneIDReply
message received
from cluster head

Update the logical address
 � Member

Leave Group Leave overlay of CT node and backbone node
� Stopped

State: Member with Backbone ID

Event Action

Update timer expires If CT-Head Change
 � Member without Backbone ID

Check the current state of the cluster node

If CT-State = Member Candidate Without Head or
 /Member Candidate With Head
 � Unknown

Else if CT-State = Head Without Member or Head With Member

1 CT-State refers to the current state of cluster node in the Tier-Cluster node.

Comment: Currently
implemented and still in testing
phase.

Comment: Done

Page 7 of 13

 Backbone node joins the backbone topology
 Update the logical address

 � Head

Leave Group Leave overlay of CT node and backbone node
� Stopped

State: Head

Event Action

Update Timer expires Send a CT Referral message containing a list of the backbone neighbors
to all cluster nodes.

Check the current state of the cluster node
If CT-State = Member Candidate Without Head
 or Member Candidate With Head
 Leave the backbone overlay

 Set a logical address to be undefined
 � Unknown
Else if CT-State = Member

 Leave the backbone overlay
 � Member without Backbone ID

BackboneIDRequest
message received
from a cluster
member

Send a BackboneIDReply message to the cluster member

Leave Group Leave overlay of CT node and backbone node
� Stopped

Comment: This feature is not
implemented. We have not
decided whether we want to
implement it or not.

Issue:
- Which sub-node sends this
referral message? B-CT node or
CT Node.

For a B-CT node case, how can
the B-CT node extract
information from CT Node and
how the B-CT node inject the
information back to CT Node?

For a CT Node case, how can
B-CT node force CT Node to
send a referral message?

Page 8 of 13

4. Message Formats
This section list the detailed message formats used in the Backbone-Cluster Protocol. The common
format for all protocol messages is shown in Figure 4.

Figure 4. Protocol message of the B-CT protocol.

Type: The types of Backbone-Cluster protocol messages are shown in Table 2.

Table 2. Protocol Message Types.

Message Type Type Field

BackboneIDRequest 0

BackboneIDReply 1

Overlay Hash: A 4-byte long hash value that is derived from all attributes specified in

HashAttributes of the configuration file.
Src PA: A physical address of the source node.
Dest PA: A physical address of the destination node.

4.1. BackboneIDRequest Message

Figure 5. BackboneIDRequest message.

4.2. BackboneIDReply Message

Figure 6. BackboneIDReply Message Format.

Backbone LA: A logical address in the backbone network.

5. Attributes
Example
 <Node>
 <BC_Container>

 <MainNode>

Comment: Should protocol
field and message size be part
of message format?
Check with SPT implementation
and document.

Comment: What is the Src
LA/Dest LA? In the B-CT
protocol, the LA consists of
backbone+cluster ID. Here, the
node may not have a backbone
ID.

Oct 31, 2006: delete src and
dest La FROM messages. The
reason is that source does not
have complete LA, and does

not know destination LA.

Comment: A sender of a
message does not know its
Backbone ID and destination’s
backbone Id. So, Src and Dest
LA are undefined. In the
current implementation, these
field are omitted.

Comment: Oct 31: JL + WT:
delete srs LA and dest LA from
all messages. Keep src/dest PA

Comment: BLASize “The size
of the logical address in the
backbone network” is removed
because all nodes use the same
backbone protocol, so it can
figure out the BLASize by itself.

Page 9 of 13

 <BC>
 <HeartbeatTime>5000</HeartbeatTime>
 <Verification>neighborcheck</Verification>
 <StatName>Node</StatName>
 </BC>
 </MainNode>

 <BackboneNode>
 <DTBroadcast>
 <CacheFile>.Cachefile</CacheFile>

 <TimeoutTime>10000</TimeoutTime>
 <FastHeartbeatTime>250</FastHeartbeatTime>
 <SlowHeartbeatTime>2000</SlowHeartbeatTime>

 <Verification>neighborcheck</Verification>
 <BeaconTime>250</BeaconTime>
 <StatName>Node</StatName>
 <Coords>

 <FIXED>
 <coordinate>500,500</coordinate>
 </FIXED>

 </Coords>
 </DTBroadcast>
 </BackboneNode>
 <ClusterNode>
 <CT>
 <HeartbeatTime>1000</HeartbeatTime>
 <MemberTimeout>3000</MemberTimeout>

 <HeadTimeout>3000</HeadTimeout>
 <MemberReferralInterval>5000</MemberReferralInterval>
 <HeadCacheReferralInterval>1000</HeadCacheReferralInterval>
 <CacheEntryTimeout>10000</CacheEntryTimeout>

 <OfferCollisionWindow>500</OfferCollisionWindow>
 <Verification>neighborcheck</Verification>
 <StatName>Node</StatName>

 <ReferralEnable>true</ReferralEnable>
 <LimitedReferralSize>1</LimitedReferralSize>
 <CacheFile>.CT_CacheFile</CacheFile>

 <HeadCacheSize>10</HeadCacheSize>
 <HeadNum>1</HeadNum>
 <Head>
 <UnderlayAddress>

 <INETV4AndOnePort>127.0.0.1:9800</INETV4AndOnePort>
 </UnderlayAddress>
 </Head>

 <Type>
 <MemberOrHead>
 <Criteria>
 <Member>
 <MinimumAvailableMember>1</MinimumAvailableMember>
 <MaximumMember>20</MaximumMember>
 </Member>

 <Location>
 <Coordinate>-95.2631, 38.9605</Coordinate>
 <MaxDistance>100</MaxDistance>

Comment: The structure
changed a bit

Page 10 of 13

 </Location>
 <Bandwidth>
 <MinimumRate>56</MinimumRate>
 <OfferRate>56</OfferRate>
 </Bandwidth>
 <Availability>

 <MinimumValue>5</MinimumValue>
 <OfferValue>5</OfferValue>
 </Availability>

 </Criteria>
 <SelectionPolicy>
 <NextFit/>

 </SelectionPolicy>
 </MemberOrHead>
 </Type>
 </CT>

 </ClusterNode>
 </BC_Container>
 </Node>

Page 11 of 13

6. Statistics

The Backbone-Cluster protocol supports the following statistics.

Required by M&C

- LogicalAddress (R)

- PhysicalAddress (R)
- NumOfNeighbors (R)
- NeighborTable (R)

Roots of its components statistics

- BackboneNode (R)
- ClusterNode (R)

Time

- NodeStartTime (R)

- NodeStopTime (R)
- HeartbeatTime (RW)

Status
- State (R)

o Stopped
o Unknown
o MemberWithoutBBoneID

o MemberWithBBoneID
o Head

(R) stands for Read-Only

(RW) stands for Read&Write

Comment: Add detail for each

statistic & think about any
useful statistics

Comment: All statistics are
implemented.

Page 12 of 13

7. Appendix Implementation of the I_Node and AdapterCall
Back Interfaces

 I_LogicalAddress createLogicalAddress(byte[] laddr, int offset)

 Creates a logical address object from a byte array.

bla = backbone.createLogicalAddress(laddr, offset)

cla = cluster.createLogicalAddress(laddr, offset+ bla.getSize())

return new TC_LogicalAddress(bla, cla);

I_LogicalAddress createLogicalAddress(java.lang.String laStr)

 Creates a logical address object from a String.

String las[] = laStr.split(“:”);

bla = backbone.createLogicalAddress(las[0]);

cla = cluster.createLogicalAddress(las[1]);

return new TC_LogicalAddress(bla, cla);

I_AddressPair[] getAllNeighbors()

 Returns the node's neighbors' physical/logical address pairs.

 Neighbors_B-CT = Neighbors_BBone ∪ Neighbors_CT

I_AddressPair[] getChildren(I_LogicalAddress root)

 Returns the node's children's physical/logical address pairs, with respect to the spanning tree

 rooted at root.

 If node is CT_Head:
 Children_B-CT (root) = Children_BBone (FirstElement(root)) ∪ Neighbors_CT

 If node is CT_Member:
 Children_B-CT (root) = (root == self? Neighbors_CT: nil)

I_AddressPair getMyAddressPair()

 Returns this logical and physical addresses of this node.

 The following is not correct since it ignores the physical address:

If node is CT_Head:
 Children_B-CT (root) = getMyAddressPair_BBone () ° getMyAddressPair_CT ()

If node is CT_Member:

 Children_B-CT (root) = LocalAddress of BBone () ° getMyAddressPair_CT ()

I_AddressPair[] getParent(I_LogicalAddress root)

 Returns the addresspair of the next hop for a message routed by this node towards the root.

 If node is CT_Head:
 Parent_B-CT (root) = (root = X and X ∈ Neighbors_CT? X : nil)

Page 13 of 13

 If node is CT_Member:
 Parent_B-CT (root) = (root == self? Nil : Neighbors_CT)

boolean prevhopCheck(I_LogicalAddress src, I_LogicalAddress dst,
I_LogicalAddress prehop)

 Check if previous hop is a valid sender.

 return backbone.prevhopCheck(src, dst, prehop) || cluster.prevhopCheck(src, dst, prehop)

void setLogicalAddress(I_LogicalAddress la)

 Sets the logical address to specified one.

TC_LogicalAddress tcla = (TC_LogicalAddress) la;

backbone.setLogicalAddress(tcla.getBackboneLA());

cluster.setLogicalAddress(tcla.getClusterLA());

void setNotificationHandler(NotificationHandler nh)

 Set notification handler.

this.nh = nh;

backbone.setNotificationHandler(nh);

cluster.setNotificationHandler(nh);

 void messageArrivedFromAdapter(I_Message msg)

 Handles the incoming message (unicast, server, or multicast).

If type of msg is BackboneIDRequest and node is CT_Head

 Send a BackboneIDReply

Else type of msg is BackboneIDReply and node is CT_Member

 Update a backboneID.

I_Message restoreMessage(byte[] receiveBuffer, int[] validBytesStart,
int validBytesEnd)

 Creates a message from bytes in a buffer.
return TC_Message.restoreMessage(receiveBuffer, validBytesStart, validBytesEnd, m_adapter,

config.getOverlayHash());

void timerExpired(java.lang.Object timerID)

 Handles the arrival of a timer

